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This research work is aimed at proposing models for the hydrodynamic force and torque experienced
by a spherical particle moving near a solid wall in a viscous fluid at finite particle Reynolds numbers.
Conventional lubrication theory was developed based on the theory of Stokes flow around the particle at
vanishing particle Reynolds number. In order to account for the effects of finite particle Reynolds num-
ber on the models for hydrodynamic force and torque near a wall, we use four types of simple motions
at different particle Reynolds numbers. Using the lattice Boltzmann method and considering the moving
boundary conditions, we fully resolve the flow field near the particle and obtain the models for hydro-
dynamic force and torque as functions of particle Reynolds number and the dimensionless gap between
the particle and the wall. The resolution is up to 50 grids per particle diameter. After comparing numer-
ical results of the coefficients with conventional results based on Stokes flow, we propose new models
for hydrodynamic force and torque at different particle Reynolds numbers. It is shown that the particle
Reynolds number has a significant impact on the models for hydrodynamic force and torque. Further-
more, the models are validated against general motions of a particle and available modeling results from
literature. The proposed models could be used as sub-grid scale models where the flows between parti-
cle and wall can not be fully resolved, or be used in Lagrangian simulations of particle-laden flows when

particles are close to a wall instead of the currently used models for an isolated particle.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The wall-bounded particle-fluid two-phase flows exist widely
in numerous industrial and natural processes, such as the solid-
fluid flow in industrial pneumatic conveying (Lain and Sommerfeld,
2012), the flows in a pump, the flows in fluidized bed (Capecelatro
et al.,, 2014; Lu et al., 2013), sediment deposition and transport in
rivers (Kidanemariam et al., 2013). One of the crucial phenomena
in such flows is the interaction between particles and a solid wall.

This research work is basically interested in the motion of a sin-
gle spherical particle close to a solid wall in fluid flow at finite par-
ticle Reynolds numbers. It is an elemental process in the particle-
fluid two-phase flows and an important ingredient in treating
boundary condition in numerical simulation of such flows. The
particle-resolved direct numerical simulation (PR-DNS) has been
emerging as a powerful research tool for particle-fluid two-phase
flows. It can be used to track the motion of particles, fully resolve
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the surrounding fluid flows and calculate the hydrodynamic forces
and torques acting on each particle (Ladd, 1994b; Lucci et al,
2010; Shao et al., 2012; Uhlmann, 2008; Uhlmann and Doychev,
2014; Wang et al,, 2013; 2010). To numerically simulate the wall-
bounded two-phase flow, it is necessary to generate grids of finite-
size in the flow domain. When the gap between the particle and
the wall is smaller than one or two grid sizes, neither the fluid
motion in the gap nor the force and torque on the particle can be
solved accurately (ten Cate et al., 2002). Under this condition, the
hydrodynamic viscous force and torque, which arises from the high
pressure when the interstitial fluid is squeezed out of the small
space between the two close solid surfaces, should be compen-
sated by establishing appropriate sub-grid scale models (Nguyen
and Ladd, 2002; Zhang et al., 2005).

There are two types of sub-grid scale models used to compen-
sate the hydrodynamic force and torque on the particle when the
gap is less than one or two grids. The first one is the method of po-
tential force (Ozdemir et al.,, 2010; Wang et al., 2008), which means
that the resistance on the particle is set to the function of gap size
between the particle and the wall. The second one is the method


http://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.01.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2017.01.018&domain=pdf
mailto:gdjin@lnm.imech.ac.cn
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.01.018

2 Z. Zhou et al./International Journal of Multiphase Flow 92 (2017) 1-19

of lubrication force (Dance and Maxey, 2003; Portela and Oliemans,
2003). The asymptotic formulae (Dance and Maxey, 2003; Nguyen
and Ladd, 2002) of lubrication force and torque can be applied to
resolve the particle-wall interaction. For example, the normal force
correction can be expressed as

lub 1 1
F ——67T/¢LRUJ_(E—Z), (1)
where u, is the particle velocity normal to the wall and A =&§/R
is a prescribed dimensionless distance cutoff below which the hy-
drodynamical force is compensated, § is usually set to be one or
two grid sizes, R is the radius of the particle, ¢ = h/R represents
a small dimensionless gap, and h is the gap between the particle
nose and the wall, i is the dynamical viscosity coefficient of the
fluid (ten Cate et al., 2002).

However, the current models for lubrication force and torque
are based on the assumption of the Stokes flow, which might not
be suitable for cases at finite particle Reynolds numbers. Here, the
translational particle Reynolds number is defined as

ud
Rep — m

(2)
where dp = 2R is the diameter of particle, u is the particle velocity,
and py is the density of fluid. Therefore, the objective of this work
is to develop new models for the hydrodynamic force and torque at
finite particle Reynolds numbers. The new models can be used in
two major applications. First, they can be used as sub-grid models
in PR-DNS calculations where the flow in the gap between the par-
ticle and wall can not be sufficiently resolved. They can be used in
any PR-DNS approaches, such as lattice Boltzmann method (Ladd,
1994a; 1994b), immersed boundary method (Lucci et al., 2010) and
fictitious particle method (Shao et al., 2012). Second, they can be
used in Lagrangian simulations of particle-laden flows to replace
the currently used model for an isolated particle. In current com-
putational fluid dynamics (CFD) codes, force and torque models on
the particles are not modified when they are very close to a wall.
It will be shown in this work that the force and torque on a parti-
cle near a wall can be significantly different from those on an iso-
lated particle. Therefore, the proposed new models will be useful
for Lagrangian simulations of applications such as cyclone separa-
tors (Song et al., 2016).

In order to develop the models for hydrodynamic force and
torque for particle motions in a fluid at low Reynolds numbers,
superposition of four simple motions of two isolated spheres is
usually used to analyze their lubrication forces and torques (Dance
and Maxey, 2003; Rosa et al., 2011). The four simple motions con-
sist of (i) a sphere translating normally to another sphere, (ii) two
spheres translating along the direction perpendicular to the line
connecting their centers, (iii) two spheres rotating around the line
connecting their centers, (iv) two spheres rotating around the di-
rection perpendicular to the line connecting their centers. For a
sphere translating towards a stationary sphere, Jeffrey (1982) com-
bined the work of Cooley and O’Neill (1969) with numerical calcu-
lations and deduced a brief formula proportional to ¢~! for normal
force acting on the moving sphere. For the other three motions,
Jeffrey and Onishi (1984) extended the work of O’'Neill and Ma-
jumdar (1970) and obtained asymptotic expressions of the forces
and torques acting on the spheres. Above all, the formulae were
obtained based on the assumption of Stokes flow. The asymptotic
formulae of the lubrication force and torque for the four simple
motions are suitable for two spheres of different radii. When the
radius of one of the two spheres tends to be infinite, the larger
sphere could be regarded as a plane wall. Then the asymptotic
formulae for two particles turned into the theoretical expressions
of lubrication force and torque acting on a moving sphere near a
plane wall (Dance and Maxey, 2003).

The theoretical expressions of lubrication force and torque are
suitable for fluid flow at vanishing particle Reynolds numbers.
However, there are many practical situations related to the mo-
tion of particles in fluid flow at finite particle Reynolds numbers.
As for the particles in channel flows, Uhlmann (2008) fully re-
solved the phase interfaces by DNS with an immersed bound-
ary method and Garcia-Villalba et al. (2012) simulated turbulent
flow in a vertical plane channel seeded with heavy spherical par-
ticles. Uhlmann and Doychev (2014) simulated the gravity-induced
motion of finite-size particles in fluid in triply periodic domains.
The particle Reynolds numbers of the flows are greater than 100.
They used the repulsive force mechanism to recover the close
particle-particle hydrodynamic interaction. Zeng et al. (2008; 2010)
considered the turbulent channel flow over an isolated particle
with variable sizes and locations. There are also pipe flows laden
with particles, such as the experimental study of turbulent flow
driven by particles in pipe flows (Belt et al., 2012) and the gas-
solid flows in wall-bounded vertical risers (Lain and Sommer-
feld, 2012; Lu et al., 2013; Wang et al., 2013). In addition, Lucci
et al. (2010) numerically simulated the turbulent flow around mov-
ing spherical particles dispersed in a decaying isotropic turbulent
flow. Yeo et al. (2010) investigated the modulation of isotropic tur-
bulent flows induced by spherical bubbles, neutrally buoyant par-
ticles and slightly inertial particles. They also used the repulsive
force between the particle surfaces when the gap is less than a
critical value. In current large-eddy simulation of particle-laden
channel flows, the unresolved sub-grid scale motion might affect
the particle-wall interaction (Bianco et al., 2012). The contributions
of the sub-grid scale fluid motions on particle-wall interaction can
be partially modeled by constructing particle sub-grid scale model
based on the space-time correction theory (He et al., 2002; Yang
et al., 2008; Zhao and He, 2009).

The experimental investigations and numerical simulations de-
scribed above are related to particle-particle and particle-wall hy-
drodynamical interaction at finite particle Reynolds numbers. The
typical particle Reynolds numbers are respectively listed in Table 1.

Illustrated in Table 1 is the range of particle Reynolds numbers
in many situations, the range is about O(10) ~ 0(100). Although
the local particle Reynolds number near the wall can be reduced
by the hydrodynamic force, the effects of finite particle Reynolds
number will have to be considered. Experimental studies show
that when the particle Stokes number St = tp/7f = ((0p/py)/9)Rep
is larger than a critical value, St* = 10, the particle will approach
the wall with a finite velocity and rebound back, where 7, is par-
ticle relaxation timescale and 7y is a characteristic timescale of the
flow (Gondret et al., 2002; Joseph et al., 2001). Using the method
of matched asymptotic expansions, Cox and Brenner (1967) consid-
ered the contribution of fluid inertia at a small but finite particle
Reynolds number to the lubrication force by multiplying the Stokes
drag force with a dimensionless friction factor f(¢),

fa@) = L4 2 (14 52)n (1) +oke). 3)

where ¢ « 1 and €Re, « 1 and the particle approaches the wall
with a constant speed. The moving conditions of a particle at con-
stant translational or rotational speeds are also applied in this
work. Liu and Prosperetti (2010) considered a sphere rotating at
Req < 200 near one or two infinite plane walls parallel or perpen-
dicular to the axis of rotation and studied the centrifugal, inertial
and viscous effects on the hydrodynamic force and torque acting
on the sphere. Here, the rotational particle Reynolds number is de-
fined as

Reg — P19k (4)
where € is the angular velocity of the sphere. Tagawa
et al. (2013) investigated the wall effect on a repulsive force act-
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Table 1

Typical particle Reynolds numbers in the particle-fluid two-phase flows in literatures.
References Types of flows Re,
Kim and Balachandar (2012) An isolated finite-sized particle subjected to isotropic turbulent cross-flow 100, 250, 350
Zeng et al. (2010) A finite-sized stationary particle in a channel flow of modest turbulence 40 ~ 450
Lucci et al. (2010) Finite-sized solid spherical particles in decaying isotropic turbulence 0(10) (65/75/280)
Belt et al. (2012) Particle-laden secondary flow in turbulent pipe flows 110, 217
Xu and Bodenschatz (2008) Particles in intense turbulent water flows 22, 35,55
Kidanemariam et al. (2013) Horizontal open channel flow with finite-size, heavy particles 15 ~ 20

Lain and Sommerfeld (2012)
Dorgan and Loth (2004)

Zeng et al. (2008)

Tenneti and Subramaniam (2014)
Wang et al. (2008)
Garcia-Villalba et al. (2012)
Uhlmann (2008)

Uhlmann and Doychev (2014)

Gas-solid flows

Sedimentation of 1, 2 or 105 particles in a channel flow
Vertical plane channel flow with finite-size particles 132
Vertical particulate channel flow

The gravity-induced motion of randomly distributed, finite-size, heavy particles

Pneumatic conveying of spherical particles in horizontal ducts 40
Particles released near the wall in a turbulent boundary layer
Turbulent channel flow over an isolated particle of finite-size

1075 ~ 30

42 ~ 295, 325/455
20, 50

about 17.3, 503

136
141.1, 233.1, 260.6

in quiescent fluid in triply periodic domains

Shao et al. (2012) Particle-laden turbulent flow in a horizontal channel 22.2,36.2
Wang et al. (2010) Particle-fluid systems 1
Wang et al. (2014) Single-phase turbulence and particle-laden turbulence 0(10)

ing on a sphere near the wall and experimentally study transla-
tional and rotational motion of a particle slightly heavier than the
fluid in a rotating drum filled with water. Lin and Lin (2013) nu-
merically studied the effects of finite particle Reynolds numbers
up to Rep = 50 on the model for normal lubrication force on a par-
ticle moving towards a solid wall using the immersed boundary
method. By fitting the numerical results, they proposed a model
for the normal lubrication force. In this work, the models for both
forces and torques on a particle with more general motions near
a solid wall will be extended, including the translational and ro-
tational motions at a wider range of particle Reynolds numbers.
The lattice Boltzmann method is used to fully resolve the flow
around the moving particle and calculate the hydrodynamic force
and torque on it.

The rest of paper is organized as follows: Section 2 describes
the models for hydrodynamic force and torque in Stokes flow limit,
and proposes new models at finite particle Reynolds numbers. The
four types of simple particle motions are also described in order
to obtain the coefficients of forces and torques. Section 3 intro-
duces the numerical methods. The basic principles of the multiple-
relaxation-time lattice Boltzmann method and the equations of
particle motions are discussed. Section 4 shows the effects of com-
putational domain size, grid-size convergence, comparison of cur-
rent numerical results with previous studies and the coefficients of
the new proposed models. The corrected formulae of the five in-
dependent coefficients of the models for hydrodynamic force and
torque are described in detail. In Section 5, the conclusions and ap-
plications about the models for the hydrodynamic force and torque
at finite particle Reynolds numbers are presented.

2. Modeling hydrodynamic force and torque

2.1. Models for hydrodynamic force and torque in the Stokes flow
limit

For a single particle moving near a plane wall in a Stokes flow,
the linear resistance relations between the hydrodynamic force and
torque on the particle and the translational and angular velocities

of the particle can be expressed as (Dance and Maxey, 2003)
T = 87T/,LR2 (C,‘jUj + RDiij)

where i and j =1, 2, 3 denote the y, x and z direction respectively
in a reference frame attached to the wall, as shown in Fig. 1, F;
denotes the force along the axis i and T; denotes the torque about

Table 2

The coefficients of hydrodynamic force and torque when a particle moves close
to a solid wall in fluid flow at vanishing particle Reynolds number. In the
table, the theoretical expressions of Ay, Az, Bys, D33 are from Dance and
Maxey (2003). The model for the coefficient Dy; is fitted from the result by
Jeffery (1915).

Theoretical expression 0 (1)
An = —1+1llne+ Lelne + —0.848 + 0O(e)
Ax = Lne+ Felne + -0.952 + 0(e)
Bys = —-ZIne - Eelne + —0.257 + 0(s)
D33 = Zlne+ Lelne + —0.371 + 0(e)
Dy = 21277+0.285.£02

the axis i. A, B, C, D are dimensionless second rank tensors. The
Lorentz reciprocal theorem for the homogeneous Stokes equations
implies that A= AT, D = DT and BT = C for any geometry. We refer
to the right-handed orthonormal axes with the y direction normal
to the wall and the other directions parallel to the wall. Symmetry
considerations imply that with respect to these axes A is diagonal,
and A,; = As3. The only non-zero elements of B are By3 = —Bs;.
The reciprocal theorem may be used to calculate C from B. D is
diagonal, and Dy, = D33 (Kim and Karrila, 2005). Then Eq. (5) is
simplified as

F = 6 uRA;1Uy

B = 67 uR (AU + RBy3€23)

B = 67 tR(A22Us — RBp3€2;)

T, = 87 uR?RDy; (6)
T, = 87 uR? (—B23Us + RD332;)

T3 = 87 uR? (By3U; + RD33Q23)

Thus, the five left unknown coefficients are Ay, Ayy, B3, D33
and Dq;. The five coefficients of hydrodynamic force and torque at

vanishing particle Reynolds number are listed in Table 2 (Dance
and Maxey, 2003).

2.2. New models for hydrodynamic force and torque at finite particle
Reynolds numbers

In this subsection, the new models for force and torque are pro-
posed when a particle moves near a solid wall at finite particle
Reynolds numbers whilst maintaining the form of formulae like
Eq. (6). Due to the inherent nonlinearity of the governing equa-
tions of the flow at finite particle Reynolds number, Eq. (6) is no
longer valid in that case. The unknown coefficients in Eq. (5) are



4 Z. Zhou et al./International Journal of Multiphase Flow 92 (2017) 1-19

(a) y (b) y

V4 z

(c) y (d) y

@ X

Q

@ X

z z

Fig. 1. A particle (a) moves along y axis normal to the wall, (b) moves along x axis parallel to the wall, (c) rotates around z axis, (d) rotates around y axis.

much more complex. On one hand, the coefficients in Eq. (6) de-
pend on both particle Reynolds number and the dimensionless gap.
On the other hand, the coefficients denoting the lift force induced
by the presence of the wall will not be zero any more and vary
with particle Reynolds number and the dimensionless gap. Zeng
et al. (2005) have extensively studied the dependence of the wall-
induced hydrodynamic lift force using an accurate spectral element
method and found that two different regimes of the dependence of
the lift coefficient on particle Reynolds number. We will check and
validate our numerical method by comparing the results on lift co-
efficient of Zeng et al. (2005) in Section 4.3. Here, we will focus on
the dependence of leading coefficients of hydrodynamic force and
torque on particle Reynolds number and the dimensionless gap in
Eq. (6) using simple motions of a particle. Similar method has been
used by researchers to propose drag models (Lin and Lin, 2013; Liu
et al., 2009).

At finite particle Reynolds numbers, we could propose the fol-
lowing new models for the hydrodynamic force and torque on the
particle,

F, = 67 wRA11 (Rep, €)U;

E = 67 uR(A22 (Rep, €)Us + RBa3 (Req, €)€23)

F = 67 uR(A2 (Rep, €)Us — RBy3 (Reg, €)£22)

Ty = 87 uR*(RD1; (Reg, £)21)

Ty = 87 uR* (—Ba3 (Regq, €)Us + RD33 (Req, €)S2;)
T = 87 [uR? (By3 (Regq, €)U; + RD33(Regq, £)K23).

In the new models, the coefficients A, Ay, B3, Dy1, D33 are not
only functions of the dimensionless gap &, but also functions of the
translational particle Reynolds number Re, or the rotational par-
ticle Reynolds number Reg. In the following subsection, we shall
present the procedure to obtain the coefficients of the new models
for hydrodynamic force and torque using given simple motions of
a particle near a solid wall.

2.3. Procedure to obtain the coefficients of the new models for
hydrodynamic force and torque

In the motion of a finite-size particle in an otherwise quiescent
ambient fluid bounded by solid walls at the bottom and four lat-
eral side walls, four simple types of particle motion near the solid
wall at the bottom as shown in Fig. 1 are used to obtain the mod-
els for hydrodynamic force and torque at finite particle Reynolds
number: (1) particle moving along y axis normal to the bottom
wall (Fig. 1(a)), (2) particle moving along x axis parallel to the bot-
tom wall (Fig. 1(b)), (3) particle rotating around z axis parallel to
the bottom wall (Fig. 1(c)), (4) particle rotating around y axis nor-
mal to the bottom wall (Fig. 1(d)). The procedures of above men-
tioned four simple types of particle motion to be considered are
illustrated in detail as follows:

2.3.1. Particle moving normal to the wall (Uy = -U,U, =0,Q23 =0)

The particle starts to move along y axis normal to the wall
with a constant acceleration from a zero velocity, as depicted in
Fig. 1(a). It moves at a constant speed after its velocity reaches a
prescribed value. When the gap size between the particle and wall
is small enough, we resolve the hydrodynamic force and calculate
the coefficient Ay; as a function of Rep and &

F] = 67TMRU1 ~A1] (Rep, 5). (8)

2.3.2. Particle moving parallel to the wall (U; =0,U, =U, Q23 =0)

The particle starts to accelerate along x axis parallel to the wall
with a constant acceleration from a zero velocity, as depicted in
Fig. 1(b). It moves at a constant speed after its velocity reaches a
prescribed value. We set different gaps between the particle and
wall. The coefficient Ay, as a function of Re, and ¢ could be calcu-
lated with

B =67 uRU, - Ax (Rey, €). 9)

2.3.3. Particle rotating around an axis parallel to the wall
(Ul ZO,UZ :0,523 :Q)

The particle firstly rotates around z axis with a constant angular
acceleration from a zero angular velocity, as depicted in Fig. 1(c).
It keeps rotating at a constant angular velocity after its angular ve-
locity reaches a prescribed value. We set different gaps between
the particle and wall. The coefficients B3 and D33 could be calcu-
lated with

{ F, = 67 juR - (RBa3 (Req, £)23)

(10)
T; = 8 uR? - (RD33(Reg, £)RQ3).

2.3.4. Particle rotating around an axis normal to the wall
(U =0,U;=0,2; =Q)

The particle starts to rotate around y axis with a constant an-
gular acceleration from a zero angular velocity, as depicted in
Fig. 1(d). It keeps rotating at a constant angular velocity after its
angular velocity reaches a prescribed value. We set different gaps
between the particle and wall. The coefficient Dq; as a function of
Req and ¢ could be calculated with

Ty = 8w uR? - (RDy; (Reg, £)21). (11)
3. Numerical method

The lattice Boltzmann method has been a popular numerical
method for dynamical coupling between solid and fluid with com-
plex geometrical boundaries (Rong et al., 2008; Zhu et al., 2011; Qi
et al.,, 2014; Wu et al., 2014). In this work, the multiple-relaxation-
time lattice Boltzmann method (MRT-LBM) is used to simulate the
flow induced by a moving finite-size particle. The particle moves
according to a prescribed acceleration or velocity as shown in
Fig. 1, therefore, the coefficients from the force and torque on
the particle can be calculated. Besides, different particle Reynolds
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Fig. 2. Schematic diagram showing the velocities of 19 fluid lattice particles in the
D3Q19 model.

numbers and gaps between the particle and wall in the parameter
space are set {Rep, Regq, €}.

3.1. Lattice Boltzmann method

The MRT-LBM applies multiple relaxation times in collision pro-
cess. At each lattice point x and time t, the mesoscale distribution
function f(x, t) is governed by (d’Humieres et al. (2002))

f(x+ed,t+8)=Ffx,t) —-M"-S-[m-m®], (12)

where f(x, t) is a vector indicating the distributions of lattice par-
ticle. In the D3Q19 discrete velocity model, M is a 19x 19 orthogo-
nal transformation matrix which converts the distribution function
f from the discrete velocity space into the moment space m, where
the collision relaxation is performed. m(¢® is the equilibrium value
of the moment m, and §; is the time step. The transformations be-
tween the particle velocity space and the moment space are

m=M-f m=M-f9, f=M"'.-m (13)

The macroscale variables are obtained from the moments of the
distribution function f using

pro=1. pr=> fi. ppu=Y_ fie. p=pl (14)
i i

where u is the macroscale fluid velocity, pgy = 1 is the mean den-
sity, p is the fluid pressure, ¢; = 1/4/3 is the speed of sound, e; in
the D3Q19 model shown in Fig. 2 can be expressed as

(0’0’0) 121
e, = ] (+£1,0,0), (0,+1,0), (0,0, +1) i=1,2,...,6
(£1,£1,0), (£1,0,£1), (0,+1,£1) i=7,8,---,18.
(15)

The elements of the transform matrix M can be found in
d’Humieres et al. (2002). The 19 elements in m are

m = {,Ofw k1, k%, Ux, Qx, Uy, Gy, Uz, Gz, 3Pxx, 37Txx,
Pwws Twws Dxys Dyzs Dxz, My, My, mz}T, (16)

where the element m;(i=0,1,2,---,18) respectively denote the
fluid mass density py, the part of the kinetic energy k; indepen-
dent of the density, the part of the kinetic energy square k% inde-
pendent of the density and kinetic energy, the momentum ppux,
Proly, Pplz, the energy flux gy, gy, gz, the stress tensor pxx, Pww,

pxy and third order moment my, my, m,. The conserved hydrody-
namic moments are the density and the momentum mée‘” = pf.
mge‘” = P folix. méeq) = psolly and mgeq) = psoliz. while other non-
conserved kinetic moments are the functions of the conserved mo-
ments. The diagonal matrix S specifies the relaxation rates in col-
lision for the non-conserved moments and,

S = diag(so. $1. 52. $3. 4. 53, 54, S3, S4. S9. $10 59 S10-

513, 513, 513, 516, 516> 16 (17)
where sg=s3 =0 for the conserved moments, and s; =1.19,
S) =810 = 1.4, S4 = 1.2, S16 = 1.98, Sg =S13 = 1/(3‘) +05) for
the non-conserved moments, v is the kinematic viscosity of
the fluid (d’'Humieres et al., 2002). With the speed of sound
cs=1/v/3 and s9=sy3, the equilibrium values of the non-
conserved moments are m{*” = —11p; +19(u2 + u3 + u2), m{*® =
Wepp+ W2 +u2+u2),  m = 2uy3,  mE = _2uy/3,
m{® = —2u,/3, m{® = 2u2 — (U2 + u2), m{ — wy,m{?,
m® =2 —u2, mP =wem®, m =y, m =y,
mg‘;’j‘” = Uylz, mg‘é‘” = mg‘;") = mggq) =0, where w;, w; and wxy
are free parameters. They are set to w, =0, wg; = —475/63, and
Wyx = 0 for the optimized stability.

The following equilibrium distribution function is used to ini-
tialize the distribution function,

(18)

2 2
) _ e-u (e w3  u
fi 1<pf+pf0 2 + Pfo 2 Prga )

where the weight factor W;=1/3 for i=0; W;=1/18 for i=
1,---,6;and W; =1/36 fori=7,---,18.

3.2. Boundary condition

For convenient implementation, the bottom wall and side walls
of the container are located half lattice unit away from the lattice
points. In this case, the no-slip boundary condition is simply im-
plemented using the classic mid-point bounce-back scheme. Like-
wise, the top free surface is located at half lattice unit away from
the lattice points and the free-slip boundary condition is imple-
mented by the perfect reflective bounce-back. The no-slip bound-
ary condition between the moving particle surface and fluid is im-
plemented using the quadratic interpolation scheme (Bouzidi et al.,
2001; Lallemand and Luo, 2003). When the particle is close to
the wall and if there are only two lattice points in the gap be-
tween surfaces, the linear interpolation scheme is used Bouzidi
et al. (2001). The interpolated bounce-back scheme produces a rel-
atively smooth sphere surface instead of a staircase shaped surface
when the mid-point bounce back scheme is used on the particle
surface (Ladd, 1994a; 1994b). It can also reduce the nonphysical
fluctuation of the sphere surface due to the motion of the sphere
relative to the fixed lattice grid points. When the gap becomes
even smaller and there is only one lattice point in it, the simple
bounce back scheme is used to calculate the unknown distribution
functions.

In the simulation as documented in this work, the fluid lat-
tice points are fixed in space while the solid spherical particle
moves relative to the fixed lattice grids. A lattice node previously
located inside the solid particle may become a fluid node due
to the motion of the solid particle. The distribution functions for
such new fluid nodes have to be constructed. In our simulation,
all the 19 components of the distribution function for a new fluid
node are constructed with an equilibrium distribution plus a non-
equilibrium correction (Caiazzo, 2008). The equilibrium distribu-
tion part is calculated using Eq. (18) based on the velocity of the
moving boundary of a particle uy, and the fluid density, oy, aver-
aged over all the existing fluid nodes in the immediate neighbor-
hoods. The non-equilibrium part is obtained from a neighboring



6 Z. Zhou et al./International Journal of Multiphase Flow 92 (2017) 1-19

fluid node along the direction of a discrete velocity e; which maxi-
mizes the quantity e; - fi, where i is the local outward-normal vec-
tor of the moving boundary at the point through which the lattice
node moves out to the fluid region (Caiazzo, 2008). Further details
are given in Gao et al. (2013).

3.3. Hydrodynamic force and torque

In this research work, the motion of particle with a prescribed
velocity or angular velocity is being controlled. Then the hydro-
dynamic force and torque acting on the particle can be calculated
using the theorem of impulse. In the conventional CFD methods,
the hydrodynamic force is calculated by integrating the local stress
over the particle surface which is calculated by spatial differenti-
ations of the fluid velocity. An advantage of LBM is that the hy-
drodynamic force and torque acting on the solid particle is directly
calculated based on the impulses exerted on the lattice fluid parti-
cles and the Newton’s third law. The hydrodynamic force Fy, act-
ing on the solid particle is the summation of the loss of the fluid
momentum, from t to t + &, on all the links cutting the solid par-
ticle surface. The torque Ty, is the summation of the cross prod-
uct of the local position vector relative to the center of the par-
ticle and the loss of fluid momentum over all boundary links.
Namely,

F;;O'“‘St =Y [ﬁ-(x, t)e — fi(x,t +5t)e17:|
bn . (19)
=y [f,-(x, )+ f(x, t+ 8t)]ei,
bn

TZ;O‘S&(S[ _ Z n; x I:ﬁ X6+ fi(x, t+ St)]e,-, (20)
bn

where “bn” denotes summation over all the boundary links, e; =
—e; and f(x.t) =f(x,t)—M~1.S. [m—m@©] denotes the dis-
tribution function just after the collision (referred to the time
step t + 0.568¢), f;(X,t+d:) denotes the distribution function after
bounce-back collision with the solid particle surface at x and t + §;,
fi; denotes the local outward-normal vector connecting the solid
particle center and the point of intersection between the i link at
x with the surface of the solid particle.

After obtaining the hydrodynamic force and torque acting to a
particle, we update the particle transversal velocity V;,*‘S‘, particle

rotational velocity Sli,*‘sf , particle transversal displacement st‘sf
and particle angular displacement 9;,*‘32 respectively, by

Vi = v %%[F;;Bt/z +F, 2] +g< - %)8“ (21)
@t = @)+ o I 15 2 s, @)
Yo% =Y, 4 0.5(V,, + V)8, (23)
0" = @), +0.5(% + Q)5 (24)

where M, denotes the mass of the particle and I, the moment of
inertia of the particle, g the gravitational acceleration, pgp and pp
fluid and particle density, respectively. For the four simple types of
particle motion in this paper, V&, V;,J"Sf =V +ap 0, QF, Sl;;"sf =
SZE, + ap 0 are respectively the translational velocity and rotational
velocity of the particle at time t and t + &, and ap, ; and ap, ; are
the prescribed translational acceleration and rotational acceleration
of particle to be accelerated to a given velocity from a zero ve-

locity for the purpose of numerical stability. When the particle is
accelerated to a prescribed value, it will translate or rotate with
a constant velocity, V5™ = Vi, €% — @ to obtain a statistically
steady hydrodynamic force and torque.

3.4. Transformation between physical unit and lattice Boltzmann unit

To guarantee the numerical stability, we estimate the maximum
value of fluid velocity to limit the Mach number of the flow such
that max{ug}/cs < 0.15, where up is the prescribed velocity of par-
ticle in lattice Boltzmann unit. The value of ug is set based on the
balance between forces in steady settling process and obtain differ-
ent particle Reynolds numbers by varying the kinematic viscosity
in lattice Boltzmann unit.

The formula of drag force on the particle in Stokes flow is
F = —6m wRu. When the particle Reynolds number becomes large
enough, the nonlinear drag formula becomes F = —67 uRuf(Rep),
where f(Rep) =1+ 0.15Re$%87 (Clift et al., 1978), u is the pre-
scribed velocity of a particle. The drag force, gravity and buoyancy
on the particle under the equilibrium condition satisfy:

4
67 uRuf(Rep) = §71R3(,op - P8 (25)

where pp = 1500kg/m? is the density of particle.

The velocity u in Eq. (25) can be solved using Newtonian itera-
tion method and the particle Reynolds number will be computed.
According to the dimensional analysis, the transformation of quan-
tities between physical unit and lattice Boltzmann unit is depicted
as

T _dp us vy _dp up

Tp - dB Up’ VB dB UB. (26)

In Eq. (26), the subscript “p” and “B” represent the physical and
lattice Boltzmann unit respectively: d, = 6mm, vp = u/p5, Up is
the velocity in Eq. (25), ug and dg = 2rg = 50 are respectively the
prescribed velocity and diameter of the particle in lattice Boltz-
mann unit. Besides, the rotational velocity of the particle is Q =
u/R, where u is the maximum linear velocity at the surface of a
rotating particle. Therefore we can obtain all physical parameters
corresponding to different particle Reynolds numbers, as shown in
Table 3.

When the location, velocity, force and torque on a particle are
obtained, we then apply Egs. (8)-(11) in Section 2 to compute the
coefficients of hydrodynamic force and torque.

4. Results and discussions
4.1. Computational domain size

Before proposing new models for hydrodynamic force and
torque at finite particle Reynolds numbers, a compromise between
the computational domain size and the needed computational cost
have to be made. It's necessary to guarantee that the domain
size has little influence on the results. Therefore, the results are
checked by varying the computational domain size and fixing all
other parameters. We make comparisons of the coefficients of hy-
drodynamic force and torque for different computational domain
sizes, depicted as Figs. 3 and 4. The three-dimensional sizes of
computational domain are respectively denoted as Ly, Ly and L; in
lattice Boltzmann unit.

In Fig. 3, the different lines denote the coefficient A;; versus
the dimensionless gap ¢ under the condition of computational do-
main sizes Ly/dg = L;/dg =6.6, 8, 9, and 10 for the particle moving
along y axis normal to the wall at Rep, = 140.719. dg = 50 denotes
the resolution of particle diameter in lattice Boltzmann unit. In this
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Table 3

The particle Reynolds numbers and the corresponding parameters in physical unit and lattice Boltzmann unit.
Case pskg/m?) (1073N - s/m?) Vg up(m/s) I ug St Rep
Case 1 967 290 0.38551480 0.032413 25 0.005 0.112 0.6485
Case 2 965 212 0.21577852 0.042422 25 0.005 0.200 1.159
Case 3 962 13 0.14221879 0.068828 25 0.01 0.609 3.516
Case 4 960 58 0.09645247 0.104398 25 0.02 1.8 10.368
Case 5 950 28 0.03278679 0.149825 25 0.02 5.351 30.500
Case 6 930 15 0.02077498 0.194092 25 0.03 12.939 72.202
Case 7 925 9 0.01421272 0.228193 25 0.04 25.355 140.719
Case 8 915 6 0.00846908 0.258091 25 0.04 43.015 236.153
Case 9 910 5 0.00841330 0.272114 25 0.05 54.423 297.148
Case 10 900 42 0.00675197 0.287982 25 0.05 68.567 370.263
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€

Fig. 3. Effects of computational domain size on the coefficient A;; of drag force as
a function of dimensionless gap &.
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Fig. 4. Effects of computational domain size on the coefficient A,, of drag force as
a function of x-coordinate of the particle for ¢ = 0.03, where x=30 is the initial
position of the particle.

type of particle motion, y-direction is the direction of particle mo-
tion and the value of L, is determined by the prescribed particle
velocity and number of time steps. The symbol & = ng/rp denotes
the dimensionless gap scaled by the radius of particle, ng and rp
are the resolution of gap and particle radius in lattice Boltzmann

unit. There is only a negligible difference between the curves of
Ly/dg = L;/dg =8, 9 and 10, so that Ly/dg = L,/dg = 8 is a feasible
size for the type 1.

Fig. 4 shows the curves of Ay, of a particle moving along x
axis in the flow domain at Re, = 30.500 in type 2. The different
lines denote the curves of L,;/dg=4, 5 and 6 with L,/dg=4. The gap
size between the particle and the wall is 0.75. At the beginning of
the curves, the value of Ay, rapidly increases because the particle
moves along x axis with a constant acceleration. Then the particle
moves at a constant velocity after reaching a prescribed value and
the coefficient A,, tends to be steady. The curves with x-coordinate
from 150 to 300 are steady, where the equilibrium value of A,,
under stationary state could be obtained. From Fig. 4, the value of
L,/dg can be set to 4.

After making comparisons, we can obtain optimal 3D sizes of
computational domain for all types of particle motions. For the
type 3, we set Ly/dg = L,/dg = 6, L,/dg = 4. For the type 4, we set
Ly/dg = L;/dg =4,Ly/dg = 3.

4.2. Grid-size convergence

In order to obtain a grid-size independent result, the grid-size
convergence is studied. For the particle of dy =2R =6 mm rotat-
ing around y and z axes in fluid flow at Req = 140.719, a dimen-
sionless gap & = h/R = 0.04 is fixed, which means the gap in phys-
ical unit is h =0.12 mm. In the simulations, the grid resolutions
of particle radius are rg = dg/2 = 20, 25, 35, 50, corresponding to
the grid resolution for the gap between the particle and the wall
ng =0.8,1.0, 1.4, 2.0 respectively. In Figs. 5 and 6, the coefficients
By3, D33 and Dy; as functions of dy/Ax and ng are shown, where
dp/Ax is used as the lower horizontal axis, ng is used as the upper
horizontal axis, and Ax denotes the grid size. The particle resolu-
tion of dy/Ax = dg = 50 can correctly compute the coefficients D33
and Dy, with the errors of 1.8% and 0.9% respectively comparing
to dp/Ax = 100. For the coefficient B3, the small errors between
different resolutions is also negligible. Therefore the grid resolu-
tion of dp/Ax =50 is used to resolve the fluid flow and obtain the
hydrodynamic force and torque.

4.3. Coefficients of drag and lift forces induced by a wall

Zeng et al. (2005) have extensively studied the lift force in-
duced by a wall by performing particle-resolved direct numerical
simulations of a rigid sphere translating parallel to a flat wall in an
otherwise quiescent ambient fluid, which is the same as the sec-
ond type of particle motion in this paper. In order to validate the
accuracy of the current simulation method and results, we shall
compare our simulation results with the data of Zeng et al. (2005).
The grid resolution of particle radius is set to rg = 15 and the com-
putational domain is given by 600 x 210 x 300. The drag and lift
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Fig. 5. The coefficients (a) B3 and (b) D33 varying with particle resolution d,/Ax and gap resolution ng for the particle rotating around z axis in fluid flow at Reg = 140.719.
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Fig. 6. The coefficient Dy, varying with particle resolution d,/Ax and gap resolution
ng for the particle rotating around y axis in fluid flow at Reg = 140.719.

coefficients are defined as follows:

Cp =
G =

fp —A 24
T 12-p2 — 122" Re,
2,()U R P (27)

s

L)
1pU2mR2’

where Fp and F; are the drag force and lift force on the particle,
respectively. Eq. (28) defines rescaled distance from the particle to
the wall, L*, by the particle Reynolds number.

s+ e+1 .
L_ﬁ_T’ L* =L-Rey. (28)

Fig. 7 shows the drag and lift coefficients obtained from the
present simulations and the results of Zeng et al. (2005). The
solid line in Fig. 7(a) represents the standard drag correlation Cp =
%(1 +0.15Re%587) (Clift et al,, 1978). Obviously, for all separa-
tions (L = 0.75, 1, 2) good agreements can be observed for different
particle Reynolds numbers and different L* between the present
simulations and the results of Zeng et al. (2005). The collapses be-
tween the current simulations and the results obtained from the

spectral element method validate the accuracy of current lattice
Boltzmann method.

4.4. Gravity-driven settling of a particle

In order to directly evaluate the particle motion and the fluid
flow induced by the particle, we simulate a gravity-driven parti-
cle settling process and compare the simulation results with the
experiments carried out by ten Cate et al. (2002). In the experi-
ment, a small Nylon sphere of density pp = 1120 kg/m? and diam-
eter dp = 15 x 1073 m was released in a tank filled with silicon oil
at initial gap of hg = 0.12 m from the bottom of the tank to the
lowest point on the particle surface. The dimensions of the tank
are Ly x Ly x L; = 0.1 m x 0.16 m x 0.1 m. We specifically simulate
Case E1 and Case E4 for comparison. The experimental parameters
are listed in Table 4, where the terminal velocity of a particle in
an infinite medium vy, ; is determined by a relation for the drag
coefficient, Cs = 24(9.06/,/Re, + 1)2/9.06% with Re, = dpvp/v. In
our simulation, 15 lattice grids are used to resolve the particle di-
ameter.

Fig. 8 shows the vertical velocities V}, , of the particle from the
moment of release for Case E1 and Case E4. The numerical re-
sults are in excellent agreement with the experimental data. We
observe four different phases in the settling process: (a) the accel-
eration phase from rest due to the gravity, (b) the steady falling
phase when the hydrodynamic force balances the effective grav-
ity force (gravity minus the buoyancy force), (c) the deceleration
phase due to the hydrodynamic pressure when the gap between
the particle and the bottom wall becomes small, and (d) the final
phase as the solid particle gradually loses its momentum at the
bottom of the tank due to the viscous energy dissipation in the
fluid.

The time history of the fluid velocity at a fixed location is com-
pared with the experimental data in Figs. 9 and 10. The monitor
point is positioned at one diameter from the bottom and one di-
ameter from the vertical center line of the container in x direction.
The squeezing action of the particle pushes the liquid at the mon-
itor point to move outwards with a positive peak (Fig. 9). After
the vortex induced by the particle passes the monitor point, the
fluid velocity at this point decreases. The fluid comes to rest very
quickly after the particle comes to rest in Case E1, while in Case E4
a much larger wake forms due to the higher Reynolds number and
the velocity slowly decays after the particle touches the bottom.
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Fig. 7. The comparisons of (a) the drag coefficient Cp versus Rep; (b) the wall-induced lift coefficient C; versus L* between the present simulations and the results of Zeng

et al. for the scaled separation distance L = 0.75, 1, 2.

Table 4

Parameters used in the simulated cases.
Case ps(kg/m3) (103N - s/m?) pp(kg/m?3) dp(10~3m) Vp, ((m/s) Rep St
E1l 970 373 1120.0 15 0.038 1.5 0.19
E4 960 58 1120.0 15 0.128 31.9 413
T T T T 0.12
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Fig. 8. The particle vertical velocity as a function of time. Lines are for the present
simulation and symbols for the experimental measurement by ten Cate et al.
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Fig. 9. Lateral fluid velocity induced by the particle at a monitor point as a func-
tion of time. Lines are for the present simulation and symbols for the experimental
measurement by ten Cate et al.

Our simulations also well capture the vertical component of the
fluid velocity due to downward motion of the particle (Fig. 10). De-
pending on the position of the vortex center relative to the moni-
tor point and the particle center, the vertical velocity has different

0.06

Y pit

u/v

-0.06

Fig. 10. Vertical fluid velocity induced by the particle at a monitor point as a func-
tion of time. Lines are for the present simulation and symbols for the experimental
measurement by ten Cate et al.

transient behaviors. In Case E1, the Reynolds number is low and
the region of the momentum diffusion in lateral direction is large
during particle settling, the monitor point lies between the particle
and the vortex center, thus the vertical velocity does not change
sign. In Case E4, the Reynolds number is high and the region of
momentum diffusion in lateral direction is small during particle
settling, the monitor point lies on the right of vortex center, thus
the vertical velocity changes its sign when the vortex center passes
the monitor point (ten Cate et al., 2002).

The good agreements between the simulation results on parti-
cle motion and the fluid flow induced by the falling particle and
the experimental data further validate the accuracy of the simula-
tion method used in this study.

4.5. Models for the hydrodynamic force and torque

4.5.1. Particle moving normal to the wall
Firstly examined is the case that a spherical particle moves
normal to the wall in the quiescent fluid. Figs. 11 and 12
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Fig. 11. The pressure contours on the symmetry plane (z=L,/2) at four distinct particle locations (a) € = 1.8, (b) € =0.2, (c) € =0.12, and (d) € = 0.04 when the particle

moves normal to the wall in fluid flow at Re, = 140.719.

plot the pressure contours and velocity vectors on the symme-
try plane (z=1L,;/2) for four distinct particle locations at & =
1.8,0.2,0.12,0.04 when the particle moves in fluid flow at Re, =
140.719. Fig. 11 shows that the highest and lowest pressures oc-
curred at the front and the rear stagnation point of the sphere,
respectively. In Fig. 11(a), the pressure contour is similar to that
developed around the sphere in uniform flow without any solid
boundary. When the particle moves closer to the wall, the pres-
sure gradient in the interstitial liquid between the particle surface
and the wall increases correspondingly to drive the flows. The high
pressure gradient in the small gap increases the deformation of the
pressure contours and the streamlines in Figs. 11(b)-(d) and 12(b)-
(d).

Furthermore, the relative velocity vector field (uy—U,w) is
used to generate the streamlines that would be observed along a
reference frame moving with the sphere when ¢ = 1.8 as shown
in Fig. 13. For different dimensionless gap ¢ and Rep, the numer-
ical values of coefficient A’l\’1 are calculated using Eq. (8), shown
in Fig. 14(a) with discrete symbols. The models for A;; expressed
with ¢ and Re, through data fitting could be obtained, as shown
in Eq. (29). Eq. (30) is simply derived from Eq. (29). Here and
hereafter, the superscript “T” denotes theoretical results listed in
Table 2.

Ay =AT, + (6.07 x 104 +0.0351 - In¢) - Re,, Re, <370, (29)

Ay — AT
L Re,. (30)

A* = =
1™ 607 x 104 +0.0351 - In¢

In Fig. 14(a), Eq. (29) is plotted with the curves of A;; as a func-
tion of ¢ at different particle Reynolds numbers. For each curve,
the absolute value of coefficient Aj; increases with decreasing ¢.
When Re,, is close to zero, the corrected formula of Ay is consis-
tent with the theoretical expression listed in line 2 of Table 2. The
particle Reynolds number has a significant impact on the coeffi-
cient Aq;. For a given ¢, the absolute value of Aj; increases with
Rep, monotonically. Fig. 14(b) shows the normalized coefficient A%,
using the dimensionless gap as a function of Re, according to Eq.
(30). The results of A}, versus Rep collapse into a line with a slope
of 1, demonstrating the accuracy of data fitting.

Lin and Lin (2013) have numerically studied the effects of fi-
nite particle Reynolds numbers up to Re, =50 on the drag coef-
ficient on a particle moving towards a solid wall using the im-
mersed boundary method. They used the Stokes force —6r (tRU on
the particle to obtain drag coefficient and proposed the following
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Fig. 12. The velocity vectors on the symmetry plane (z = L,/2) at four distinct particle locations (a) ¢ = 1.8, (b) € =0.2, (c) € =0.12, and (d) & = 0.04 when the particle
moves normal to the wall in fluid flow at Re, = 140.719.

correlated formula to the drag coefficient
A L l ! l 0.325 +0.207,/R 0.0045R
1501 ]127—§n8—ﬁ8n8+<. + 0. 9p+. E‘p)
+(0.22 + 0.002Rep), (3 < Re, < 50) (31)
Fig. 15 plots the coefficient A;; as a function of &€ at Re, =
30.500. There is a small discrepancy between the corrected for-
> 100 ¢ mula proposed in the present work and that of Lin and Lin (2013).
However, the drag coefficient given in Eq. (3) proposed by Cox and
Brenner (1967) coincides well with the corrected formula proposed
in the present work. It seems that the asymptotic expression based
50l on ¢ « 1 and gRep « 1 proposed by Cox and Brenner (1967) has a
wider application range shown in Fig. 15 than the theoretical lim-
itation eRep <« 1.
050 1(‘)0 150 2(‘)0 250 4.5.2. Particle moving parallel to the wall .
X For the other three types of particle motion, the gap between
the particle and the wall are set to 0.5, 0.75, 1.0, 1.5, 2.0, and 4.0 at
Fig. 13. The streamline obtained from the related velocity (u; —U, w) plot at Re, = different particle Reynolds numbers. The numerical values of coef-
140.719, Uy and U are respectively the fluid velocity and particle falling velocity in ficients are denoted as AN i BN i DN and DN respectively. For dif-
the negative y-direction at ¢ = 1.8. 220 723 733 n

ferent Re, and &, we can get the models for hydrodynamic force
and torque under stationary state. The corrected formula of coef-
ficient Ay, is expressed as Eq. (32) with Rep and €. Eq. (33) is de-
rived from Eq. (32). Fig. 16 shows the plots of Eqgs. (32) and (33).
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Ay = AL, + (—0.0861 +0.0118 - £) - Re3®, Re, <370,  (32)

- AZZ_AEZ =R€0‘83 (33)
227 _0.0861 +0.0118 - ¢ p o

In Fig. 16(a), the curve of corrected formula of A,, agrees with
the curve of theoretical expression listed in line 3 of Table 2 when
Rep vanishes. With the increasing of Rep, the absolute value of Ay,
increases for a given ¢. For different Rep, the numerical values of
A,, denoted with discrete symbols are all close to the curves of the
corrected formula. Similar to Fig. 14(b), the collapse of all lines at
different particle Reynolds numbers in Fig. 16(b) confirms that Eq.
(32) is capable of capturing the effect of particle Reynolds number
on A22.

4.5.3. Particle rotating around z axis

In the third type, two coefficients B§3, D’3"3 are simultaneously
calculated. The coefficients B,3, D33 expressed with ¢ and Reg, are
obtained and depicted as Egs. (34) and (36), respectively. Figs. 17

and 18 show the coefficients B,3, D33 versus ¢ and Reg.
B3 = Bl + (—0.00246 — 3.69 x 1074 . £71/2) . Re233,
Req < 236, (34)

B, — 323 - 353
237 _0.00246 — 3.69 x 10~4 . g-1/2

= Re%%. (35)

D33 = D%; — (0.02195 - ¢7#/000924 1. 0.00254 + 0.00423 - ¢) - Reg,

Req < 370, (36)
D33 = Dy, ~ D, = Reg
37 _(0.02195 - ¢-¢/0.00924 | 0.00254 + 0.00423 - ¢) ‘
(37)

It is observed that the curves of corrected formulae of B3 and
D33 agree with the curves of the theoretical expressions listed in
lines 4 and 5 of Table 2 at Reg — 0. For a given ¢, the abso-
lute value of D33 increases with Reg monotonically as shown in
Fig. 18(a), but the value of B,3 decreases with the increasing of
Reg in Fig. 17(a). It is very interesting that when Reg is small,
the value of B3 is positive, and then it becomes negative with in-
creasing Reg. At small rotational particle Reynolds numbers and
sphere-wall gap widths, the viscous stresses are large and the ro-
tation of sphere is impeded by the wall, and the force Fx is neg-
ative. At large rotational particle Reynolds numbers, the pressure
gradient that develops along the gap between the sphere surface
and the wall dominates over the viscous stress on the sphere sur-
face, which is strong enough to deflect the force Fy. With the in-
creasing of sphere-wall gap width, the viscous effect becomes less
important and the value of Fy, becomes positive at intermediate ro-
tational particle Reynolds numbers. This argument is carefully an-
alyzed by using the decomposition of the force on the particle as
follows.

To figure out why the coefficient B,3 varies from a positive
value to a negative one with increasing Req, we focus upon a value
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Fig. 17. (a) The coefficient By; as a function of ¢ at different rotational particle Reynolds numbers, where the solid line denotes the curve of theoretical expression in the
Stokes flow limit, the dashed-lines denote corrected formula, the discrete symbols denote the numerical values of BY; at Rep=3.516, 10.368, 30.500, 72.202, 140.719 and
236.153 respectively. (b) The normalized coefficient Bj; using the dimensionless gap. The solid line denotes the redefined Bj, as a function of Reg, the symbols show the

numerical results.

of £ =0.16 and compute the force Fx using the velocity and pres-
sure fields by surface integration. Fig. 19 plots the pressure con-
tours on the plane (z=L;/2) when the particle rotates around z
axis located at € = 0.16 in fluid flow at Rep=3.516, 10.368, 30.500,
72.202, 140.719 and 236.153 respectively.

In Fig. 19, the contours are asymmetric along z axis and z = L,/2
is the plane of symmetry, the values of pressure on the left side of
particle are larger than that on the right side at different Reg. The
surface of particle is divided into many small surface elements of
spherical coordinate. The pressure integration on the particle can
be simply computed using the pressure field. Meanwhile, the vis-
cous stress on each surface element can be computed using ve-
locity gradient field. The viscous force on the particle is obtained
using superposition of the product of viscous stress and surface
area. The contribution of viscous force and pressure to the coeffi-
cient By3 on the particle can be obtained as shown in Fig. 20. It

is clear that the total value of B3 computed by the velocity and
pressure fields is close to the value computed using LBM. The co-
efficient By3 varies from a positive value to a negative one mainly
due to its dramatic increasing of contribution of pressure.

Lee and Balachandar (2010) have considered the case of a parti-
cle rotating around x axis parallel to the wall in quiescent ambient
fluid. Note that the rotational particle Reynolds number was de-
fined as Rep, = |2|d?/v = 2Req in their work, with € the angular
velocity of particle. The rotational drag and moment coefficients on
the particle were defined as follows:

-k 48
Cho=—=7=7, =B o,
5 0Q|Q|a4 Reg,
T, 64
Cvo = —xr=r=="D3s pr. (38)

Q
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Fig. 19. The pressure contours on the plane (z = L,/2) when the particle rotates around z axis located at ¢ = 0.16 in fluid flow at Req= (a) 3.516, (b) 10.368, (c) 30.500, (d)

72.202, (e)140.719, and (f) 236.153.

Fig. 21 shows the drag and moment coefficients for a rotating
particle for different Ref, and ¢. The current models for B3 and D33
denoted as thick lines are reasonably consistent with the drag and
moment correlations proposed by Lee and Balachandar (2010) de-
noted as thin lines.

4.5.4. Particle rotating around y axis

For the case of particle rotating around y axis, comparison of
the discrete coefficient D’l\’1 at Reg — 0 is made with the theoret-
ical results of coefficient Dy; from Jeffery (1915). The coefficient

D’]"] at Reg = 0.6485 is computed for comparison. It’s obvious that
the curve of D’{’l at Req = 0.6485 is consistent with Jeffery’s result,
as depicted in Fig. 22, which validates Jeffery’s result using lattice
Boltzmann method.

Through data fitting, we get the formula of coefficient D{] of
Jeffery’s theoretical result for ¢ < 0.5 as

D}, = —1277+0.285 . £%% (39)
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Fig. 20. Comparisons of the contribution of tangential viscous stress Tx(long dash
line), normal viscous stress Nx(dash dot line) and pressure Px(short dash line) to
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calculated from the velocity and pressure fields, which is the sum of the above
individual contributions to B,3. The solid line denoted as “Fxg” is the value of B3
for £ = 0.16 at different Req from Fig. 17(a).

The numerical values of D11V1 can be used to get the corrected
formula expressed with ¢ and Reg, as shown

Dy = DI, — (0.00329 +0.00141 - ¢) - Req, Regq < 370, (40)

. Dy - Dj;
1™ _0.00329 — 0.00141 - ¢

= Reg. (41)

Fig. 23(a) shows the curves of coefficient Dy; as a function of ¢
at different Req. For a given &, the absolute value of coefficient Dqq
increases with Reg monotonically. In Fig. 23(b), the values of Dj; at
different Req are close to the line with a slope of 1, demonstrating
the validity of Eq. (40).
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Fig. 22. The numerical values of Dy; at Reg = 0.6485 comparing with theoretical
results of Dy, obtained by Jeffery (1915).

4.6. Validation

4.6.1. Particle’s general motions

After obtaining the models for the hydrodynamic force and
torque through four simple motions of particle, it is necessary to
validate the accuracy of the models through particle’s general mo-
tions to study the effects of the nonlinear coupling characteristics
of fluid flow on particle motions.

For the first example, parameters are set to Re, = 30.500 and
vy = 0.015, v, = 0.02, where vy, vy are respectively velocity of x-
direction and y-direction. This is the particle’s composite motion
of the first and second types in Section 2.3. The coefficients Ay
and A, as a function of & are both depicted in Fig. 24.

In Figs. 24-26, the dash line and the solid line respectively
denote the curves of theoretical expressions in Stokes flow limit
and the proposed models. The gradient symbols denote the nu-
merical results. In Fig. 24, it can be observed that the coefficients
in particle’s composite motion are much closer to the proposed
models than the theoretical expressions in the Stokes flow limit,
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Fig. 21. (a) Drag coefficient and (b) moment coefficients for a rotating particle at different rotational particle Reynolds numbers and gap distances. The thin lines with differ-
ent patterns denote (a) drag correlation and (b) moment correlation proposed by Lee and Balachandar (2010), the thick lines with different patterns denote the expressions
transformed from the corrected formula of (a) B3 given in Eq. (34) and (b) D33 given in Eq. (36). The symbols denote numerical results from Lee and Balachandar (2010).
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Fig. 23. (a) The coefficient Dq; as a function of & at different rotational particle Reynolds numbers, where the solid line denotes the curve of theoretical expression in the
Stokes flow limit, the dashed-lines denote corrected formula, the discrete symbols denote the numerical values of D} at Req=3.516, 10.368, 30.500, 72.202, 140.719, 236.153,
297148 and 370.263 respectively. (b) The normalized coefficient Dj; using the dimensionless gap. The slope of solid line is 1, the symbols show the numerical results.

(a) or — —— —— T (b) 0p— — — — ™

[ s v Numerical ]

104 L |=——— Theoretical R

I i Corrected formula 1

[ 2F -

20 i T :

= I o a //” ]

< [/ < 3r ]

i e v Numerical 1 3

AUl 7 Theoretical N i ]

Corrected formula ] 41 vVvVVVVVVVVYV vV

, v ]

40 F i [ ]

i i SE ]

~50 [ L1 Ll Ll L] Y I P P 1]
0.04 0.08 0.12 0.16 0.2 0.04 0.08 0.12 0.16

€ €
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Fig. 26. The coefficients (a) A, and (b) Dy; versus ¢ for the particle’s composite motion comparing with the proposed models and theoretical expressions in Stokes flow

limit when Re, = Req = 166.986.

which denotes that the corrected formulae can significantly im-
prove the prediction of A;; and A,, of a particle in a general
motion.

For the second example, parameters are set to Reg = 140.719
and @y = 2, =0.002, where Q,, 2, are respectively angular ve-
locity of the particle rotating around y and z axis. This is the parti-
cle’s composite motion of the third and fourth types in Section 2.3.
The plots of coefficients B3, D33 and Dy; versus ¢ are depicted in
Fig. 25.

Fig. 25 shows that the numerical results of B3, D33 and Dq; for
the particle’s composite motion coincide well with the proposed
models, demonstrating that the proposed models are applicable for
the general motion of a particle.

For the third example, parameters are set to Rep =Reg =
166.986, vy = 0.025 % +/2 and €2, = 0.001  +/2, which represents a
more general case with both translational and rotational motions.
This is the particle’s composite motion of the second and fourth
types in Section 2.3. The coefficients A, and Dy; versus ¢ are plot-
ted in Fig. 26.

Considering the effects of inherent nonlinearity of the govern-
ing equations of the flow at finite particle Reynolds number, we get
a reasonable agreement between the proposed models and the nu-
merical data compared with the linear lubrication theory, as shown
in Fig. 26.

4.6.2. The validation of proposed models through comparison with
previous modeling results

For further validation of the proposed models, we shall com-
pare the corrected formulae with the modeling results by Lee and
Balachandar (2010) and Lee et al. (2011). In this case, the hydrody-
namic force on a finite-sized particle undergoing both translation
along x axis and rotation around z axis in quiescent ambient fluid
close to the wall was studied using an immersed boundary tech-
nique (Lee and Balachandar, 2010; Lee et al., 2011). According to
Lee and Balachandar (2010), the translation Reynolds numbers is
defined as Re, = |Vp|d/v. with V, the translational velocity of the
particle. The translational drag coefficient on the particle is defined
as

E 24
- —Axp - 5. (42)
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Fig. 27. Drag coefficients of a translating-rotating sphere in a stagnant ambient flow
when L = 0.505 (¢ = 0.01). The thin lines denote the drag correlation Eq. (43) pro-
posed by Lee and Balachandar (2010), the thick lines denote the linear superposi-
tion of corrected formulae of Ay, and B,3 given in Eq. (44) and the numerical results
are plotted as symbols.

For a given dimensionless gap L = 0.505 or ¢ = 0.01, they gave the
expressions,

Core = —Cpr — Cpg - % % - %gm,
Co (L = 0.505) = 52 (1+0.01Re$9%9), (43)

Cpa(L = 0.505) = 11?&?24-

In the current model, we can relate the drag coefficient Cp. on
a particle with both translational and rotational motions as

24 48 Q|

Corg = Az - o —Byy - — . 2|22 44
D =22 po P23 R, V, |V, (44)

Fig. 27 shows the drag coefficients plotted against the trans-
lational Reynolds number for different ratios of ©’/V, when
L=0.505 or &=0.01. The non-dimensional quantity Q'/V, =
(€2d/2)/V,. The thick lines denote the combination of corrected
formulae of Ay, and B3 given in Eq. (44), which coincide well with
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the drag correlation Eq. (43) without including translation-rotation
coupling term g;, proposed by Lee and Balachandar (2010) and de-
noted as thin lines. The drag coefficients obtained from the present
numerical simulations, which include the translation-rotation cou-
pling effects, are shown with symbols. It can be observed that the
translation-rotation coupling effects could be ignored over the pa-
rameter range considered and the results obtained from particle’s
general motion of translation-rotation using the lattice Boltzmann
method are validated.

5. Conclusions

In this paper, the models for the hydrodynamic force and torque
acting on a particle moving near a solid wall in a viscous fluid at fi-
nite particle Reynolds numbers are proposed. The conventional lu-
brication theory for force and torque is based on the assumption
of Stokes flow at vanishing particle Reynolds number, which is not
suitable for general situations at finite particle Reynolds numbers.
Therefore, this paperwork is aimed to consider the effects of finite
particle Reynolds numbers on the hydrodynamic force and torque.
The multiple-relaxation-time lattice Boltzmann model is used to
simulate the flow field induced by the prescribed motion of a
finite-size spherical particle moving at a given particle Reynolds
number. The method is extensively validated using previous nu-
merical and experimental data. The resolution is up to 50 grids per
particle diameter. Given different particle Reynolds numbers and
gap sizes between the sphere and the wall, we can compute the
coefficients of hydrodynamic force and torque. The results show
that the effects of finite particle Reynolds number have a signifi-
cant impact on the coefficients of hydrodynamic force and torque
at a given gap.

We obtain the models for the hydrodynamic force and torque,
as shown in Egs. (29), (32), (34), (36) and (40) respectively. When
the particle Reynolds number is close to be zero, the values of co-
efficients as a function of ¢ all approach the conventional lubrica-
tion theory. For a given ¢, the absolute values of coefficients Ayq,
Ayo, D33 and Dyy increase with particle Reynolds number mono-
tonically, while the coefficient B,3 varies from a positive value to
a negative value. To understand this variation in By3, we compute
the individual component of forces along the x axis on the parti-
cle by integrating the viscous stress and pressure over the particle
surface when it rotates around the z axis in the fluid flow at in-
creasing Req. It is discovered that the coefficient B,z varies from
a positive value to a negative value mainly due to the asymmetric
distribution of pressure. The asymmetric distribution of pressure
leads to a rapid increase of negative contribution to Bjs.

We further validate the new developed models for the hydrody-
namic force and torque, not only by numerically calculating parti-
cle’s general motions but also by comparing with available models
from literature. Those validations demonstrate that the proposed
models can be used in general motions in which the fluid motions
in different directions induced by the particle moving at finite par-
ticle Reynolds number are coupled. The proposed models for the
hydrodynamic force and torque can be used as sub-grid models in
any PR-DNS simulation approaches where the flow in the gap be-
tween the particle and wall can not be sufficiently resolved, and in
Lagrangian simulations of particle-laden flows where particles are
very close to a wall, such as particles in cyclone separators.
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