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The calculation of accurate unsteady aerodynamic forces is critical in the analysis of aeroelastic problems, however the effi-
ciency is low because of high computational costs of the computational fluid dynamics (CFD) portion. Additionally, direct in-
tegrated CFD and computational structural dynamics (CSD) technique is unsuitable for the analysis of ASE and the flutter ac-
tive suppression in state-space form. A reduced-order model (ROM) based on Volterra series was developed using CFD calcu-
lation and used to predict the flutter coupled with the structure. The closed-loop control systems designed by the sliding mode 
control (SMC) and linear quadratic Gaussian (LQG) control were constructed with ROM/CSD to suppress the AGARD 445.6 
wing flutter. The detailed implementation of the two control approaches is presented, and the flutter suppression effectiveness 
is discussed and compared. The results indicate that SMC method can make the controlled object response decay to the stable 
equilibrium more rapidly and has better control effects than the LQG control. 
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1  Introduction 

Based on the coupled CFD/CSD method in time domain, 
the calculation of unsteady aerodynamic forces has been 
widely applied in investigation of vehicles nonlinear aeroe-
lastic problems [1–5]. However, it is difficult to extend the 
method to the application of such things as multidisciplinary 
optimization design, aeroservoelastic analysis and flutter 
active suppression, because the method is time-consuming 
in flow calculation and possesses a large number of degrees 
of freedom. Therefore, many researchers have adopted al-
ternative unsteady aerodynamic computational methods. 
Among them, the rational function approximation (RFA) 
techniques are usually used to depict the aerodynamic forc-
es. RFA techniques transform the linearized generalized 

aerodynamic forces (GAFs) in frequency-domain into the 
state-space form in time domain, which is suitable for the 
use of modern control theory and optimization. The RFA 
techniques cannot be used to calculate nonlinear unsteady 
aerodynamic forces such as in transonic or large attack an-
gles conditions. CFD-based reduced order models (ROM) 
has been developed in the past 20 years. ROMs can map the 
large-scaled system to small-scaled one retaining the mod-
el’s high fidelity, which is used to denote the degree to 
which a model captures the interesting physical phenome-
non. ROMs are modeled with the data calculated by the 
direct time coupled CFD/CSD and can reflect the essential 
characteristics of the physical process. 

At present, there are three types of methods to model 
ROMs. The first is based on system identification theory 
and construct ROMs by the input excitations and output 
responses of CFD/CSD coupled system, such as ARMA [6], 
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Volterra series models [7] and neural networked models. 
The second is based on proper orthogonal decomposition 
(POD) [8] to obtain the primary flow modes to reduce the 
order of fluid discrete matrix, such as POD. The third is 
harmonic balance (HB) [9] method which is used in fre-
quency domain to analyze nonlinear aeroelastic problems. 

Flutter is a typical aeroelastic dynamic unstable phe-
nomenon. Active flutter suppression (AFS) designs feed-
back control laws to ensure that the unstable open-loop sys-
tem is stable. The controlled object determines the design of 
the controller. In the last several decades, AFS control algo-
rithms were developed according to the transfer function of 
the controlled object in frequency domain [10–12]. With the 
development of modern flight vehicles, the transfer function 
which only reflects the relationship between input and out-
put signals cannot meet the requirements of control design. 
The state-space models, which not only indicate the internal 
characteristics of the system but also dispose of multi-input 
and multi-output system, have become the primary trend to 
investigate the aeroservoelastic problems and to suppress 
the flutter coupled with modern control theory. Linear 
quadratic Gaussian control method and linear quadratic reg-
ulator control method are commonly used in AFS [13–16]. 
Yang et al. [17] and Kim et al. [18,19] used the sliding 
mode control (SMC) method for the aeroelastic control of a 
two-dimensional airfoil.  

Herein we develop a CFD-based unsteady aerodynamic 
forces state-space model to accelerate aeroelastic analysis, 
and to design the SMC control law for the flutter suppres-
sion of the AGARD445.6 wing in addition to LQG. The 
results indicate that the ROM can replace the CFD calcula-
tion accurately and the designed control laws for the cou-
pled ROM/CSD system can effectively suppress flutter.  

Herein we introduce the Volterra theory, followed by the 
CFD-based step response technique. The Eigensystem Re-
alization Algorithm (ERA) [20], which transforms the step 
responses into state-space form, that is, unsteady aerody-
namic forces model, is then described. The aeroelastic 
state-space model is generated by the coupling the 
CFD-based ROM with the structure state-space model. As 
the example of AGARD445.6 aeroelastic wing, the aeroe-
lastic responses can be rapidly predicted with the root locus 
method of the aeroelastic system’s characteristic matrix or 
using direct time-marching solutions. Lastly, the control 
laws are designed successfully in MATLAB/SIMULINK 
environment with two state feedback methods for the active 
flutter suppression, which are the SMC and linear quadratic 
Gaussian method (LQG). 

2  CFD-based ROM with Volterra series 

2.1  Volterra theory 

Volterra series was propounded by mathematician Volterra 

in 1880 as the extention of Taylor series [21]. The basic 
premise is that any nonlinear system can be modeled as an 
infinite sum of multidimensional convolution integrals of 
increasing order. The infinite sum, presented herein is the 
discrete-time form given below: 
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where y[n] is the response of the nonlinear system to u[n], 
for an arbitrary input, n denotes discrete time, 1[ ,mh n k  

2 , , ]mn k n k   is the mth order Volterra kernel. Eq. (1) 

shows that the responses of the nonlinear system to arbitrary 
inputs can be predicted once the Volterra kernels are identi-
fied. To obtain all kernels is important to successfully mod-
el a nonlinear system in Volterra series representation. 

As the CFD/CSD techniques developed, Volterra series 
has been used in modeling unsteady aerodynamic forces. 
The unsteady fluid flows described by Euler equations and 
Navier-Stokes equations in aeroelastic problems can be as-
sumed as weakly nonlinear systems [22,23]. A weakly non-
linear system is well defined by the first two orders kernels 
of the Volterra series. The truncated second-order Volterra 
series, which represents CFD model, is given below: 
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Silva [22] firstly identified Volterra kernels and constructed 
CFD-based ROM with the responses of impulse excitation. 
Raveh [24] found that the amplitudes and time steps of ex-
citations influenced greatly on impulse response method 
and at times was unable to accurately represent the unsteady 
characteristics of the nonlinear system. The step responses 
approach is suggested to use. Herein the step response is 
adopted to identify Volterra kernels. 

Define discrete-time step signal as: 
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Exert this signal as input to eq. (2) and by negating 
steady value h0, the responses of step signals can be written 
in the following: 
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where s[n] represents the responses of step input, it includes 
the second-order kernel which is far smaller than the 
first-order one. If the second-order kernel neglected, the 
following approximate relation can be obtained: 
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Then the first-order Volterra kernel is derived from eq. (4) 
such that 
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For this first-order kernel contains second-order kernel 
component, eq. (5) can then reflect certain nonlinear be-
havior. 

2.2  ROMs of unsteady aerodynamic forces 

The state-space model was constructed by the Eigensystem 
realization algorithm (ERA) using Markov parameters 
which compose the Hankel matrix with discrete-time im-
pulse responses. Via Singular Value Decomposition (SVD), 
the state-space model matrix can be computed. 

The CFD-based ROM via ERA approach is determined 
as below: 
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where a ( )nx  is GAFs state vector,  n  is the general-

ized structure displacement and a ( )ny  is GAF. The Mar-

kov parameters of the model can be deduced from eq. (3) 
expressed as: 
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Assumed Markov parameters are ( L P ) matrix, Hankle 
matrix is constructed in the following form: 
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where ,   are selected integers. 

Apply SVD to (0)H , 

 T(0) ,H U V  (9) 

where  , ,U V  are the left singular value vector, the sin-
gular value matrix and the right singular value vector, re-
spectively. 

Let 
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each coefficient matrix of eq. (6) is acquired respectively as: 
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Currently, all model parameters of Volterra-based ROM 
have been identified and the model of unsteady aerodynam-
ic forces has been generated. 

3  Aeroelastic state-space model 

For flutter analysis, modal equations are used to calculate 
the structural deformation under GAFs [25]. For each mode 
i, the mass-normalized modal dynamic equation is written 
in the following form:  
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where  , ( , , )i i x y z   are the ith structure modal fre-

quency and modal shape, respectively. N represents the 
number of modal shapes. fi(t) is the ith GAFs and i is the 

ith generalized structure displacement. ( , , , )d x y z t is the 

structure physical displacement and ( , , , )F x y z t  is aero-

dynamic force. 
Convert the first equation in eq. (11) into the state-space 

form as: 
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where q is dynamic pressure,  
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Eq. (12) is discretized with zero-order holder and the 
discrete-time structure state-space model is thus obtained: 
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Here T is the sampling time, the model input a ( )y n  is 

GAFs and the output  n  is the generalized structure 

displacement. 
The discretized structure model eq. (13) can be combined 

with eq. (6) to constitute the aeroelastic state-space model. 
It is given by eq. (14): 
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For aeroelastic model eq. (14), the flutter dynamic pres-
sure and frequency can be determined by the root locus of 
the characteristic matrix or direct time-marching method.  

As compared with the direct CFD/CSD solution [14], 
ROM can improve highly the computational efficiency, 
since only several hundreds of CFD calculation runs are 
needed for each input signal of structural modes. It is more 
important that the aeroelastic model ROM-based are readily 
apprant to integrate the controller into the open-loop system 
to form the closed-loop system, so that the aeroservoelastic-
ity and the flutter active suppression can be investigated. 

4  Flutter analysis 

In this paper, the aeroelastic standard model of AGARD 

445.6 wing is used for the flutter analysis. The wing is a 45° 
swept-back wing with a NACA 65A004 airfoil section, 
panel aspect ratio of 1.65, and a taper ratio of 0.6576. The 
first four structural modal frequencies are 9.60, 38.2, 48.35, 
and 91.54 Hz whose additional detail parameters can be 
referred elsewhere [26]. Here, the Mach number is taken as 
0.96, and initial attack angle is 0°. 

To build Volterra-based ROM, firstly using CFD code 
based on Navier-Stokes Solver, each mode is individually 
excited to obtain the responses of all the modes to be used 
to identify Volterra kernel. Herein, the first four modes are 
used and the step signals with amplitude 2×105 are selected. 
Take time step size as 8.678×105 s, with the corresponding 
dimensionless time as 0.05. The whole process is depicted 
in Figure 1. Secondly, based on the calculated GAFs, that is, 
step responses, Volterra kernels are identified with eq. (5). 
The results are shown in Figure 2, where Aij represents jth 
aerodynamic force response to ith structure modal defor-
mation. 

Then, with the Volterra kernels and ERA approach, the 
unsteady aerodynamic forces model can be determined. At 
last, to verify the CFD-based ROM, CFD/CSD simulation is 
adopted to validate the ROM method. In Figure 3, at given 
dynamic pressure 261.3 /lbf ft and impulse input, GAFs 

computed by ROM/CSD and by CFD/CSD coupled calcula-
tion are compared.  

A fit parameter was defined as: 
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where AF  and AF̂  are the vectors of measured and simu-

lated aerodynamic force, respectively. Table 1 presents 
comparison of the fit parameters of the four modal respons-
es calculated by CFD/CSD and ROM/CSD. It can be seen 
that CFD-based ROM can predict unsteady aerodynamic 
forces consistently. 

To verify the aeroelastic state-space models, we calculate  

 

Figure 1  Calculation of GAFs for identifying Volterra kernels. 

Table 1  Fitting degrees of modal generalized displacement of direct CFD 
and Volterra-based ROM methods 

Modal output 1st 2nd 3rd 4th 

 (%) 99.58 99.72 99.81 97.44 
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Figure 2  Volterra kernels with step excitation. 

 

Figure 3  Comparison of generalized modal displacement with direct CFD/CSD and Volterra-based ROM/CSD. 

the structure responses to zero dynamic pressure. In this 
instance, they are actually free vibrations. Figure 4 depicts 
the generalized structure displacement responses in fre-
quency domain without structure damp and the first four 
structure natural frequencies are 9.6, 38.2, 48.4 and 91.5 Hz, 
respectively. 

Combining the ROM of aerodynamic forces with linear 
structure model, the aeroelastic analysis model is obtained. 
By changing dynamic pressure, we can acquire the distribu-
tion of characteristic roots of the aeroelastic system in unit 
circle. According to Lyapunov stability criteria, the corre-
sponding flutter dynamic pressure is 255.78 /lbf ft  as 

shown in Figure 5. Alternatively we can directly solve aero-
elastic state-space equation in time domain and get the time 
histories of generalized structure displacement at different 
dynamic pressures. Figure 6 gives the comparison of the 
generalized structure displacements between CFD/CSD and 
CFD-based ROM. From Figure 6 it appears that the 
CFD-based ROM does not capture the response of the 
fourth mode to the excitation accurately. However, the am-
plitude of the response is one to two orders of magnitude 
smaller than the amplitudes of the other modes GAFs to the 
same excitation. Overall the GAF ROM appears to be a 
good representation of the behavior of the system. The 
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Figure 4  Free vibration of the structure. 

 

Figure 5  (Color online) Characteristic roots distribution at dynamic 
pressure of 55.78lfb/ft2. 

flutter dynamic pressure is 55.78lfb/ft2, which is similar to 
the result of eigenvalues method.  

By applying Fourier transformation to the generalized 
structure displacement in time domain, we can obtain the 
flutter frequency of 13.826 Hz at Mach number of 0.96, 
which agrees well with the experiment result of 13.894 Hz. 
The flutter is the coupling result of the first with the third  

mode motions of the structure.  

5  Active flutter suppression 

5.1  Closed-loop control System 

To suppress flutter, it is necessary to introduce the control-
ler and the actuator into the aeroelastic system to form the 
closed-loop system. Herein, with the assumption of struc-
tural modes unchanged, we induce the control surface lo-
cated at 20% chordwise position from tailing edge as the 
actuator. Followed by the control instruction, the control 
surface deflects to generate additional unsteady aerody-
namic forces to realize the flutter active suppression. Thus 
the unsteady aerodynamic forces for the structure can be 
divided into two parts, one from the elastic wing and the 
other from the control surface deflection [11]. Consequently, 
eq. (14) can be rewritten as: 
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  Similarly, the ROM of unsteady aerodynamic forces for  

 

Figure 6  First four modes generalized displacement at dynamic pressure of 55.78lfb/ft2. 
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the control surface in state-space form can also be built as 
following: 
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where   is the deflection angle of the control surface, 

cy is the unsteady aerodynamic forces produced by the con-

trol surface deflection. 
Substitute eq. (14’) into eq. (15) to form the generalize 

controlled object model, namely, the open-loop aeroelastic 
model 
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The ultimate goal of active control of aeroelastic problem 
is to ensure that the generalized structure displacement vec-
tor ( )n  with time is inclined to equilibrium point, that is, 

lim ( ) 0
n

n c


   (c is an equilibrium point of the system) 

by using control law design. In other words, the controller 
ensures that the controlled object achieves asymptotical 
stability under Lyapunov meaning. 

The whole closed-loop system is depicted by Figure 7. 

5.2  Control laws design 

The function of a controller is to form the closed-loop sys-
tem to stabilize the unstable open-loop object or improve 
the dynamic performance of the controlled object by 
changing the distribution of zeros and poles of the con-
trolled object. In the modern control theory, the state-space 
equations are used to represent the objects with inner state 
vectors, so that the controller can use the state vectors feed-
back as well as output signals. In the paper, the SMC method  

 

Figure 7  Closed-loop system. 

and the linear quadratic Gaussian (LQG) optimal method 
are used to suppress the flutter. 

SMC is a nonlinear control strategy. By designing a 
group of sliding mode surfaces in phase space and the cor-
responding switching control functions, SMC can enforce 
all the states of the controlled object to move towards the 
sliding mode surfaces and to make the controlled system  
asymptotically stable. 

The general discrete-time controlled system is as follows: 

 
   1 ( ),

( )= ( ),

x n Gx n Hu n

y n Cx n

   



 (17) 

where nx R , mu R , 
l

y R , l m n  . 

It is important for SMC to determine m sliding surface 
functions =i iS x ( =1,i m ) and their corresponding m 

switching control functions 

  
+ ( ) >0,

( )= =1, .
( ) <0,

i i
i

i i

u x
u n i m

u x








  (18) 

Control block diagram of SMC algorithm is shown in 
Figure 8. 

Previously, we have obtained t　 he open-loop flutter 
dynamic pressure of 255.78 /lbf ft with ROM/CSD cou-

pling analysis of the system. The simulation was set for 
dynamic pressure of 285 /lbf ft . The first four modes gen-

eralized displacement in open-loop system is unstable, 
which are shown in Figure 9. Flutter occurs. 

 

Figure 8  Control block diagram of SMC. 

 
Figure 9  First four modes generalized open-loop displacement curve (at 
dynamic pressure 85lbf/ft2). 
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In order to apply the SMC method to suppress the flutter 
as depicted by Figure 9, aiming at eq. (16) to introduce the 
similar transformation matrix  

  1

ase1 ase2=
0

n m

m

I B B
T

I




 
  
 

, 

where  

ase1
ase

ase2

=
B

B
B

 
 
 

, ( )
ase1 ase2, .n m m m mB R B R     

Let ase ase=x Tx , eq. (16) is transformed into the standard 

quadratic form 

 
   
   

ase1 11 ase1 12 ase2

ase2 21 ase1 22 ase2 ase2

1 + A ( ),

1 + ( ),

x n A x n x n

x n A x n A x B n

  


  
 (19) 

where ( )
ase1

n mx R  , ase2
mx R , 1

ase=A TA T  . 

According to the controllability criterion, the system de-
scribed by eq. (16), namely  ase ase( , )A B  is controllable. 

Further, we can deduce that 11 12( , )A A  is controllable. The 

coefficient matrix S of sliding surface function can be de-
termined by the pole placement of 11 12( )A A S , where 

1=S ST  . 

The modulus of the eigenvalues of the matrix 11A  

should be less than one to ensure the stability of the system. 
For the case of the flutter divergence of Figure 9, the matrix 

11A  has two unstable eigenvalues. We can assign two sta-

ble eigenvalues to 11A  and then the feedback gain matrix 

S can be obtained.  
The exponent approach law for SMC is adopted as de-

scribed as following: 

 ( 1) ( ) ( ) sgn( ( ))k k qT k T k         , (20) 

where 0,  0,  1 0q qT     , T is the sampling time.  

Therefore, the control function eq. (18) can be written as: 

    
   

1

ase

1

ase

( )=

( ) (1 ) ( ) , 0,

( ) (1 ) ( ) , <0.

u n

SH SGx n qT k T

SH SGx n qT k T

  

  





    

   

 
(21)

 

Here, take   as 10 and q as 18.  
Apply the SMC of eq. (21) to the open-loop system and 

construct the closed-loop system. The closed-loop behavior 
is presented in Figure 10. The control surface deflection 
time history is shown in Figure 11. Compared with Figure 9, 
the controlled variables can converge to zero rapidly. The 
control function could switch quickly between the two ex-
pressions of eq. (21). It should be noted here it is the 
switching behavior of the surface deflection shown in  

 

Figure 10  First four order mode closed-loop generalized displacement 
curve with SMC (at dynamic pressure 85lbf/ft2). 

 

Figure 11  Control surface deflection time history with SMC. 

Figure 11 that renders the system stable. 
It is possible to measure state variables when states 

feedback is applied. However, most state variables are dif-
ficult or are unable to be measured in practical engineering 
problems. Thus it is necessary to design an observer to re-
construct unmeasured state variables when the system is 
observable. In addition, there exist internal noise and meas-
urement noise to the system. Considering noise, eq. (15) can 
be rewritten as: 

 
   

 
ase ase ase ase ase

ase ase ase

1 ( )+ ( ),

( ) ( ),

x n A x n B n G w n

y n C x n v n

  

 
 (22) 

where ( )w n  denotes disturbed noise and ( )v n is meas-

urement noise. They are zero-mean Gaussian noise pro-
cesses (uncorrelated from each other) with power spectrum 

NQ and NR , respectively. 

In the example, we deduce that eq. (22) is observable. 
We apply LQG method to eq. (22) to realize optimal control. 
Based on separation principal, the construction of LQG op-
timal controller can be divided two parts, which contain the 
optimal state-feedback controller and the optimal state-  
estimator. 

The gain matrix of optimal state-feedback controller 
1 T

ase ase( ) ( )n R B Px n    makes the following criteria J to 

be the minimum 
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        T T

ase ase
0

1
,

2 n

x n x n n n 




   J Q R  (23) 

P is the unique positive-definite solution to the following 
Algebraic Riccati Equation: 

 T 1 T
ase ase ase ase 0,PA A P PB B P   R Q  (24)  

Q is the control weight matrix and R is the input weight 
matrix. In order to obtain better control effect, when control 
cost is lower, the control signal can be set relatively higher. 
In this condition, the input weight matrix R can be set rela-
tively small whereas state weight matrix Q can be set large 
and vice versa. The deflection angle of control surface of 
AGARD445.6 wing cannot be infinitely large, so let the 
matrix R relatively large and the matrix Q small, here let 
R=(1 0), 4 40.1 Q I . 

Designing the Kalman filter, that is, the optimal state 
observer is as follows: 

 
   ase ase ase ase

ase ase

ˆ ˆ1 ( )

 ( )+ ( ),

x n A LC x n

B n Ly n

  


 

(25)
 

where T 1
aseN NL P C R   is filter gain matrix, x̂ the esti-

mated states. NP  is the unique positive-definite solution to 

the following equation: 

 T T T 1
ase ase ase ase ase ase 0.N N N N N NA P P A G Q G P C R C P     

LQG algorithm is depicted as Figure 12. 
Applying LQG approach to the example, the closed-loop 

system generalized displacement responses and control sur-
face deflections are shown in Figures 13 and 14, respec-
tively. This indicates that the generalized displacement re-
sponses decay rapidly to zero steady status and the ampli-
tude of the control surface deflection is also within the rea-
sonable range. 

Compared with LQG, SMC can stabilize the output re-
sponses of the controlled system at equilibrium state more 
rapidly. It should be noted that SMC can also be used in the 
case containing unmeasurable state variables and the related 
work will be done in the future. 

 

Figure 12  LQG control diagram. 

 

Figure 13  First four order mode closed-loop generalized displacement 
curve with LQG (at dynamic pressure 85lbf/ft2). 

 

Figure 14  Control surface deflection time history with LQG. 

 

6  Conclusions 

For direct coupled CFD/CSD calculation reduces the com-
putational efficiency and is not suitable for analyzing and 
designing aeroelastic problems and active flutter suppres-
sion. Thus the Volterra-based ROM technique is suggested 
and used to substitute CFD to calculate unsteady aerody-
namic forces. ROM with a state-space model of the struc-
ture was constructed to build an open-loop aeroelastic mod-
el for the AGARD445.6 wing herein. Based on this applica-
tion of SMC with state-feedback and LQG control ap-
proaches for active flutter suppression were investigated. 
The results show that SMC algorithm has better control 
effect and can suppress flutter more rapidly than the LQG 
method. 

In the future work, we will focus on how to design SMC 
with state observer when state variables unmeasurable and 
investigate how to make the SMC more robust while the 
model parameters change.  
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