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a b s t r a c t

Microstructure-based quantitative computation of the shale permeability is challenging due to the pres-
ence of organic matter with nanoporous features. In this study, a new three-dimensional (3D) coupled
model is proposed to investigate the micro-scale permeability of organic-rich-shale matrix. The coupled
model consists of two subdomains, organic matter and inorganic matrix. They are described by the pore
network model (PNM) and continuum model to capture the non-Darcy and Darcy flow, respectively, and
the gas flow in the two subdomains are coupled by finite element mortars (Mortar). The convergence
error, grid discretization and parallel scheme are also investigated to get the optimal computing param-
eters for this model. Then, the effects of the total organic content (TOC), kerogen distribution and pore-
size distribution on the apparent permeability (AP) of shale matrix are studied using the coupled model
with computer-generated PNMs. And on the basis of FIB-SEM images, a Longmaxi shale sample from the
Sichuan Basin, China is introduced to build a real shale model. Results show that AP is more sensitive to
TOC and pore-size distribution than kerogen distribution. Additionally, in order to analyze the necessity
of 3D model, a comparison of 3D and two-dimensional (2D) model is made and the error of 2D model is
pointed out. The 3D couple model affords a foundation for further upscaling of shale permeability to REV
scale and reservoir scale.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Shale gas, generated by the thermal evolution of organic mat-
ters (kerogen) and constrained within the ultra-tight shale, has
attracted significant attentions to meet world’s increasing energy
demand. In shale reservoirs, the gas flow through very small pores
(in nanoscale) to micro-fracture networks [1], and using conven-
tional approaches (such as Darcy’s law) in the whole region is chal-
lenging [2–4]. The permeability varies with the pressure,
temperature, porosity and pore size, as well as the size of shale
rocks because flow regime varies in different scales [5,6].

It is obvious, for example, from the focused ion beam scanning
electron microscope (FIB/SEM) images of a Longmaxi shale sample
(Fig. 1), that there are two kinds of subdomains: kerogen with
plenty of nanopores and inorganic matrix with micro intergranular
pores and micro-fractures [7–9]. And the nanopores of kerogen
form pore networks with good connectivity, while in inorganic
matrix the pores or fractures can hardly be seen. The isolated kero-
gen blocks are dispersed in shale. Recently, numerous researchers
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Fig. 1. FIB/SEM images of a Longmaxi Shale sample. Light grey indicated the inorganic matrix, dark grey indicated organic matter; and deep black indicated nanopores.
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have noticed the big differences between kerogen and inorganic
matrix in shale and treat them separately [10–17].

Akkutlu and Fathi [10] used lattice Boltzmann method (LBM) to
simulate gas dynamics in organic matter and found that Darcy’s
law is applicable when organic pores are extremely large
(>100 nm). Later, they [11] proposed a dual-porosity model to sep-
arate kerogen from inorganic matrix and pointed out that gas
transport is dominated by Darcy flow in inorganic matrix while
by non-Darcy flow in kerogen. They concluded that the permeabil-
ity of shale is primarily relevant to the relatively large pore and
fractures in inorganic matrix, but the molecular behaviors (diffu-
sion transport and nonlinear adsorption) relevant to the pores in
kerogen. In 2015, Akkutlu [12] adopted multiscale asymptotic
analysis method to solve a one-dimensional dual-porosity contin-
uum model and concluded that both the gas in-place and gas pro-
duction rate depend on the content of kerogen in shale. Later,
Akkutlu [13] employed the generalized multiscale finite element
method (GMsFEM) to add the influence of fractures and extended
the model to 2D. Based on Akkutlu’s work, in 2016, Alexey [14]
divided shale into kerogen and inorganic matrix and solved both
the continuum subdomains by nonlinear parabolic equation, then
utilized numerical homogenization technique through local prob-
lems to calculate macro parameters. However, it is not convenient
to include the influence of local heterogeneity caused by micro-
and nano- pores when both the organic and inorganic matter are
represented by continuums.

Song et al. [15] performed a study on the influence of pore pres-
sure on the apparent permeability. They showed that pore pressure
will affect the permeability of organic matter but has no effect on
the permeability of inorganic matter. Additionally, the study
assumed that organic matter and inorganic matter are isotropic,
and discussed the apparent permeability with the mean pore size.
A real shale is of intensely strong heterogeneity and anisotropy,
calculating the permeability by a single pore size will bring errors
and the pore-size distribution should be taken into consideration.
Naraghi and Javadpour [16] put the pore-size distribution mea-
sured by the 3D experiment into a 2D model by stochastic classifi-
cation method based on statistics, and applied Expectation-
Maximization algorithm (EM) to separate two distributions of
pores in organic matter and inorganic matrix, then discussed the
impact of total organic content (TOC) and the pore-size distribu-
tion on AP. After that, Wang et al. [17] employed EM algorithm
to divide the pore size distribution and applied generalized lattice
Boltzmann model (GLBM) to solve a 2D problem to analyze the
effect of organic and inorganic matter distribution, TOC and surface
diffusion on permeability. It is found that the distribution of
organic and inorganic matter has a negligible influence on appar-
ent permeability, but TOC and surface diffusion are of significant
importance. However, Chen [18] supposed that the gas exchange
within organic matter is a slow process, so gas transport occurs
merely in the inorganic matrix and the organic matter has no effect
on gas permeability, in addition, the mass exchange rate of the
kerogen and inorganic matrix is linearly proportional to the free
gas pressure difference between them. Although those models sep-
arate kerogen from inorganic matrix, 2D model is widely used
without considering the 3D heterogeneity and anisotropy.

In recent years, several approaches are proposed for investigat-
ing multiscale effects. Scheibe, Tartovosky, Battiato [19] present a
general formulation of an iterative hybrid numerical method that
links the pore and continuum scales. Sheng and Thompson [20]
present a concurrent coupling method of pore-scale and
continuum-scale. Chen and Prodanovic [21] utilized a random
walk algorithm to link the restricted diffusion coefficient to the
pore scale characteristics of shale gas media. Tomlin [22] describes
an adaptive gridding models for pollution transport and reaction
using a layered and fully adaptive 3-D tetrahedral approach. How-
ever, those coupling strategies had limitations in terms of flexibil-
ity and efficiency. The limitations were avoided in a later work
through the introduction of Mortar [23]. The advantages of Mortar
are that it allows for different physics, scales, and models in vari-
ous parts of the domain and is easily parallelizable. It would be
of great value if different parts of the domain could be modeled
through different methods which are appropriate to the local
transport conditions and level of accuracies.

Kerogens play an important role in the storage and transport of
shale gas, but most of them are isolated from one another. How-
ever, gas flow in a real shale is a coupled system of kerogen and
inorganic matrix. Either the continuum models or the statistic
models can hardly describe the shale characteristics integrally.
Thus, in the study, we propose a 3D coupled model. It is a model
where a number of kerogens disperse randomly in inorganic
matrix. Kerogen is represented by pore network model (PNM)
owing to its pore size is of nanometer magnitude and its gas trans-
port covers viscous flow, slip flow and Knudsen diffusion. On the
other hand, inorganic matrix is regarded as an isotropic porous
medium where gas flow occurs primarily in micro channels and
fractures. It is assumed that gas flow in inorganic matrix satisfies
Darcy’s law and finite volume method (FVM) is utilized to repre-
sent it. Then, Mortar method is employed to couple kerogen and
inorganic matrix models together by enforcing the continuity of
pressures and fluxes at the shared boundary interfaces. Finally,
the coupled model is solved by parallel computing.

This paper is organized as follows. Section 2 presents the prin-
ciples, derivation, validation and computational efficiency of the
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coupled model. In Section 3, the sensitivities of the apparent gas
permeability to TOC, kerogen distribution, pore-size distribution
and space dimension are analyzed based on the coupled model
with the regular-topology PNMs generated by computer. More-
over, the real-shale PNMs extracted from FIB/SEM images are also
analyzed here. Finally, the summary and conclusions of this work
are drawn in Section 4.

2. Coupled model development

From FIB/SEM images, it can be seen that a series of organic
matters (kerogen) are surrounded by inorganic matrix. Inside the
kerogen, there exist many developed pore networks with good
conductivity. Therefore, a coupled model in which kerogen dis-
perses within inorganic matrix is established in this study, as
shown in Fig. 2.

2.1. Gas flow model for nanoporous kerogen

PNM is adopted to describe the porous space in kerogen. It is a
pore-scale technique in which the porous media is approximated
as an interconnected network of pores and throats. In this work,
both computer-generated networks and real-shale networks using
FIB/SEM will be used. For computer-generated networks, it is usu-
ally assumed that pore and throat sizes are spatially uncorrelated
in the regular-topological networks, but previous studies have
found that the size relationship between the adjacent pores and
throats has certain effects on the permeability of the networks
[24]. In order to guarantee the spatial correlation between pores
and throats, a PNM based on the work of Blunt et al. [25] in which
large pores prefer to be connected with large throats is employed
in this study. For real-shale networks, the AB (axis & ball) algo-
rithm [26] is employed to extract the PNMs from FIB/SEM images.

The general approach to PNM is to impose a mass conservation
equation at each pore in the network. For compressible steady
flows, the conservation equation for pore i is described asX
j

gijðpi � pjÞ ¼ 0 ð1Þ
Fig. 2. Coupled model (the inner porous kerogen is represented by PNM and the
surrounding inorganic matrix is represented by FVM, and their interfaces are
coupled by Mortar).
where pi and pj are the pressure of pore i and its adjacent pore j. gij

is the mass flow conductivity, which satisfies:

gij ¼
Kapppr2ij
llij

qavg ð2Þ

where rij is the radius of the throat which connects pore i and pore j;
lij is the throat length; l is gas viscosity; qavg is gas density, calcu-

lated by qavg ¼ pavgM
ZRT , pavg is the average pressure in the throat; M is

molecular molar mass of methane; Z is compressibility factor; R is
gas constant; T is absolute temperature; Kapp is the apparent perme-
ability of the throat calculated by Javadpour’s formula [27]:

Kapp ¼ 2rijlM
3RTqavg

8RT
pM

� �0:5

þ 1þ 8pRT
M
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pavgrij

2
a
� 1
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r2ij
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where a is the tangential momentum accommodation coefficient
(TMAC). In this work, the temperature is assumed as a constant
and the pressure difference between the inlet and outlet is subtle,
lZ is taken as a constant. Substituting gij into Eq. (1), using the
square pressure form, one obtains:

X
j

Kapppr2ij
lij

M
2lZRT

ðp2
i � p2

j Þ ¼ 0 ð4Þ

Regarding the square pressure ~p ¼ p2 as the unknown, the Eq.
(4) is simplified as:

X
j

Kapppr2ij
lij

kð~pi � ~pjÞ ¼ 0; k ¼ M
2lZRT

ð5Þ
2.2. Gas flow model for inorganic matrix

Considering gas flow in inorganic matrix is dominated by Darcy
flow, it is modeled by FVM. For steady flows, the conservation
equation for grid i is simplyX
j

Tijðpi � pjÞ ¼ 0 ð6Þ

For compressible fluids, mass flow conductivity Tij can be writ-
ten as:

Tij ¼ KiomAij

ldij
qavg ð7Þ

where pi and pj are the pressure of grid i and its adjacent grid j; Kiom

is the Darcy permeability of inorganic matrix; Aij is the area of the
grid interface; dij is the distance between the centers of grid i and

grid j; qavg is gas density, calculated by qavg ¼ pavgM
ZRT ; pavg is the aver-

age pressure. Taking lZ as a constant, the Eq. (6) can also be chan-
ged into the form of square pressure:

X
j

KiomAij

dij

M
2lZRT

ðp2
i � p2

j Þ ¼ 0 ð8Þ

Regarding the square pressure as the unknown, the Eq. (8) can
be simplified as:

X
j

KiomAij

dij
kð~pi � ~pjÞ ¼ 0; k ¼ M

2lZRT
ð9Þ

In the inorganic matrix, permeability is served as a constant:
Kiom ¼ const .
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2.3. Mortar coupling

In this study, Mortar method is employed to connect kerogen
and inorganic matrix. Mortar is proposed by Bernardi, Maday and
Patera [28] to solve the Possion problem at first. It decomposes
the solution domain into several subdomains, then discretely
solves the subdomains with the most suitable method according
to their characteristics using a convenient parallel computing. Bal-
hoff et al. [23,29] extended Mortar for the first time to pore-scale
models (such as coupling PNM to PNM and PNM to continuum).
This study follows the idea of Balhoff and uses Mortar to realize
the coupling of PNM and continuum which represent kerogen
and inorganic matrix, respectively (Fig. 3). In inorganic matrix,
FVM is chosen in order to ensure the local conservation of fluxes.

Mortar method can be referred from Balhoff [23] and it requests
that the coupled interface must satisfy: (1) The pressure of the left
and right subdomains of the interface is continuous. This rule is
guaranteed by the property that the pressure of the boundary
nodes of the subdomains is obtained based on their position in
Mortar element. (2) The fluxes should be matched at each interface
in a weak sense (explanation comes next).

The pressure field of Mortar space is a linear combination of
basic functions as:
Pðx; yÞ ¼
X
j

aj/jðx; yÞ ð10Þ

where Pðx; yÞ is the pressure field, /jðx; yÞ is the basic functions
of the j th Mortar node, aj is the coefficients of basic functions. The
basic functions can vary hierarchically from constant, linear, quad-
ratic, etc. order functions. Here, the quadrilateral element and the
piecewise continuous bi-linear basis functions are applied. The
solution is obtained by determining the coefficients (aj ’s) of basic
functions that maintains the weak match of fluxes in the interfaces.
The resulting flux across each entire interface is matched in such a
way that total mass is conserved. In order to make the fluxes of the
left and right subdomains adjacent to the interfaces is integrally
equal (that is, the weak match), one obtains:
Fjða1;a2; . . . ;aDOFÞ ¼
Z

qL/j � qR/j ¼ 0; ðj ¼ 1;2; . . . ;DOFÞ ð11Þ
where Fj is the jump in fluxes across the interface, qL and qR are the
fluxes in the left and right side of the interfaces, respectively.
DOF = degrees of freedom = basis function number = Mortar node
number. The mathematical approach for Mortar method is solving
the nonlinear equations Eq. (11) by Newton-Raphson iterative
methods, a summary of the procedure is shown as follows:
Fig. 3. Mortar coupling
where ðxLi; yLiÞ and ðxRi; yRiÞ are the coordinates of the FVM nodes or
PNM pores in the left and right side of the interface, NL and NR are
the number of those nodes or pores; J is Jacobian matrix; e is the
calculation accuracy.

2.4. Apparent permeability of the coupled model

A Diriclet boundary condition is applied to the coupled model
with a constant inlet pressure pin and outlet pressure pout. And
the definition of the apparent permeability of the coupled model
Kcp is given by:

Kcp ¼ qm

Acp

2lZRT
M

Lcp
ð~pin � ~poutÞ ð12Þ
of PNM and FVM.



Table 1
Properties of the three conditions.

Medium 1 Medium 2 Interface

PNM-Mortar-FVM Continuum
(k = const)

PNM (k = f(p)) Mortar coupling
interface

FVM-Mortar-FVM Continuum
(k = const)

Continuum
(k = f(p))

Mortar coupling
interface

Global FVM Continuum
(k = const)

Continuum
(k = f(p))

Global mesh with
no Mortar

k represents permeability in Table 1. In Medium 1, k is a constant. While in
Medium2, k is a function of pressure k = f(p).
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where Acp is the sectional area of the coupled model, Lcp is the length
along the flow direction; ~p ¼ p2; qm is the total flow mass aross the
boundary expressed by:

qm ¼
X
i2@X

X
j

KiomSij
dij

M
2lZRT

ð~pi � ~pjÞ ð13Þ

where @X is the boundary of the coupled model. Substituting Eq.
(13) to Eq. (12), the apparent permeability can be rewritten as:

Kcp ¼ 1
Acp

Lcp
ð~pin � ~poutÞ

X
i2@X

X
j

KiomSij
dij

ð~pi � ~pjÞ ð14Þ
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Fig. 5. APF curves of the three conditions.
2.5. Model validation

In this section, three kinds of conditions are found (Fig. 4) to
validate our model and codes. The inside of these conditions is
medium 1 with a constant permeability and the external is med-
ium 2 with a permeability which varies with pressure. Medium 1
represents inorganic matrix while medium 2 represents kerogen.
Here the PNM (represents kerogen) is homogeneous and isotro-
pous and has a regular cubic topology. It is easy to get the upscaled
permeability of this PNM and utilize a continuum media to replace
it to get an equivalent result as condition 2&3 (FVM-Mortar-FVM
and Global FVM). The three conditions are enumerated in Table 1,
and their Apparent Permeability Function (APF) curves are shown
in Fig. 5.

The APF curves of the three conditions are well matched (Fig. 5).
It proves that Mortar method is feasible to deal with the FVM-PNM
and FVM-FVM interface. In addition, our program codes have been
validated.

2.6. Discussion of computational efficiency

2.6.1. Solution accuracy of different spaces
In this section, the solution accuracy of different spaces is stud-

ied. There are three spaces in the calculation: PNM space, FVM
space and Mortar space. In Mortar space, Newton-Raphson itera-
tion converges quickly, its convergence error achieves 1e-6
through only 2 iteration steps. However, the accuracy and effi-
ciency still should be considered in the solution of the steady flow
in PNM and FVM, as shown in Table 2.

The accuracies of the two subdomains (PNM and FVM space)
should match with the accuracy of Mortar space to improve the
efficiency. The efficiency is maximized when the accuracy of sub-
domains is 1–2 orders of magnitude higher than that of Mortar
space. In this study, the convergence error of the Newton-
Raphson iteration is set to 1e-6 and the steady convergence errors
of PNM and FVM are set to 1e-8. In such a condition, the deviation
Fig. 4. Images of the
of the permeabilities calculated by the inlet and outlet of the cou-
pled model is approximately 0.01nD so that the flow conservation
is guaranteed with a minimum computational expense.
2.6.2. Mesh sizes of the interface
In this section, the effects of the interface grids on the accuracy

and efficiency are discussed. Using the coupled model as Fig. 2, the
size of inner pore network is set to 2 � 2 � 2 lm3 and its porosity
is set to 10%. According to the pore-size distribution of kerogen
(with a mean pore radius of 20 nm, mean throat radius of 14 nm
and standard deviation of lognormal distribution of 0.05), the
2 � 2 � 2 lm3 PNM contains approximately 11 � 11 � 11 pores,
so there are 11 � 11 pores in per interface. With other conditions
remain unchanged, two cases of FVM grids and five sets of Mortar
grids are used to find the optimal solution. The permeability of
inorganic matrix is set to 500nD and the average pressure is
three conditions.



Table 2
Kcp calculated by different accuracy sets.

Convergence Error Computing time (s) Inlet Kcp (nD) Outlet Kcp (nD) Deviation (nD)

Mortar PNM FVM

1e-6 1e-3 1e-3 9.3 525.85 565.11 39.26
1e-6 1e-6 20.3 511.86 512.00 0.14
1e-7 1e-7 26.6 511.93 511.94 0.01
1e-8 1e-8 34.8 511.94 511.94 0.00
1e-9 1e-9 37.6 511.94 511.94 0.00

Table 3
Calculation parameters and results of different mesh sizes.

Cases FVM grid at per interface Mortar grid at per interface Total number of Mortar nodes Computation time (s) Kcp (nD)

Case1 2 � 2 1 � 1 8 2.2 513
2 � 2 26 6.6 512
4 � 4 98 23.7 510
8 � 8 386 90.7 509
16 � 16 1538 – Singular system

Case2 4 � 4 1 � 1 8 47.8 511
2 � 2 26 141.3 511
4 � 4 98 517.8 511
8 � 8 386 2053.7 510
16 � 16 1538 – Singular system
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1 MPa here. Calculation parameters and results are shown in
Table 3.

In general, a finer Mortar discretization result in a smaller error
in flux. However, a 8 � 8 Mortar grid results in an ill-conditioned
Jacobi matrix and leads to low accuracy. In the extreme case, as
the Mortar grid is refined to 16 � 16, Jacobi matrix becomes singu-
lar, as shown in Table 3. The condition number of Jacobi matrix and
the calculation error will increase when the Mortar grid is exces-
sively refined. Jacobi matrix turns to singular when there is no
pores (or finite volume nodes) in one or more Mortar elements.
Moreover, the computing expense increases significantly with
the refinement of Mortar gird, however, the difference in Kcp is less
than 1%.

In the previous literature, Balhoff [23] studied the coupling of
826 and 847 pores at the two sides of the interface. For 1 � 1,
2 � 2, 4 � 4, 8 � 8 Mortar grids, the maximum flux error is only
1.08% and the maximum pressure error is 0.8%. In Sun’s work
[30], the sizes of Mortar grid are set to 2, 4, and 20 times the size
of adjacent subdomain grids, all those results are shown correct
but when it is 20 the computing expense will be greatly saved.
Mehmani and Balhoff [31] proposed an Interface Point Partitioning
method (IPP) to avoid possible singularity of the interface problem
caused by fine Lagrangian Mortars. But in this study, the Jacobi
matrix only becomes singular in the extreme case of 16 � 16 Mor-
tar grid, with a difference in Kcp by less than 1%. There is a
trade-off between accuracy and efficiency, regarding to them
simultaneously, the Mortar grid and the inorganic matrix grid in
the interface are set to 1 � 1 and 4 � 4, respectively.

2.6.3. Parallel scheme
The solution procedure in Section 2.3 shows that Mortar

method is very suitable for parallel computing. Two parallel
schemes are proposed here: (1) calculating the components in
Jacobi matrix by parallel; (2) calculating the independent subdo-
mains by parallel (Fig. 6). It is found that when the computing
complexity of different subdomains varies widely, scheme 1
(Fig. 6b) is easy in parallel design with a small data transfer and
a relatively high efficiency. However, when the calculation in each
subdomain requires a large amount of storage and those subdo-
mains have a similar computational complexity, using scheme 2
(Fig. 6c) will significantly save computer memory. In this study,
there are approximately 1300 pores in a single PNM and 8000
nodes in FVM, scheme 1 is chosen for a faster calculation. But if
there are approximately 8000 pores in PNM and 8000 nodes in
FVM, using scheme 2 needs a much smaller computer memory.

3. Sensitivity analysis and discussion

In this section, the sensitivities of the apparent gas permeability
to TOC, kerogen distribution, pore-size distribution and space
dimension are investigated. It should be noted that both the regu-
lar topology PNMs generated by computer and the real-shale PNMs
extracted from FIB/SEM images are analyzed in the sensitivity
analysis of kerogen distribution.

3.1. Calculation parameters design

In this study, we implemented the sensitivity analysis with the
input parameters listed in Table 4 and the state parameters listed
in Table 5. The dimension of the coupled model is set to be
10 � 10 � 10 lm3 with several 2 � 2 � 2 lm3 kerogen blocks.
Using the TOC of 3.08% (volumetric TOC of 8%) as an example,
the 3D coupled model is divided into 5 � 5 � 5 blocks and there
are 10 kerogen blocks randomly dispersed in it, as shown in Fig. 7.

3.2. Effects of the total organic content (TOC)

In order to investigate the effect of TOC on AP, in this section, six
cases with different TOC (3.08%, 4.62%, 6.15%, 7.69%, 9.24%, 10.78%)
are constructed with the corresponding kerogen block numbers of
10, 15, 20, 25, 30, 35. For the Kiom of 500nD and the pressure
boundary condition of 0.2 ± 0.1 MPa, the contour plots of pressure
for the six cases are shown in Fig. 8.

A few observations can be made from Fig. 8. First, a continuity
of pressure is observed along all of the Mortar interfaces: the inter-
faces of PNM-PNM and the interfaces of FVM-PNM. Second, the
results show that the existence of kerogen indeed affects the gas
flow and has a significant impact on the pressure field. In such a
low pressure of 0.2 Mpa, a significant non-Darcy effect occurs in
kerogen so its permeability is much greater than that of inorganic
matrix. The interconnected kerogens form a fast pathway for
gas transport that results in an extremely small pressure-drop in



Fig. 6. (a) Jacobi matrix of Newton-Raphson iterative methods in Mortar space (b) Scheme 1: calculating the components in Jacobi matrix by parallel (c) Scheme 2: calculating
the independent subdomains by parallel.
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Table 4
Base case input parameters.

Model parameters Value

Coupled model dimension (um) 10 � 10 � 10
Single kerogen dimension (um) 2 � 2 � 2
TOC 3.08%,4.62%,6.15%,7.69%,9.24%,10.78%
Mean pore radius of kerogen (nm) 20
Mean throat radius of kerogen (nm) 14
Standard deviations of pores and

throats
0.05,0.15,0.25,0.35

Porosity of kerogen 10%
Number of pores in a single kerogen 11 � 11 � 11

Table 5
State parameters.

State parameters Value

Average pressure of the inlet and outlet boundary (Mpa) 0.2–20
Permeability of inorganic matrix, Kiom (nD) 500,1000,5000,1e4
Gas viscosity, l (pa�s) 1.5e-5
Absolute temperature, T (K) 300
Gas compression factor, Z 1

Fig. 7. Example of the coupled model with 10 randomly-dispersed kerogen blocks.
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kerogens. It also causes the pressure contours protrude outward
near the ‘‘kerogen group” and the streamlines converge at both
ends of the kerogens. Third, the contours bend more seriously as
TOC increases, indicating a stronger heterogeneity.

Fig. 9 shows the APF curves of the coupled model (APF_M) with
the changing TOC and average pressure at four Kiom: 500 nD,
1000 nD, 5000 nD, and 10,000 nD. It indicates that the permeabil-
ity of shale is much dependent on pressure, and it must be consid-
ered as a dynamic reservoir parameter and updated accordingly as
the reservoir is being depleted. For comparison, the APF curves of a
single kerogen (APF_K) and inorganic matrix (Kiom) are plotted in
the same figure. The interesting finding here is that a higher TOC
induces a bigger upper-limit of APF_M but a smaller low-limit of
APF_M. The phenomena can be explained as flows: for the low
pressure such as 0.2 Mpa, non-Darcy flow plays a dominant role
in kerogen causing APF_M increases more with a higher TOC; how-
ever, for the high pressure such as 20 Mpa, APF_K is much smaller
than Kiom and a higher TOC brings a larger decrease. Fig. 9 also
shows the trend that APF_M becomes closer to Kiom as TOC
decreases; on the contrary, APF_M becomes closer to APF_K as
TOC increases. The deviation between APF_M and Kiom is less than
10% with the TOC smaller than 4.62% and Kiom larger than 1e4 nD.

Chen et al. considered that organic matter has nothing to do
with the transport channel and gas flow only occurs in inorganic
matrix, the mass exchange rate is linearly proportional to the free
gas pressure difference between kerogen and inorganic matrix.
They supposed the mass exchange is a slow process but the gas
flow is a fast process and the two processes are decoupled. It’s
shown that their assumptions hold under certain conditions. In
our model, the coupled gas flow of organic and inorganic is taken
into account and mass exchanges occur in the six interfaces of each
kerogen block, which fully reflects the contribution of the intercon-
nected pore network of the organic matter to shale permeability.
The results show that ignoring the contribution of kerogen to shale
permeability will lead to great errors in most of the time, for exam-
ple, the permeability will be underestimated in the low pressure
with an error up to 200% and overestimated in the high pressure
with an error up to 20%. The effect of kerogen on shale permeabil-
ity is less than 10% only when the TOC is small than 4.62% and Kiom

is large than 1e4nD. Results show that TOC plays a significant role
on shale permeability and agree well with Wang et al.’s study [17].

3.3. Effects of the kerogen distribution

In this section, the sensitivities of AP to kerogen distribution in
both the regular topology PNMs and real-shale PNMs are studied.

3.3.1. Regular topology PNMs
Six random realizations with regular topology PNMs are con-

structed, and there are 25 kerogen blocks randomly dispersed in
them with TOC = 7.69%, as shown in Fig. 10. The APF curves of
the six realizations are shown in Fig. 11.

From Fig. 11, it can be seen that the APF curves have two cate-
gories: one category has no intersection of Kiom and APF_K; the
other has an intersection and the APF_M curves of different realiza-
tions join at the same point. At the intersection point, kerogen dis-
tribution has the minimum effect on shale permeability. The
impact of kerogen distribution increases as the pressure value
moves away from the intersection. The APF_K value is enormous
with the pressure of less than 0.5Mpa and the APF_M curves of dif-
ferent distributions are quite different. APF_K gets close to Kiom

when the pressure approaches the intersection points, which
causes the coupled model to be a homogeneous body and the
APF_M curves of different kerogen distributions to join. When the
pressure is greater than 10Mpa, gas flow in kerogen tends to be
Darcy’s flow which leads to an approximately level APF_M curve
and a small permeability difference of the kerogen distributions.

To better quantify the effects of kerogen distribution, the rela-
tive deviation between the maximum and minimum permeability
of three stochastic realizations at different TOC levels are calcu-
lated, as shown in Table 6.

Table 6 shows that: (1) in general, the impact of kerogen distri-
bution increases as TOC increases; (2) the relative deviation has a
minimum value because the coupled model tends to a homoge-
neous body when the pressure approaches the intersection points;
(3) When TOC is less than 11% and the pressure is greater than
0.1 Mpa, the permeability deviation of different kerogen distribu-
tions is less than 10% and thus, kerogen distribution has a negligi-
ble influence on shale permeability. The results is qualitatively
consistent with Wang’s conclusion [17].

3.3.2. Real-shale PNMs
The discussions above base on regular networks generated by

computer. However, for a real shale, irregular pore network is
essential, so a real shale model generated from FIB/SEM images
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TOC=7.69% TOC=9.24% TOC=10.78%

Fig. 8. Contour plots of pressure for the six cases with TOC varies from 3.08% to 10.78%. The pressure fields of the center section of x-direction are also shown for clarity.
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is discussed in this section. The data of grey black mud shale from
Longmaxi formation, Sichuan, China is adopted here. This shale
belongs to marine shale, and the buried depth is approximately
1319.2 meters, with Ro of 2.3 and the TOC of 3.6% (Fig. 12a). The
voxel numbers of the entire dataset is 1024 � 884 � 406, and the
voxel size is 10 nm. The light grey is inorganic matrix, which is
mainly composed of quartz and clay minerals. The dark grey repre-
sents kerogen and the darkest parts in it are void. It can be
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Fig. 9. APF curves of the six cases with TOC varies from 3.08% to 10.78% at four Kiom.

Fig. 10. Six realizations with random kerogen distributions (r1–6).
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observed that kerogens indeed disperse in the inorganic matrix. In
this study, the AB (axis & ball) algorithm [26,32] is employed to
extract the kerogen blocks and get the corresponding PNMs, those
PNMs are coupled to the inorganic matrix and subsequently the
real-shale model is found. For the real shale in Fig. 12a, seven
PNMs (S1, S2, S3, S4, S5, S6, S7) are obtained (Fig. 13), and the
real-shale coupled model is established, as shown in Fig. 12b.

Flowing porosity is the ratio of volume of throats with flux mag-
nitude larger than 0 to total volume. Np and Nt are the numbers of
pores and throats in the pore network, respectively. CNavg is the
average coordination number. Ravg is the arithmetic mean throat
radius. For more details about AB extraction algorithm and the
properties of those kerogens, one can refer to Jiang et al.’s work
[26].

The TOC and pore-size distributions are approximately constant
in the real shale within a certain formation but the kerogen distri-
bution is of considerable uncertainty. Therefore, the effect of kero-
gen distribution is discussed here. We calculated the permeability
in the x- and y-direction and found that there is a large difference
between different directions due to the strong anisotropy in shale.
Therefore, the two directions are separated in the analysis of the
influences of kerogen distribution, with kerogens re-randomized
by only translating but not rotating. Fig. 14 shows the four realiza-
tions of random kerogen distributions of the real shale model LMX
in Fig. 12b. Assuming the inorganic matrix permeability is
1000 nD, the APF curves in x direction and y direction of those real-
izations are shown in Fig. 15.

As can be seen from Fig. 15, the anisotropy and heterogeneity of
pore network are significant in the real shale which causes the per-
meabilities vary in different directions. However, kerogen distribu-
tions have a negligible influence on the permeability of real shale
with a maximum difference of 3%.
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Fig. 11. APF curves of different kerogen-distribution realizations at four Kiom.

Table 6
Deviation statistics of different kerogen distributions.

TOC Boundary Pressure condition (Mpa)

0.2 ± 0.1 0.5 ± 0.1 1 ± 0.1 5 ± 0.1 10 ± 0.1 20 ± 0.1

3.08% 2.40% 1.46% 0.75% 0.02% 0.02% 0.02%
4.62% 4.90% 2.37% 1.18% 0.03% 0.03% 0.03%
6.15% 5.60% 2.97% 1.44% 0.04% 0.05% 0.07%
7.69% 7.04% 4.79% 2.35% 0.08% 0.13% 0.16%
9.24% 9.70% 4.37% 1.83% 0.08% 0.13% 0.15%
10.78% 15.32% 7.90% 3.66% 0.11% 0.15% 0.16%
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3.4. Effects of pore size distribution

In this section, the sensitivity of AP to pore-size distribution is
presented. The mean pore radius is set to a constant as Table 4
but the standard deviations r of lognormal pore radius distribution
range from 0.05 to 0.45, as listed in Table 8. r reflects the degree of
dispersion of pore size and it actually represents the heterogeneity
of the PNMs. Thus, the effect of heterogeneity within kerogens on
the permeability of the coupled model is analyzed.

Fig. 16 illustrates the APF curves of different r. The result shows
that the increase in r increases the permeability of the coupled
model. The intersection point of Kiom and APF_M moves right when
r increases. When r is big enough (>0.25), the Darcy’s permeabil-
ities of those kerogens are greater than that of the inorganic matrix
so that the APF_M curve and Kiom curve have no intersection. From
Fig. 17, it can be seen that the increase of the permeability of the
coupled model is non-linear with increasing r. The maximum
deviation of different r is 17%. The results show that using the
mean value of pore radius is not sufficient and the pore size distri-
bution should be taken into consideration when calculating the
permeability of kerogen.

In addition, in order to examine whether the results in Sec-
tion 3.3 are universal, three random realizations of kerogen distri-
bution are calculated with r ranged from 0.05 to 0.45, as shown in
Table 9, and the maximum relative deviations of AP are also given.

Table 9 depicts that a larger r induces a greater relative devia-
tion of different kerogen distributions. This is because the range of
the kerogen pore radius spans wide and the heterogeneity inside
the kerogen becomes strong as r increases, and then those strong
heterogeneous kerogens disperse randomly in the coupled model



Fig. 12. (a) FIB/SEM images of real samples from Longmaxi formation (b) the real-shale coupled model LMX, where the seven blocks are PNMs extracted from the kerogen in
the real shale as shown in Fig. 12a. The red points in the blocks represent the location of pore centers in the networks, the actual structures of those networks are shown in
Fig. 13 and their parameters from AB model are shown in Table 7.

Table 7
Parameters obtained by AB model.

Kerogen Sample Flowing Porosity Np Nt CNavg Ravg(nm) Tortuosity

S1 0.67% 154 298 2.45 11.08 1.62
S2 0.24% 380 913 2.44 9.00 2.47
S3 0.25% 873 2235 2.77 9.12 1.65
S4 0.27% 410 892 2.60 8.57 2.05
S5 1.61% 25 30 1.44 10.18 1.32
S6 0.26% 586 1542 2.68 10.11 1.99
S7 0.15% 41 62 1.93 13.42 1.42

Fig. 13. Structures of the PNMs in Fig. 12b.
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which increases the uncertainty of shale permeability. However,
the relative deviations of kerogen distributions still are within
8.44% even in an extremely large r (such as 0.45) and an extremely
low pressure (such as 0.2 Mpa). Consequently, the kerogen distri-
bution has a negligible effects on AP in different pore-size distribu-
tions and the conclusions in Section 3.3 are extended.
3.5. Effects of the dimension

3.5.1. Comparisons of 2D and 3D model
Since the 3Dmodels of shale have a considerable computing, 2D

models are widely adopt in the recent published works. In order to
analyze the effect of model dimension, coupled models in both 2D



Fig. 14. Realizations of random kerogen distribution (LMXr1–r4), they are the same with the real-shale model LMX in Fig. 12b except kerogen distribution.
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Fig. 15. APF curves of different kerogen distributions in both x and y direction.

Table 8
Parameters of the four pore-size distributions.

r MAX pore radius(nm) MIN pore radius(nm) MAX throat radius(nm) MIN throat radius(nm)

0.05 23.2 17.0 16.7 11.5
0.15 35.1 12.1 24.2 7.6
0.25 44.2 9.0 34.5 5.4
0.35 59.6 6.4 49.2 4.4
0.45 96.2 3.9 65.2 2.9
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Fig. 16. APF curves of different r.
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and 3D are constructed. The 2D model is designed with the same
TOC and porosity as the 3D model (Fig. 18). Here, the TOC and
kerogen porosity are set to 7.69% and 10%, so the porosity of the
coupled model is also the same. The 3D model has 25 kerogen
blocks, and each 2 � 2 � 2 lm3 block contains 11 � 11 � 11 pores
and the corresponding 2D model contains 5 PNMs and the model
thickness is 2/11 lm.



Table 9
Maximum relative deviations of kerogen distributions in different r.

r Boundary Pressure condition (Mpa)

0.2 ± 0.1 0.5 ± 0.1 1 ± 0.1 5 ± 0.1 10 ± 0.1 20 ± 0.1

0.05 2.40% 1.46% 0.75% 0.02% 0.02% 0.02%
0.15 5.25% 2.84% 1.38% 0.06% 0.02% 0.02%
0.25 5.68% 2.86% 1.43% 0.13% 0.03% 0.01%
0.35 6.59% 3.82% 1.97% 0.14% 0.04% 0.02%
0.45 8.44% 5.01% 3.13% 0.92% 0.53% 0.23%

Fig. 18. 2D and 3D model with the same TOC and porosity.
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The Kiom is set to 500 nd and the average pressure varies from
0.2 to 20 Mpa. And then the permeability of the 2D (K2D) and 3D
model (K3D) are calculated. The results are normalized using the
ratio of K2D to K3D, as shown in Fig. 19.

Fig. 19 shows that, the deviation of the 2D and 3D model tends
to be steady by approximately 4% when the pressure is greater
than 10 Mpa, as gas flow tends to be Darcy’s flow in kerogens.
The decrease in pressure increases the deviation of the 2D and
3D model, with a maximum error of 37%. However, the computing
time of 2D model and 3D model are 3s and 1800s. So the efficiency
of 2D model is approximately 600 times that of 3D model. It is con-
cluded that when the pressure is larger than 10 Mpa, the error of
the 2D model is approximately 4%, accompany with a significantly
high efficiency.
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Fig. 19. Ratio of the permeability calculated by 2D model and 3D model.
3.5.2. Quantitative comparisons with other results
2D model is widely used in the published works so far. In order

to conduct quantitative comparisons with other results, we build a
2D model to keep the parameters (sample size, gas type, porosity,
TOC, Temperature, pressure and pore size et al.) consistent with
Naraghi and Javadpour’s work [16], as shown in Table 10.

We build four realizations with random kerogen distributions
and calculate their permeabilties. In organic kerogen, PNM is uti-
lized to represent it with a fixed pore size distribution. In inorganic
matrix, FVM is used to represent it and its permeability is calcu-

lated by K ¼ /�r2

8s , where / and s are the porosity and tortuosity, �r
is the mean pore radius. The mean values and standard deviations
of those realizations are shown in Table 11, compared with the
results of Naraghi and Javadpour’s.

Table 11 shows that the permeability calculated by the Mortar
coupled model is in good agreement with Naraghi and Javadpour’s.
The standard deviation is smaller than that of Naraghi and Javad-
pour as the mean pore radius is employed in the inorganic matrix
so it is more homogeneous in this study. Although the 2D model is
calculated here, in the previous discussion it has been presented
Table 10
Input parameters for quantitative comparisonss.

Input parameters Data reported by Naraghi & Javadpour
(2015) [16]

Sample size 10 lm � 10 lm
Gas type Methane, 16.04 g/mol
Porosity 10%
Volumetric TOC 12%
Temperature 300 K
Average pressure 10 Mpa
Tortuosity 2
Organic matter pore-size

distribution
l = 0.4, r = 0.18

Inorganic matter average pore
diameter

25 nm



Table 11
Results comparision.

Mean Permeability Standard Deviation

Naraghi & Javadpour(2015) [16] 0.70 lD 0.23
This work 0.72 lD 0.04
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that the deviation of the 2D and 3D model is approximately 4% in
the pressure of 10 Mpa.

4. Conclusion

In this study, a newly developed model coupling kerogen and
inorganic matrix is proposed to calculate the micro-scale perme-
ability of shale. Considering the different flow characteristics in
kerogen and inorganic matrix, they are represented by PNM and
FVM respectively, and Mortar method is employed to ensure the
pressure continuity and the weak match of fluxes at their inter-
faces. The computing efficiency of Mortar method and the influ-
ence of different sensitive parameters on shale permeability are
investigated. Following are the conclusions drawn from the study:

� When the grids of FVM and Mortar space are set to 4 � 4 and
1 � 1 at per interface, the accuracy is guaranteed with a mini-
mum computing expense.

� When the computing complexity of different subdomains varies
widely (for example, there are approximately 1300 pores in a
single PNM and 8000 nodes in FVM), calculating the compo-
nents in Jacobian matrix by parallel has a higher efficiency.

� Ignoring the contribution of kerogen to shale permeability will
lead to great errors in most cases, for example, the permeability
will be underestimated in low pressure with an error up to 200%
and overestimated in high pressure with an error up to 20%. The
effect of kerogen on shale permeability is less than 10% only
when TOC is smaller than 5% and inorganic matrix permeability
is larger than 10,000 nD.

� When TOC is less than 11% and the pressure is higher than
0.1 MPa, kerogen distribution has a negligible influence on shale
permeability with the deviation of less than 10%.

� The permeability of the coupled model increases nonlinearly
with increasing standard deviations of lognormal distribution
of pore and throat, r.

� When the pressure is larger than 10 MPa, the deviation between
the permeability calculated by 2D and 3D model is approxi-
mately 4%.

This study finds that kerogen distribution has limited effect on
shale permeability, suggesting the feasibility of establishing an
equivalent model. For a real shale, different blocks of kerogen
can be integrated and thus, the TOC, pore size distribution and ani-
sotropy will be reflected in the equivalent kerogen block for a lar-
ger scale simulations. The 3D couple model proposed here affords a
foundation for further upscaling of shale permeability to REV scale
and reservoir scale.
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