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a b s t r a c t 

This research work is aimed at proposing models for the hydrodynamic force and torque experienced 

by a spherical particle moving near a solid wall in a viscous fluid at finite particle Reynolds numbers. 

Conventional lubrication theory was developed based on the theory of Stokes flow around the particle at 

vanishing particle Reynolds number. In order to account for the effects of finite particle Reynolds num- 

ber on the models for hydrodynamic force and torque near a wall, we use four types of simple motions 

at different particle Reynolds numbers. Using the lattice Boltzmann method and considering the moving 

boundary conditions, we fully resolve the flow field near the particle and obtain the models for hydro- 

dynamic force and torque as functions of particle Reynolds number and the dimensionless gap between 

the particle and the wall. The resolution is up to 50 grids per particle diameter. After comparing numer- 

ical results of the coefficients with conventional results based on Stokes flow, we propose new models 

for hydrodynamic force and torque at different particle Reynolds numbers. It is shown that the particle 

Reynolds number has a significant impact on the models for hydrodynamic force and torque. Further- 

more, the models are validated against general motions of a particle and available modeling results from 

literature. The proposed models could be used as sub-grid scale models where the flows between parti- 

cle and wall can not be fully resolved, or be used in Lagrangian simulations of particle-laden flows when 

particles are close to a wall instead of the currently used models for an isolated particle. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The wall-bounded particle-fluid two-phase flows exist widely

n numerous industrial and natural processes, such as the solid-

uid flow in industrial pneumatic conveying ( Laín and Sommerfeld,

012 ), the flows in a pump, the flows in fluidized bed ( Capecelatro

t al., 2014; Lu et al., 2013 ), sediment deposition and transport in

ivers ( Kidanemariam et al., 2013 ). One of the crucial phenomena

n such flows is the interaction between particles and a solid wall. 

This research work is basically interested in the motion of a sin-

le spherical particle close to a solid wall in fluid flow at finite par-

icle Reynolds numbers. It is an elemental process in the particle-

uid two-phase flows and an important ingredient in treating

oundary condition in numerical simulation of such flows. The

article-resolved direct numerical simulation (PR-DNS) has been

merging as a powerful research tool for particle-fluid two-phase

ows. It can be used to track the motion of particles, fully resolve
∗ Corresponding author. 

E-mail address: gdjin@lnm.imech.ac.cn (G. Jin). 
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301-9322/© 2017 Elsevier Ltd. All rights reserved. 
he surrounding fluid flows and calculate the hydrodynamic forces

nd torques acting on each particle ( Ladd, 1994b; Lucci et al.,

010; Shao et al., 2012; Uhlmann, 2008; Uhlmann and Doychev,

014; Wang et al., 2013; 2010 ). To numerically simulate the wall-

ounded two-phase flow, it is necessary to generate grids of finite-

ize in the flow domain. When the gap between the particle and

he wall is smaller than one or two grid sizes, neither the fluid

otion in the gap nor the force and torque on the particle can be

olved accurately ( ten Cate et al., 2002 ). Under this condition, the

ydrodynamic viscous force and torque, which arises from the high

ressure when the interstitial fluid is squeezed out of the small

pace between the two close solid surfaces, should be compen-

ated by establishing appropriate sub-grid scale models ( Nguyen

nd Ladd, 2002; Zhang et al., 2005 ). 

There are two types of sub-grid scale models used to compen-

ate the hydrodynamic force and torque on the particle when the

ap is less than one or two grids. The first one is the method of po-

ential force ( Ozdemir et al., 2010; Wang et al., 2008 ), which means

hat the resistance on the particle is set to the function of gap size

etween the particle and the wall. The second one is the method

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.01.018
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of lubrication force ( Dance and Maxey, 2003; Portela and Oliemans,

2003 ). The asymptotic formulae ( Dance and Maxey, 2003; Nguyen

and Ladd, 2002 ) of lubrication force and torque can be applied to

resolve the particle-wall interaction. For example, the normal force

correction can be expressed as 

F 
lub = −6 πμRu ⊥ 

(
1 

ε 
− 1 

�

)
, (1)

where u ⊥ is the particle velocity normal to the wall and � = δ/R

is a prescribed dimensionless distance cutoff below which the hy-

drodynamical force is compensated, δ is usually set to be one or

two grid sizes, R is the radius of the particle, ε ≡ h / R represents

a small dimensionless gap, and h is the gap between the particle

nose and the wall, μ is the dynamical viscosity coefficient of the

fluid ( ten Cate et al., 2002 ). 

However, the current models for lubrication force and torque

are based on the assumption of the Stokes flow, which might not

be suitable for cases at finite particle Reynolds numbers. Here, the

translational particle Reynolds number is defined as 

Re p = 

ρ f ud p 

μ
(2)

where d p = 2 R is the diameter of particle, u is the particle velocity,

and ρ f is the density of fluid. Therefore, the objective of this work

is to develop new models for the hydrodynamic force and torque at

finite particle Reynolds numbers. The new models can be used in

two major applications. First, they can be used as sub-grid models

in PR-DNS calculations where the flow in the gap between the par-

ticle and wall can not be sufficiently resolved. They can be used in

any PR-DNS approaches, such as lattice Boltzmann method ( Ladd,

1994a; 1994b ), immersed boundary method ( Lucci et al., 2010 ) and

fictitious particle method ( Shao et al., 2012 ). Second, they can be

used in Lagrangian simulations of particle-laden flows to replace

the currently used model for an isolated particle. In current com-

putational fluid dynamics (CFD) codes, force and torque models on

the particles are not modified when they are very close to a wall.

It will be shown in this work that the force and torque on a parti-

cle near a wall can be significantly different from those on an iso-

lated particle. Therefore, the proposed new models will be useful

for Lagrangian simulations of applications such as cyclone separa-

tors ( Song et al., 2016 ). 

In order to develop the models for hydrodynamic force and

torque for particle motions in a fluid at low Reynolds numbers,

superposition of four simple motions of two isolated spheres is

usually used to analyze their lubrication forces and torques ( Dance

and Maxey, 2003; Rosa et al., 2011 ). The four simple motions con-

sist of (i) a sphere translating normally to another sphere, (ii) two

spheres translating along the direction perpendicular to the line

connecting their centers, (iii) two spheres rotating around the line

connecting their centers, (iv) two spheres rotating around the di-

rection perpendicular to the line connecting their centers. For a

sphere translating towards a stationary sphere, Jeffrey (1982) com-

bined the work of Cooley and O’Neill (1969) with numerical calcu-

lations and deduced a brief formula proportional to ε −1 for normal

force acting on the moving sphere. For the other three motions,

Jeffrey and Onishi (1984) extended the work of O’Neill and Ma-

jumdar (1970) and obtained asymptotic expressions of the forces

and torques acting on the spheres. Above all, the formulae were

obtained based on the assumption of Stokes flow. The asymptotic

formulae of the lubrication force and torque for the four simple

motions are suitable for two spheres of different radii. When the

radius of one of the two spheres tends to be infinite, the larger

sphere could be regarded as a plane wall. Then the asymptotic

formulae for two particles turned into the theoretical expressions

of lubrication force and torque acting on a moving sphere near a

plane wall ( Dance and Maxey, 2003 ). 
The theoretical expressions of lubrication force and torque are

uitable for fluid flow at vanishing particle Reynolds numbers.

owever, there are many practical situations related to the mo-

ion of particles in fluid flow at finite particle Reynolds numbers.

s for the particles in channel flows, Uhlmann (2008) fully re-

olved the phase interfaces by DNS with an immersed bound-

ry method and García-Villalba et al. (2012) simulated turbulent

ow in a vertical plane channel seeded with heavy spherical par-

icles. Uhlmann and Doychev (2014) simulated the gravity-induced

otion of finite-size particles in fluid in triply periodic domains.

he particle Reynolds numbers of the flows are greater than 100.

hey used the repulsive force mechanism to recover the close

article-particle hydrodynamic interaction. Zeng et al. ( 2008; 2010 )

onsidered the turbulent channel flow over an isolated particle

ith variable sizes and locations. There are also pipe flows laden

ith particles, such as the experimental study of turbulent flow

riven by particles in pipe flows ( Belt et al., 2012 ) and the gas-

olid flows in wall-bounded vertical risers ( Laín and Sommer-

eld, 2012; Lu et al., 2013; Wang et al., 2013 ). In addition, Lucci

t al. (2010) numerically simulated the turbulent flow around mov-

ng spherical particles dispersed in a decaying isotropic turbulent

ow. Yeo et al. (2010) investigated the modulation of isotropic tur-

ulent flows induced by spherical bubbles, neutrally buoyant par-

icles and slightly inertial particles. They also used the repulsive

orce between the particle surfaces when the gap is less than a

ritical value. In current large-eddy simulation of particle-laden

hannel flows, the unresolved sub-grid scale motion might affect

he particle-wall interaction ( Bianco et al., 2012 ). The contributions

f the sub-grid scale fluid motions on particle-wall interaction can

e partially modeled by constructing particle sub-grid scale model

ased on the space-time correction theory ( He et al., 2002; Yang

t al., 2008; Zhao and He, 2009 ). 

The experimental investigations and numerical simulations de-

cribed above are related to particle-particle and particle-wall hy-

rodynamical interaction at finite particle Reynolds numbers. The

ypical particle Reynolds numbers are respectively listed in Table 1 .

Illustrated in Table 1 is the range of particle Reynolds numbers

n many situations, the range is about O (10) ∼ O (100). Although

he local particle Reynolds number near the wall can be reduced

y the hydrodynamic force, the effects of finite particle Reynolds

umber will have to be considered. Experimental studies show

hat when the particle Stokes number St = τp /τ f = ((ρp /ρ f ) / 9) Re p
s larger than a critical value, St ∗ = 10 , the particle will approach

he wall with a finite velocity and rebound back, where τ p is par-

icle relaxation timescale and τ f is a characteristic timescale of the

ow ( Gondret et al., 2002; Joseph et al., 2001 ). Using the method

f matched asymptotic expansions, Cox and Brenner (1967) consid-

red the contribution of fluid inertia at a small but finite particle

eynolds number to the lubrication force by multiplying the Stokes

rag force with a dimensionless friction factor f zz ( ε), 

f zz (ε) = 

1 

ε 
+ 

1 

5 

(
1 + 

Re p 

4 

)
ln 

(
1 

ε 

)
+ O (Re 2 p ) , (3)

here ε � 1 and εRe p � 1 and the particle approaches the wall

ith a constant speed. The moving conditions of a particle at con-

tant translational or rotational speeds are also applied in this

ork. Liu and Prosperetti (2010) considered a sphere rotating at

e � ≤ 200 near one or two infinite plane walls parallel or perpen-

icular to the axis of rotation and studied the centrifugal, inertial

nd viscous effects on the hydrodynamic force and torque acting

n the sphere. Here, the rotational particle Reynolds number is de-

ned as 

e � = 

ρ f �Rd p 

μ
(4)

here � is the angular velocity of the sphere. Tagawa

t al. (2013) investigated the wall effect on a repulsive force act-
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Table 1 

Typical particle Reynolds numbers in the particle-fluid two-phase flows in literatures. 

References Types of flows Re p 

Kim and Balachandar (2012) An isolated finite-sized particle subjected to isotropic turbulent cross-flow 100, 250, 350 

Zeng et al. (2010) A finite-sized stationary particle in a channel flow of modest turbulence 40 ∼ 450 

Lucci et al. (2010) Finite-sized solid spherical particles in decaying isotropic turbulence O (10) (65/75/280) 

Belt et al. (2012) Particle-laden secondary flow in turbulent pipe flows 110, 217 

Xu and Bodenschatz (2008) Particles in intense turbulent water flows 22, 35, 55 

Kidanemariam et al. (2013) Horizontal open channel flow with finite-size, heavy particles 15 ∼ 20 

Laín and Sommerfeld (2012) Pneumatic conveying of spherical particles in horizontal ducts 40 

Dorgan and Loth (2004) Particles released near the wall in a turbulent boundary layer 10 −5 ∼ 30 

Zeng et al. (2008) Turbulent channel flow over an isolated particle of finite-size 42 ∼ 295, 325/455 

Tenneti and Subramaniam (2014) Gas-solid flows 20, 50 

Wang et al. (2008) Sedimentation of 1, 2 or 105 particles in a channel flow about 17.3, 503 

García-Villalba et al. (2012) Vertical plane channel flow with finite-size particles 132 

Uhlmann (2008) Vertical particulate channel flow 136 

Uhlmann and Doychev (2014) The gravity-induced motion of randomly distributed, finite-size, heavy particles 

in quiescent fluid in triply periodic domains 

141 .1, 233.1, 260.6 

Shao et al. (2012) Particle-laden turbulent flow in a horizontal channel 22 .2, 36.2 

Wang et al. (2010) Particle-fluid systems 1 

Wang et al. (2014) Single-phase turbulence and particle-laden turbulence O (10) 
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Table 2 

The coefficients of hydrodynamic force and torque when a particle moves close 

to a solid wall in fluid flow at vanishing particle Reynolds number. In the 

table, the theoretical expressions of A 11 , A 22 , B 23 , D 33 are from Dance and 

Maxey (2003) . The model for the coefficient D 11 is fitted from the result by 

Jeffery (1915) . 

Theoretical expression O (1) 

A 11 = − 1 
ε + 

1 
5 

ln ε + 

1 
21 

ε ln ε + −0 . 848 + O ( ε) 

A 22 = 

8 
15 

ln ε + 

64 
375 

ε ln ε + −0 . 952 + O ( ε) 

B 23 = − 2 
15 

ln ε − 86 
375 

ε ln ε + −0 . 257 + O ( ε) 

D 33 = 

2 
5 

ln ε + 

66 
125 

ε ln ε + −0 . 371 + O ( ε) 

D 11 = −1 . 277 + 0 . 285 · ε 0 . 25 
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l  
ng on a sphere near the wall and experimentally study transla-

ional and rotational motion of a particle slightly heavier than the

uid in a rotating drum filled with water. Lin and Lin (2013) nu-

erically studied the effects of finite particle Reynolds numbers

p to Re p = 50 on the model for normal lubrication force on a par-

icle moving towards a solid wall using the immersed boundary

ethod. By fitting the numerical results, they proposed a model

or the normal lubrication force. In this work, the models for both

orces and torques on a particle with more general motions near

 solid wall will be extended, including the translational and ro-

ational motions at a wider range of particle Reynolds numbers.

he lattice Boltzmann method is used to fully resolve the flow

round the moving particle and calculate the hydrodynamic force

nd torque on it. 

The rest of paper is organized as follows: Section 2 describes

he models for hydrodynamic force and torque in Stokes flow limit,

nd proposes new models at finite particle Reynolds numbers. The

our types of simple particle motions are also described in order

o obtain the coefficients of forces and torques. Section 3 intro-

uces the numerical methods. The basic principles of the multiple-

elaxation-time lattice Boltzmann method and the equations of

article motions are discussed. Section 4 shows the effects of com-

utational domain size, grid-size convergence, comparison of cur-

ent numerical results with previous studies and the coefficients of

he new proposed models. The corrected formulae of the five in-

ependent coefficients of the models for hydrodynamic force and

orque are described in detail. In Section 5 , the conclusions and ap-

lications about the models for the hydrodynamic force and torque

t finite particle Reynolds numbers are presented. 

. Modeling hydrodynamic force and torque 

.1. Models for hydrodynamic force and torque in the Stokes flow 

imit 

For a single particle moving near a plane wall in a Stokes flow,

he linear resistance relations between the hydrodynamic force and

orque on the particle and the translational and angular velocities

f the particle can be expressed as ( Dance and Maxey, 2003 ) 

F i = 6 πμR ( A i j U j + R B i j � j ) 

T i = 8 πμR 

2 ( C i j U j + R D i j � j ) 
(5) 

here i and j = 1 , 2 , 3 denote the y, x and z direction respectively

n a reference frame attached to the wall, as shown in Fig. 1 , F i 
enotes the force along the axis i and T denotes the torque about
i 
he axis i . A, B, C, D are dimensionless second rank tensors. The

orentz reciprocal theorem for the homogeneous Stokes equations

mplies that A = A 

T , D = D 

T and B 

T = C for any geometry. We refer

o the right-handed orthonormal axes with the y direction normal

o the wall and the other directions parallel to the wall. Symmetry

onsiderations imply that with respect to these axes A is diagonal,

nd A 22 = A 33 . The only non-zero elements of B are B 23 = −B 32 .

he reciprocal theorem may be used to calculate C from B. D is

iagonal, and D 22 = D 33 ( Kim and Karrila, 2005 ). Then Eq. (5) is

implified as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F 1 = 6 πμR A 11 U 1 

F 2 = 6 πμR ( A 22 U 2 + R B 23 �3 ) 

F 3 = 6 πμR ( A 22 U 3 − R B 23 �2 ) 

T 1 = 8 πμR 

2 R D 11 �1 

T 2 = 8 πμR 

2 ( −B 23 U 3 + R D 33 �2 ) 

T 3 = 8 πμR 

2 ( B 23 U 2 + R D 33 �3 ) 

(6) 

Thus, the five left unknown coefficients are A 11 , A 22 , B 23 , D 33 

nd D 11 . The five coefficients of hydrodynamic force and torque at

anishing particle Reynolds number are listed in Table 2 ( Dance

nd Maxey, 2003 ). 

.2. New models for hydrodynamic force and torque at finite particle 

eynolds numbers 

In this subsection, the new models for force and torque are pro-

osed when a particle moves near a solid wall at finite particle

eynolds numbers whilst maintaining the form of formulae like

q. (6) . Due to the inherent nonlinearity of the governing equa-

ions of the flow at finite particle Reynolds number, Eq. (6) is no

onger valid in that case. The unknown coefficients in Eq. (5) are
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Fig. 1. A particle (a) moves along y axis normal to the wall, (b) moves along x axis parallel to the wall, (c) rotates around z axis, (d) rotates around y axis. 
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much more complex. On one hand, the coefficients in Eq. (6) de-

pend on both particle Reynolds number and the dimensionless gap.

On the other hand, the coefficients denoting the lift force induced

by the presence of the wall will not be zero any more and vary

with particle Reynolds number and the dimensionless gap. Zeng

et al. (2005) have extensively studied the dependence of the wall-

induced hydrodynamic lift force using an accurate spectral element

method and found that two different regimes of the dependence of

the lift coefficient on particle Reynolds number. We will check and

validate our numerical method by comparing the results on lift co-

efficient of Zeng et al. (2005) in Section 4.3 . Here, we will focus on

the dependence of leading coefficients of hydrodynamic force and

torque on particle Reynolds number and the dimensionless gap in

Eq. (6) using simple motions of a particle. Similar method has been

used by researchers to propose drag models ( Lin and Lin, 2013; Liu

et al., 2009 ). 

At finite particle Reynolds numbers, we could propose the fol-

lowing new models for the hydrodynamic force and torque on the

particle, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

F 1 = 6 πμR A 11 (Re p , ε) U 1 

F 2 = 6 πμR ( A 22 (Re p , ε) U 2 + R B 23 (Re �, ε) �3 ) 

F 3 = 6 πμR ( A 22 (Re p , ε) U 3 − R B 23 (Re �, ε) �2 ) 

T 1 = 8 πμR 

2 ( R D 11 (Re �, ε) �1 ) 

T 2 = 8 πμR 

2 ( −B 23 (Re �, ε) U 3 + R D 33 (Re �, ε) �2 ) 

T 3 = 8 πμR 

2 ( B 23 (Re �, ε) U 2 + R D 33 (Re �, ε) �3 ) . 

(7)

In the new models, the coefficients A 11 , A 22 , B 23 , D 11 , D 33 are not

only functions of the dimensionless gap ε, but also functions of the

translational particle Reynolds number Re p or the rotational par-

ticle Reynolds number Re �. In the following subsection, we shall

present the procedure to obtain the coefficients of the new models

for hydrodynamic force and torque using given simple motions of

a particle near a solid wall. 

2.3. Procedure to obtain the coefficients of the new models for 

hydrodynamic force and torque 

In the motion of a finite-size particle in an otherwise quiescent

ambient fluid bounded by solid walls at the bottom and four lat-

eral side walls, four simple types of particle motion near the solid

wall at the bottom as shown in Fig. 1 are used to obtain the mod-

els for hydrodynamic force and torque at finite particle Reynolds

number: (1) particle moving along y axis normal to the bottom

wall ( Fig. 1 (a)), (2) particle moving along x axis parallel to the bot-

tom wall ( Fig. 1 (b)), (3) particle rotating around z axis parallel to

the bottom wall ( Fig. 1 (c)), (4) particle rotating around y axis nor-

mal to the bottom wall ( Fig. 1 (d)). The procedures of above men-

tioned four simple types of particle motion to be considered are

illustrated in detail as follows: 
.3.1. Particle moving normal to the wall ( U 1 = −U, U 2 = 0 , �3 = 0 ) 

The particle starts to move along y axis normal to the wall

ith a constant acceleration from a zero velocity, as depicted in

ig. 1 (a). It moves at a constant speed after its velocity reaches a

rescribed value. When the gap size between the particle and wall

s small enough, we resolve the hydrodynamic force and calculate

he coefficient A 11 as a function of Re p and ε

 1 = 6 πμR U 1 · A 11 (Re p , ε) . (8)

.3.2. Particle moving parallel to the wall ( U 1 = 0 , U 2 = U, �3 = 0 ) 

The particle starts to accelerate along x axis parallel to the wall

ith a constant acceleration from a zero velocity, as depicted in

ig. 1 (b). It moves at a constant speed after its velocity reaches a

rescribed value. We set different gaps between the particle and

all. The coefficient A 22 as a function of Re p and ε could be calcu-

ated with 

 2 = 6 πμR U 2 · A 22 (Re p , ε) . (9)

.3.3. Particle rotating around an axis parallel to the wall 

 U 1 = 0 , U 2 = 0 , �3 = �) 

The particle firstly rotates around z axis with a constant angular

cceleration from a zero angular velocity, as depicted in Fig. 1 (c).

t keeps rotating at a constant angular velocity after its angular ve-

ocity reaches a prescribed value. We set different gaps between

he particle and wall. The coefficients B 23 and D 33 could be calcu-

ated with 

F 2 = 6 πμR · ( R B 23 (Re �, ε) �3 ) 

T 3 = 8 πμR 

2 · ( R D 33 (Re �, ε) �3 ) . 
(10)

.3.4. Particle rotating around an axis normal to the wall 

 U 1 = 0 , U 2 = 0 , �1 = �) 

The particle starts to rotate around y axis with a constant an-

ular acceleration from a zero angular velocity, as depicted in

ig. 1 (d). It keeps rotating at a constant angular velocity after its

ngular velocity reaches a prescribed value. We set different gaps

etween the particle and wall. The coefficient D 11 as a function of

e � and ε could be calculated with 

 1 = 8 πμR 

2 · ( R D 11 (Re �, ε) �1 ) . (11)

. Numerical method 

The lattice Boltzmann method has been a popular numerical

ethod for dynamical coupling between solid and fluid with com-

lex geometrical boundaries ( Rong et al., 2008; Zhu et al., 2011; Qi

t al., 2014; Wu et al., 2014 ). In this work, the multiple-relaxation-

ime lattice Boltzmann method (MRT-LBM) is used to simulate the

ow induced by a moving finite-size particle. The particle moves

ccording to a prescribed acceleration or velocity as shown in

ig. 1 , therefore, the coefficients from the force and torque on

he particle can be calculated. Besides, different particle Reynolds
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Fig. 2. Schematic diagram showing the velocities of 19 fluid lattice particles in the 

D3Q19 model. 
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umbers and gaps between the particle and wall in the parameter

pace are set { Re p , Re �, ε}. 

.1. Lattice Boltzmann method 

The MRT-LBM applies multiple relaxation times in collision pro-

ess. At each lattice point x and time t , the mesoscale distribution

unction f ( x , t ) is governed by ( d’Humieres et al. (2002) ) 

 (x + e i δt , t + δt ) = f (x , t) − M 

−1 · S ·
[
m − m 

(eq ) 
]
, (12)

here f ( x , t ) is a vector indicating the distributions of lattice par-

icle. In the D3Q19 discrete velocity model, M is a 19 × 19 orthogo-

al transformation matrix which converts the distribution function

 from the discrete velocity space into the moment space m , where

he collision relaxation is performed. m 

( eq ) is the equilibrium value

f the moment m , and δt is the time step. The transformations be-

ween the particle velocity space and the moment space are 

 = M · f , m 

(eq ) = M · f (eq ) , f = M 

−1 · m . (13)

The macroscale variables are obtained from the moments of the

istribution function f using 

f 0 = 1 , ρ f = 

∑ 

i 

f i , ρ f 0 u = 

∑ 

i 

f i e i , p = ρ f c 
2 
s , (14)

here u is the macroscale fluid velocity, ρ f 0 = 1 is the mean den-

ity, p is the fluid pressure, c s = 1 / 
√ 

3 is the speed of sound, e i in

he D3Q19 model shown in Fig. 2 can be expressed as 

 i = 

{ 

(0 , 0 , 0) i = 1 

(±1 , 0 , 0) , (0 , ±1 , 0) , (0 , 0 , ±1) i = 1 , 2 , · · · , 6 

(±1 , ±1 , 0) , (±1 , 0 , ±1) , (0 , ±1 , ±1) i = 7 , 8 , · · · , 18 . 

(15) 

The elements of the transform matrix M can be found in

’Humieres et al. (2002) . The 19 elements in m are 

 = { ρ f , k 1 , k 
2 
2 , u x , q x , u y , q y , u z , q z , 3 p xx , 3 πxx , 

p ww 

, πww 

, p xy , p yz , p xz , m x , m y , m z } T , (16) 

here the element m i (i = 0 , 1 , 2 , · · · , 18) respectively denote the

uid mass density ρ f , the part of the kinetic energy k 1 indepen-

ent of the density, the part of the kinetic energy square k 2 
2 

inde-

endent of the density and kinetic energy, the momentum ρ f 0 u x ,

f 0 u y , ρ f 0 u z , the energy flux q x , q y , q z , the stress tensor p xx , p ww 

,

 xy and third order moment m x , m y , m z . The conserved hydrody-

amic moments are the density and the momentum m 

(eq ) 
0 

= ρ f ,

 

(eq ) 
3 

= ρ f 0 u x , m 

(eq ) 
5 

= ρ f 0 u y and m 

(eq ) 
7 

= ρ f 0 u z , while other non-

onserved kinetic moments are the functions of the conserved mo-

ents. The diagonal matrix S specifies the relaxation rates in col-

ision for the non-conserved moments and, 

 ≡ diag (s 0 , s 1 , s 2 , s 3 , s 4 , s 3 , s 4 , s 3 , s 4 , s 9 , s 10 , s 9 , s 10 , 

s 13 , s 13 , s 13 , s 16 , s 16 , s 16 ) , (17) 

here s 0 = s 3 = 0 for the conserved moments, and s 1 = 1 . 19 ,

 2 = s 10 = 1 . 4 , s 4 = 1 . 2 , s 16 = 1 . 98 , s 9 = s 13 = 1 / (3 ν + 0 . 5) for

he non-conserved moments, ν is the kinematic viscosity of

he fluid ( d’Humieres et al., 2002 ). With the speed of sound

 s = 1 / 
√ 

3 and s 9 = s 13 , the equilibrium values of the non-

onserved moments are m 

(eq ) 
1 

= −11 ρ f + 19(u 2 x + u 2 y + u 2 z ) , m 

(eq ) 
2 

=
 ε ρ f + w ε j (u 2 x + u 2 y + u 2 z ) , m 

(eq ) 
4 

= −2 u x / 3 , m 

(eq ) 
6 

= −2 u y / 3 ,

 

(eq ) 
8 

= −2 u z / 3 , m 

(eq ) 
9 

= 2 u 2 x − (u 2 y + u 2 z ) , m 

(eq ) 
10 

= w xx m 

(eq ) 
9 

,

 

(eq ) 
11 

= u 2 y − u 2 z , m 

(eq ) 
12 

= w xx m 

(eq ) 
11 

, m 

(eq ) 
13 

= u x u y , m 

(eq ) 
14 

= u y u z ,

 

(eq ) 
15 

= u x u z , m 

(eq ) 
16 

= m 

(eq ) 
17 

= m 

(eq ) 
18 

= 0 , where w ɛ , w ɛ j and w xx 

re free parameters. They are set to w ε = 0 , w ε j = −475 / 63 , and

 xx = 0 for the optimized stability. 

The following equilibrium distribution function is used to ini-

ialize the distribution function, 

f (eq ) 
i 

= W i 

(
ρ f + ρ f 0 

e i · u 

c 2 s 

+ ρ f 0 

(e i · u ) 2 

2 c 4 s 

− ρ f 0 

u 

2 

2 c 2 s 

)
, (18) 

here the weight factor W i = 1 / 3 for i = 0 ; W i = 1 / 18 for i =
 , · · · , 6 ; and W i = 1 / 36 for i = 7 , · · · , 18 . 

.2. Boundary condition 

For convenient implementation, the bottom wall and side walls

f the container are located half lattice unit away from the lattice

oints. In this case, the no-slip boundary condition is simply im-

lemented using the classic mid-point bounce-back scheme. Like-

ise, the top free surface is located at half lattice unit away from

he lattice points and the free-slip boundary condition is imple-

ented by the perfect reflective bounce-back. The no-slip bound-

ry condition between the moving particle surface and fluid is im-

lemented using the quadratic interpolation scheme ( Bouzidi et al.,

001; Lallemand and Luo, 2003 ). When the particle is close to

he wall and if there are only two lattice points in the gap be-

ween surfaces, the linear interpolation scheme is used Bouzidi

t al. (2001) . The interpolated bounce-back scheme produces a rel-

tively smooth sphere surface instead of a staircase shaped surface

hen the mid-point bounce back scheme is used on the particle

urface ( Ladd, 1994a; 1994b ). It can also reduce the nonphysical

uctuation of the sphere surface due to the motion of the sphere

elative to the fixed lattice grid points. When the gap becomes

ven smaller and there is only one lattice point in it, the simple

ounce back scheme is used to calculate the unknown distribution

unctions. 

In the simulation as documented in this work, the fluid lat-

ice points are fixed in space while the solid spherical particle

oves relative to the fixed lattice grids. A lattice node previously

ocated inside the solid particle may become a fluid node due

o the motion of the solid particle. The distribution functions for

uch new fluid nodes have to be constructed. In our simulation,

ll the 19 components of the distribution function for a new fluid

ode are constructed with an equilibrium distribution plus a non-

quilibrium correction ( Caiazzo, 2008 ). The equilibrium distribu-

ion part is calculated using Eq. (18) based on the velocity of the

oving boundary of a particle u w 

and the fluid density, ρ̄ f , aver-

ged over all the existing fluid nodes in the immediate neighbor-

oods. The non-equilibrium part is obtained from a neighboring
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fluid node along the direction of a discrete velocity e i which maxi-

mizes the quantity e i · ˆ n , where ˆ n is the local outward-normal vec-

tor of the moving boundary at the point through which the lattice

node moves out to the fluid region ( Caiazzo, 2008 ). Further details

are given in Gao et al. (2013) . 

3.3. Hydrodynamic force and torque 

In this research work, the motion of particle with a prescribed

velocity or angular velocity is being controlled. Then the hydro-

dynamic force and torque acting on the particle can be calculated

using the theorem of impulse. In the conventional CFD methods,

the hydrodynamic force is calculated by integrating the local stress

over the particle surface which is calculated by spatial differenti-

ations of the fluid velocity. An advantage of LBM is that the hy-

drodynamic force and torque acting on the solid particle is directly

calculated based on the impulses exerted on the lattice fluid parti-

cles and the Newton’s third law. The hydrodynamic force F hy act-

ing on the solid particle is the summation of the loss of the fluid

momentum, from t to t + δt , on all the links cutting the solid par-

ticle surface. The torque T hy is the summation of the cross prod-

uct of the local position vector relative to the center of the par-

ticle and the loss of fluid momentum over all boundary links.

Namely, 

F t+0 . 5 δt 

hy 
δt = 

∑ 

bn 

[ 
ˆ f i ( x , t ) e i − f 

i ( x , t + δt ) e i 

] 
= 

∑ 

bn 

[ 
ˆ f i ( x , t ) + f 

i ( x , t + δt ) 

] 
e i , 

(19)

T 

t+0 . 5 δt 

hy 
δt = 

∑ 

bn 

n i ×
[ 

ˆ f i (x , t) + f ī (x , t + δt ) 
] 

e i , (20)

where “bn” denotes summation over all the boundary links, e 
ī 
=

−e i and 

ˆ f (x , t) = f (x , t) − M 

−1 · S ·
[
m − m 

(eq ) 
]

denotes the dis-

tribution function just after the collision (referred to the time

step t + 0 . 5 δt ), f 
ī 
(x , t + δt ) denotes the distribution function after

bounce-back collision with the solid particle surface at x and t + δt ,

ˆ n i denotes the local outward-normal vector connecting the solid

particle center and the point of intersection between the i link at

x with the surface of the solid particle. 

After obtaining the hydrodynamic force and torque acting to a

particle, we update the particle transversal velocity V 

t+ δt 
p , particle

rotational velocity �t+ δt 
p , particle transversal displacement Y 

t+ δt 
p 

and particle angular displacement �t+ δt 
p , respectively, by 

V 

t+ δt 
p = V 

t 
p + 

1 

2 M p 

[
F t + δt / 2 

hy 
+ F t−δt / 2 

hy 

]
δt + g 

(
1 − ρ f 0 

ρp 

)
δt , (21)

�t+ δt 
p = �t 

p + 

1 

2 I p 

[
�t + δt / 2 

hy 
+ �t−δt / 2 

hy 

]
δt , (22)

Y 

t+ δt 
p = Y 

t 
p + 0 . 5(V 

t 
p + V 

t+ δt 
p ) δt , (23)

�t+ δt 
p = �t 

p + 0 . 5(�t 
p + �t+ δt 

p ) δt , (24)

where M p denotes the mass of the particle and I p the moment of

inertia of the particle, g the gravitational acceleration, ρ f 0 and ρp 

fluid and particle density, respectively. For the four simple types of

particle motion in this paper, V 

t 
p , V 

t+ δt 
p = V 

t 
p + a p,t δt , �t 

p , �
t+ δt 
p =

�t 
p + a p,r δt are respectively the translational velocity and rotational

velocity of the particle at time t and t + δt , and a p, t and a p, r are

the prescribed translational acceleration and rotational acceleration

of particle to be accelerated to a given velocity from a zero ve-
ocity for the purpose of numerical stability. When the particle is

ccelerated to a prescribed value, it will translate or rotate with

 constant velocity, V 

t+ δt 
p = V 

t 
p , �

t+ δt 
p = �t 

p to obtain a statistically

teady hydrodynamic force and torque. 

.4. Transformation between physical unit and lattice Boltzmann unit 

To guarantee the numerical stability, we estimate the maximum

alue of fluid velocity to limit the Mach number of the flow such

hat max { u B }/ c s ≤ 0.15, where u B is the prescribed velocity of par-

icle in lattice Boltzmann unit. The value of u B is set based on the

alance between forces in steady settling process and obtain differ-

nt particle Reynolds numbers by varying the kinematic viscosity

n lattice Boltzmann unit. 

The formula of drag force on the particle in Stokes flow is

 = −6 πμRu . When the particle Reynolds number becomes large

nough, the nonlinear drag formula becomes F = −6 πμRu f (Re p ) ,

here f (Re p ) = 1 + 0 . 15 Re 0 . 687 
p ( Clift et al., 1978 ), u is the pre-

cribed velocity of a particle. The drag force, gravity and buoyancy

n the particle under the equilibrium condition satisfy: 

 πμRu f (Re p ) = 

4 

3 

πR 

3 (ρp − ρ f ) g, (25)

here ρp = 1500 kg / m 

3 is the density of particle. 

The velocity u in Eq. (25) can be solved using Newtonian itera-

ion method and the particle Reynolds number will be computed.

ccording to the dimensional analysis, the transformation of quan-

ities between physical unit and lattice Boltzmann unit is depicted

s 

T p 

T B 
= 

d p 

d B 
· u B 

u p 
, 

νp 

νB 

= 

d p 

d B 
· u p 

u B 

. (26)

In Eq. (26) , the subscript “p ” and “B ” represent the physical and

attice Boltzmann unit respectively: d p = 6 mm , νp = μ/ρ f , u p is

he velocity in Eq. (25) , u B and d B = 2 r B = 50 are respectively the

rescribed velocity and diameter of the particle in lattice Boltz-

ann unit. Besides, the rotational velocity of the particle is � =
/R, where u is the maximum linear velocity at the surface of a

otating particle. Therefore we can obtain all physical parameters

orresponding to different particle Reynolds numbers, as shown in

able 3 . 

When the location, velocity, force and torque on a particle are

btained, we then apply Eqs. (8) –(11) in Section 2 to compute the

oefficients of hydrodynamic force and torque. 

. Results and discussions 

.1. Computational domain size 

Before proposing new models for hydrodynamic force and

orque at finite particle Reynolds numbers, a compromise between

he computational domain size and the needed computational cost

ave to be made. It’s necessary to guarantee that the domain

ize has little influence on the results. Therefore, the results are

hecked by varying the computational domain size and fixing all

ther parameters. We make comparisons of the coefficients of hy-

rodynamic force and torque for different computational domain

izes, depicted as Figs. 3 and 4 . The three-dimensional sizes of

omputational domain are respectively denoted as L x , L y and L z in

attice Boltzmann unit. 

In Fig. 3 , the different lines denote the coefficient A 11 versus

he dimensionless gap ε under the condition of computational do-

ain sizes L x /d B = L z /d B = 6.6, 8, 9, and 10 for the particle moving

long y axis normal to the wall at Re p = 140 . 719 . d B = 50 denotes

he resolution of particle diameter in lattice Boltzmann unit. In this
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Table 3 

The particle Reynolds numbers and the corresponding parameters in physical unit and lattice Boltzmann unit. 

Case ρ f (kg/m 

3 ) μ(10 −3 N · s / m 

2 ) νB u p (m/s) r B u B St Re p 

Case 1 967 290 0 .38551480 0 .032413 25 0 .005 0 .112 0 .6485 

Case 2 965 212 0 .21577852 0 .042422 25 0 .005 0 .200 1 .159 

Case 3 962 113 0 .14221879 0 .068828 25 0 .01 0 .609 3 .516 

Case 4 960 58 0 .09645247 0 .104398 25 0 .02 1 .8 10 .368 

Case 5 950 28 0 .03278679 0 .149825 25 0 .02 5 .351 30 .500 

Case 6 930 15 0 .02077498 0 .194092 25 0 .03 12 .939 72 .202 

Case 7 925 9 0 .01421272 0 .228193 25 0 .04 25 .355 140 .719 

Case 8 915 6 0 .00846908 0 .258091 25 0 .04 43 .015 236 .153 

Case 9 910 5 0 .00841330 0 .272114 25 0 .05 54 .423 297 .148 

Case 10 900 4 .2 0 .00675197 0 .287982 25 0 .05 68 .567 370 .263 

ε
Fig. 3. Effects of computational domain size on the coefficient A 11 of drag force as 

a function of dimensionless gap ε. 

Fig. 4. Effects of com putational domain size on the coefficient A 22 of drag force as 

a function of x-coordinate of the particle for ε = 0 . 03 , where x = 30 is the initial 

position of the particle. 

t  

t  

v  

t

a  

u  

L  

s

 

a  

l  

s  

t  

m  

m  

t  

f

u  

L

 

c  

t  

L

4

 

c  

i  

s  

i  

o  

t  

n  

B  

d  

h  

t

a  

t  

d  

t  

h

4

 

d  

s  

o  

o  

a  

c  

T  

p  
ype of particle motion, y -direction is the direction of particle mo-

ion and the value of L y is determined by the prescribed particle

elocity and number of time steps. The symbol ε = n g /r B denotes

he dimensionless gap scaled by the radius of particle, n g and r B 
re the resolution of gap and particle radius in lattice Boltzmann
nit. There is only a negligible difference between the curves of

 x /d B = L z /d B = 8, 9 and 10, so that L x /d B = L z /d B = 8 is a feasible

ize for the type 1. 

Fig. 4 shows the curves of A 22 of a particle moving along x

xis in the flow domain at Re p = 30 . 500 in type 2. The different

ines denote the curves of L z / d B = 4, 5 and 6 with L y / d B = 4. The gap

ize between the particle and the wall is 0.75. At the beginning of

he curves, the value of A 22 rapidly increases because the particle

oves along x axis with a constant acceleration. Then the particle

oves at a constant velocity after reaching a prescribed value and

he coefficient A 22 tends to be steady. The curves with x -coordinate

rom 150 to 300 are steady, where the equilibrium value of A 22 

nder stationary state could be obtained. From Fig. 4 , the value of

 z / d B can be set to 4. 

After making comparisons, we can obtain optimal 3D sizes of

omputational domain for all types of particle motions. For the

ype 3, we set L x /d B = L z /d B = 6 , L y /d B = 4 . For the type 4, we set

 x /d B = L z /d B = 4 , L y /d B = 3 . 

.2. Grid-size convergence 

In order to obtain a grid-size independent result, the grid-size

onvergence is studied. For the particle of d p = 2 R = 6 mm rotat-

ng around y and z axes in fluid flow at Re � = 140 . 719 , a dimen-

ionless gap ε = h/R = 0 . 04 is fixed, which means the gap in phys-

cal unit is h = 0 . 12 mm . In the simulations, the grid resolutions

f particle radius are r B = d B / 2 = 20 , 25 , 35 , 50 , corresponding to

he grid resolution for the gap between the particle and the wall

 g = 0 . 8 , 1 . 0 , 1 . 4 , 2 . 0 respectively. In Figs. 5 and 6 , the coefficients

 23 , D 33 and D 11 as functions of d p / �x and n g are shown, where

 p / �x is used as the lower horizontal axis, n g is used as the upper

orizontal axis, and �x denotes the grid size. The particle resolu-

ion of d p / �x = d B = 50 can correctly compute the coefficients D 33 

nd D 11 with the errors of 1.8% and 0.9% respectively comparing

o d p / �x = 100 . For the coefficient B 23 , the small errors between

ifferent resolutions is also negligible. Therefore the grid resolu-

ion of d p / �x = 50 is used to resolve the fluid flow and obtain the

ydrodynamic force and torque. 

.3. Coefficients of drag and lift forces induced by a wall 

Zeng et al. (2005) have extensively studied the lift force in-

uced by a wall by performing particle-resolved direct numerical

imulations of a rigid sphere translating parallel to a flat wall in an

therwise quiescent ambient fluid, which is the same as the sec-

nd type of particle motion in this paper. In order to validate the

ccuracy of the current simulation method and results, we shall

ompare our simulation results with the data of Zeng et al. (2005) .

he grid resolution of particle radius is set to r B = 15 and the com-

utational domain is given by 600 × 210 × 300. The drag and lift
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Fig. 5. The coefficients (a) B 23 and (b) D 33 varying with particle resolution d p / �x and gap resolution n g for the particle rotating around z axis in fluid flow at Re � = 140 . 719 . 

Fig. 6. The coefficient D 11 varying with particle resolution d p / �x and gap resolution 

n g for the particle rotating around y axis in fluid flow at Re � = 140 . 719 . 
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coefficients are defined as follows: { 

C D = 

F D 
1 
2 ρU 2 πR 2 

= A 22 · 24 
Re p 

C L = 

F L 
1 
2 ρU 2 πR 2 

, 
, (27)

where F D and F L are the drag force and lift force on the particle,

respectively. Eq. (28) defines rescaled distance from the particle to

the wall, L ∗, by the particle Reynolds number. 

L = 

s + r B 
2 r B 

= 

ε + 1 

2 

, L ∗ = L · Re p . (28)

Fig. 7 shows the drag and lift coefficients obtained from the

present simulations and the results of Zeng et al. (2005) . The

solid line in Fig. 7 (a) represents the standard drag correlation C D =
24 
Re p 

(1 + 0 . 15 Re 0 . 687 
p ) ( Clift et al., 1978 ). Obviously, for all separa-

tions ( L = 0 . 75 , 1 , 2 ) good agreements can be observed for different

particle Reynolds numbers and different L ∗ between the present

simulations and the results of Zeng et al. (2005) . The collapses be-

tween the current simulations and the results obtained from the
pectral element method validate the accuracy of current lattice

oltzmann method. 

.4. Gravity-driven settling of a particle 

In order to directly evaluate the particle motion and the fluid

ow induced by the particle, we simulate a gravity-driven parti-

le settling process and compare the simulation results with the

xperiments carried out by ten Cate et al. (2002) . In the experi-

ent, a small Nylon sphere of density ρp = 1120 kg / m 

3 and diam-

ter d p = 15 × 10 −3 m was released in a tank filled with silicon oil

t initial gap of h 0 = 0 . 12 m from the bottom of the tank to the

owest point on the particle surface. The dimensions of the tank

re L x × L y × L z = 0 . 1 m × 0 . 16 m × 0 . 1 m . We specifically simulate

ase E1 and Case E4 for comparison. The experimental parameters

re listed in Table 4 , where the terminal velocity of a particle in

n infinite medium v p, t is determined by a relation for the drag

oefficient, C d = 24(9 . 0 6 / 
√ 

Re p + 1) 2 / 9 . 0 6 2 with Re p = d p v p,t /ν . In

ur simulation, 15 lattice grids are used to resolve the particle di-

meter. 

Fig. 8 shows the vertical velocities V p, y of the particle from the

oment of release for Case E1 and Case E4. The numerical re-

ults are in excellent agreement with the experimental data. We

bserve four different phases in the settling process: (a) the accel-

ration phase from rest due to the gravity, (b) the steady falling

hase when the hydrodynamic force balances the effective grav-

ty force (gravity minus the buoyancy force), (c) the deceleration

hase due to the hydrodynamic pressure when the gap between

he particle and the bottom wall becomes small, and (d) the final

hase as the solid particle gradually loses its momentum at the

ottom of the tank due to the viscous energy dissipation in the

uid. 

The time history of the fluid velocity at a fixed location is com-

ared with the experimental data in Figs. 9 and 10 . The monitor

oint is positioned at one diameter from the bottom and one di-

meter from the vertical center line of the container in x direction.

he squeezing action of the particle pushes the liquid at the mon-

tor point to move outwards with a positive peak ( Fig. 9 ). After

he vortex induced by the particle passes the monitor point, the

uid velocity at this point decreases. The fluid comes to rest very

uickly after the particle comes to rest in Case E1, while in Case E4

 much larger wake forms due to the higher Reynolds number and

he velocity slowly decays after the particle touches the bottom.
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Fig. 7. The comparisons of (a) the drag coefficient C D versus Re p ; (b) the wall-induced lift coefficient C L versus L ∗ between the present simulations and the results of Zeng 

et al. for the scaled separation distance L = 0 . 75 , 1 , 2 . 

Table 4 

Parameters used in the simulated cases. 

Case ρ f (kg/m 

3 ) μ(10 −3 N · s / m 

2 ) ρp (kg/m 

3 ) d p (10 −3 m ) v p, t (m/s) Re p St 

E1 970 373 1120 .0 15 0 .038 1 .5 0 .19 

E4 960 58 1120 .0 15 0 .128 31 .9 4 .13 

Fig. 8. The particle vertical velocity as a function of time. Lines are for the present 

simulation and symbols for the experimental measurement by ten Cate et al. 

Fig. 9. Lateral fluid velocity induced by the particle at a monitor point as a func- 

tion of time. Lines are for the present simulation and symbols for the experimental 

measurement by ten Cate et al. 
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fl  

p  

t  

Fig. 10. Vertical fluid velocity induced by the particle at a monitor point as a func- 

tion of time. Lines are for the present simulation and symbols for the experimental 

measurement by ten Cate et al. 
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4

 

n  
ur simulations also well capture the vertical component of the

uid velocity due to downward motion of the particle ( Fig. 10 ). De-

ending on the position of the vortex center relative to the moni-

or point and the particle center, the vertical velocity has different
ransient behaviors. In Case E1, the Reynolds number is low and

he region of the momentum diffusion in lateral direction is large

uring particle settling, the monitor point lies between the particle

nd the vortex center, thus the vertical velocity does not change

ign. In Case E4, the Reynolds number is high and the region of

omentum diffusion in lateral direction is small during particle

ettling, the monitor point lies on the right of vortex center, thus

he vertical velocity changes its sign when the vortex center passes

he monitor point ( ten Cate et al., 2002 ). 

The good agreements between the simulation results on parti-

le motion and the fluid flow induced by the falling particle and

he experimental data further validate the accuracy of the simula-

ion method used in this study. 

.5. Models for the hydrodynamic force and torque 

.5.1. Particle moving normal to the wall 

Firstly examined is the case that a spherical particle moves

ormal to the wall in the quiescent fluid. Figs. 11 and 12
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Fig. 11. The pressure contours on the symmetry plane ( z = L z / 2 ) at four distinct particle locations (a) ε = 1 . 8 , (b) ε = 0 . 2 , (c) ε = 0 . 12 , and (d) ε = 0 . 04 when the particle 

moves normal to the wall in fluid flow at Re p = 140 . 719 . 
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m  
plot the pressure contours and velocity vectors on the symme-

try plane ( z = L z / 2 ) for four distinct particle locations at ε =
1 . 8 , 0 . 2 , 0 . 12 , 0 . 04 when the particle moves in fluid flow at Re p =
140 . 719 . Fig. 11 shows that the highest and lowest pressures oc-

curred at the front and the rear stagnation point of the sphere,

respectively. In Fig. 11 (a), the pressure contour is similar to that

developed around the sphere in uniform flow without any solid

boundary. When the particle moves closer to the wall, the pres-

sure gradient in the interstitial liquid between the particle surface

and the wall increases correspondingly to drive the flows. The high

pressure gradient in the small gap increases the deformation of the

pressure contours and the streamlines in Figs. 11 (b)–(d) and 12 (b)–

(d). 

Furthermore, the relative velocity vector field (u f − U, w ) is

used to generate the streamlines that would be observed along a

reference frame moving with the sphere when ε = 1 . 8 as shown

in Fig. 13 . For different dimensionless gap ε and Re p , the numer-

ical values of coefficient A 

N 
11 

are calculated using Eq. (8) , shown

in Fig. 14 (a) with discrete symbols. The models for A 11 expressed

with ε and Re p through data fitting could be obtained, as shown

in Eq. (29) . Eq. (30) is simply derived from Eq. (29) . Here and

hereafter, the superscript “T ” denotes theoretical results listed in
Table 2 . 
t  
 11 = A 

T 
11 + (6 . 07 × 10 

−4 + 0 . 0351 · ln ε) · Re p , Re p ≤ 370 , (29)

 

∗
11 = 

A 11 − A 

T 
11 

6 . 07 × 10 

−4 + 0 . 0351 · ln ε 
= Re p . (30)

In Fig. 14 (a), Eq. (29) is plotted with the curves of A 11 as a func-

ion of ε at different particle Reynolds numbers. For each curve,

he absolute value of coefficient A 11 increases with decreasing ε.

hen Re p is close to zero, the corrected formula of A 11 is consis-

ent with the theoretical expression listed in line 2 of Table 2 . The

article Reynolds number has a significant impact on the coeffi-

ient A 11 . For a given ε, the absolute value of A 11 increases with

e p monotonically. Fig. 14 (b) shows the normalized coefficient A 

∗
11 

sing the dimensionless gap as a function of Re p according to Eq.

30) . The results of A 

∗
11 

versus Re p collapse into a line with a slope

f 1, demonstrating the accuracy of data fitting. 

Lin and Lin (2013) have numerically studied the effects of fi-

ite particle Reynolds numbers up to Re p = 50 on the drag coef-

cient on a particle moving towards a solid wall using the im-

ersed boundary method. They used the Stokes force −6 πμRU on

he particle to obtain drag coefficient and proposed the following
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Fig. 12. The velocity vectors on the symmetry plane ( z = L z / 2 ) at four distinct particle locations (a) ε = 1 . 8 , (b) ε = 0 . 2 , (c) ε = 0 . 12 , and (d) ε = 0 . 04 when the particle 

moves normal to the wall in fluid flow at Re p = 140 . 719 . 

Fig. 13. The streamline obtained from the related velocity (u f − U, w ) plot at Re p = 

140 . 719 , u f and U are respectively the fluid velocity and particle falling velocity in 

the negative y -direction at ε = 1 . 8 . 
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orrelated formula to the drag coefficient 

 11 = 

1 

ε 
− 1 

5 

l nε − 1 

21 

εl nε + 

(
0 . 325 + 0 . 207 

√ 

Re p + 0 . 0045 Re p 

)
+ ( 0 . 22 + 0 . 002 Re p ) , (3 ≤ Re p ≤ 50) (31) 

Fig. 15 plots the coefficient A 11 as a function of ε at Re p =
0 . 500 . There is a small discrepancy between the corrected for-

ula proposed in the present work and that of Lin and Lin (2013) .

owever, the drag coefficient given in Eq. (3) proposed by Cox and

renner (1967) coincides well with the corrected formula proposed

n the present work. It seems that the asymptotic expression based

n ε � 1 and εRe p � 1 proposed by Cox and Brenner (1967) has a

ider application range shown in Fig. 15 than the theoretical lim-

tation εRe p � 1. 

.5.2. Particle moving parallel to the wall 

For the other three types of particle motion, the gap between

he particle and the wall are set to 0.5, 0.75, 1.0, 1.5, 2.0, and 4.0 at

ifferent particle Reynolds numbers. The numerical values of coef-

cients are denoted as A 

N 
22 , B N 23 , D 

N 
33 and D 

N 
11 respectively. For dif-

erent Re p and ε, we can get the models for hydrodynamic force

nd torque under stationary state. The corrected formula of coef-

cient A 22 is expressed as Eq. (32) with Re p and ε. Eq. (33) is de-

ived from Eq. (32) . Fig. 16 shows the plots of Eqs. (32) and (33) . 
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Fig. 14. (a) The coefficient A 11 as a function of ε at different particle Reynolds numbers, where the solid line denotes the curve of theoretical expression in the Stokes flow 

limit, the dashed-lines denote corrected formula Eq. (29) , the discrete symbols denote the numerical values of A N 11 at Re p = 3.516, 10.368, 30.500, 72.202, 140.719, 236.153, 

297.148 and 370.263 respectively. (b) The normalized coefficient A ∗11 using the dimensionless gap. The slope of solid line is 1, the symbols show the numerical results in (a). 

ε
Fig. 15. The coefficient A 11 as a function of ε at Re p = 30 . 500 . The solid line: the- 

oretical expression in the Stokes flow limit; dash line: the corrected formula given 

in Eq. (31) proposed by Lin and Lin (2013) ; dash dot line with symbols: Eq. (3) pro- 

posed by Cox and Brenner (1967) ; long dash line: the corrected formula given in 

Eq. (29) proposed in the present work. 
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v  
A 22 = A 

T 
22 + (−0 . 0861 + 0 . 0118 · ε) · Re 0 . 83 

p , Re p ≤ 370 , (32)

A 

∗
22 = 

A 22 − A 

T 
22 

−0 . 0861 + 0 . 0118 · ε = Re 0 . 83 
p . (33)

In Fig. 16 (a), the curve of corrected formula of A 22 agrees with

the curve of theoretical expression listed in line 3 of Table 2 when

Re p vanishes. With the increasing of Re p , the absolute value of A 22 

increases for a given ε. For different Re p , the numerical values of

A 22 denoted with discrete symbols are all close to the curves of the

corrected formula. Similar to Fig. 14 (b), the collapse of all lines at

different particle Reynolds numbers in Fig. 16 (b) confirms that Eq.

(32) is capable of capturing the effect of particle Reynolds number

on A . 
22 
.5.3. Particle rotating around z axis 

In the third type, two coefficients B N 
23 

, D 

N 
33 

are simultaneously

alculated. The coefficients B 23 , D 33 expressed with ε and Re � are

btained and depicted as Eqs. (34) and (36) , respectively. Figs. 17

nd 18 show the coefficients B 23 , D 33 versus ε and Re �. 

 23 = B 

T 
23 + (−0 . 00246 − 3 . 69 × 10 

−4 · ε −1 / 2 ) · Re 0 . 83 
� , 

Re � ≤ 236 , (34)

 

∗
23 = 

B 23 − B 

T 
23 

−0 . 00246 − 3 . 69 × 10 

−4 · ε −1 / 2 
= Re 0 . 83 

� . (35)

 33 = D 

T 
33 − (0 . 02195 · e −ε/ 0 . 00924 + 0 . 00254 + 0 . 00423 · ε) · Re �, 

Re � ≤ 370 , (36)

 

∗
33 = 

D 33 − D 

T 
33 

−(0 . 02195 · e −ε/ 0 . 00924 + 0 . 00254 + 0 . 00423 · ε) 
= Re �. 

(37)

It is observed that the curves of corrected formulae of B 23 and

 33 agree with the curves of the theoretical expressions listed in

ines 4 and 5 of Table 2 at Re � → 0 . For a given ε, the abso-

ute value of D 33 increases with Re � monotonically as shown in

ig. 18 (a), but the value of B 23 decreases with the increasing of

e � in Fig. 17 (a). It is very interesting that when Re � is small,

he value of B 23 is positive, and then it becomes negative with in-

reasing Re �. At small rotational particle Reynolds numbers and

phere-wall gap widths, the viscous stresses are large and the ro-

ation of sphere is impeded by the wall, and the force F x is neg-

tive. At large rotational particle Reynolds numbers, the pressure

radient that develops along the gap between the sphere surface

nd the wall dominates over the viscous stress on the sphere sur-

ace, which is strong enough to deflect the force F x . With the in-

reasing of sphere-wall gap width, the viscous effect becomes less

mportant and the value of F x becomes positive at intermediate ro-

ational particle Reynolds numbers. This argument is carefully an-

lyzed by using the decomposition of the force on the particle as

ollows. 

To figure out why the coefficient B 23 varies from a positive

alue to a negative one with increasing Re , we focus upon a value
�
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Fig. 16. (a) The coefficient A 22 as a function of ε at different particle Reynolds numbers, where the solid line denotes the curve of theoretical expression in the Stokes flow 

limit, the dashed-lines denote corrected formula, the discrete symbols denote the numerical values of A N 22 at Re p = 1.159, 10.368, 30.500, 72.202, 140.719, 236.153, 297.148 and 

370.263 respectively. (b) The normalized coefficient A ∗22 using the dimensionless gap. The solid line denotes the redefined A ∗22 as a function of Re p , the symbols show the 

numerical results. 

Fig. 17. (a) The coefficient B 23 as a function of ε at different rotational particle Reynolds numbers, where the solid line denotes the curve of theoretical expression in the 

Stokes flow limit, the dashed-lines denote corrected formula, the discrete symbols denote the numerical values of B N 23 at Re �= 3.516, 10.368, 30.500, 72.202, 140.719 and 

236.153 respectively. (b) The normalized coefficient B ∗23 using the dimensionless gap. The solid line denotes the redefined B ∗23 as a function of Re �, the symbols show the 

numerical results. 
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C

f ε = 0 . 16 and compute the force F x using the velocity and pres-

ure fields by surface integration. Fig. 19 plots the pressure con-

ours on the plane ( z = L z / 2 ) when the particle rotates around z

xis located at ε = 0 . 16 in fluid flow at Re �= 3.516, 10.368, 30.500,

2.202, 140.719 and 236.153 respectively. 

In Fig. 19 , the contours are asymmetric along z axis and z = L z / 2

s the plane of symmetry, the values of pressure on the left side of

article are larger than that on the right side at different Re �. The

urface of particle is divided into many small surface elements of

pherical coordinate. The pressure integration on the particle can

e simply computed using the pressure field. Meanwhile, the vis-

ous stress on each surface element can be computed using ve-

ocity gradient field. The viscous force on the particle is obtained

sing superposition of the product of viscous stress and surface

rea. The contribution of viscous force and pressure to the coeffi-

ient B on the particle can be obtained as shown in Fig. 20 . It
23 
s clear that the total value of B 23 computed by the velocity and

ressure fields is close to the value computed using LBM. The co-

fficient B 23 varies from a positive value to a negative one mainly

ue to its dramatic increasing of contribution of pressure. 

Lee and Balachandar (2010) have considered the case of a parti-

le rotating around x axis parallel to the wall in quiescent ambient

uid. Note that the rotational particle Reynolds number was de-

ned as Re ′ 
�

= 

∣∣ ˜ �
∣∣d 2 /ν = 2 Re � in their work, with 

˜ � the angular

elocity of particle. The rotational drag and moment coefficients on

he particle were defined as follows: 

 D � = 

−F x 
π
32 

ρ ˜ �
∣∣ ˜ �

∣∣d 4 = B 23 · 48 

Re ′ 
�

, 

 M� = 

T z 
π
64 

ρ ˜ �
∣∣ ˜ �

∣∣d 5 = −D 33 · 64 

Re ′ 
�

. (38) 
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Fig. 18. (a) The coefficient D 33 as a function of ε at different rotational particle Reynolds numbers, where the solid line denotes the curve of theoretical expression in the 

Stokes flow limit, the dashed-lines denote corrected formula and the symbols denote numerical results. (b) The normalized coefficient D ∗33 using the dimensionless gap 

versus particle Reynolds number, calculated using Eq. (37) , the symbols show the numerical results. 

Fig. 19. The pressure contours on the plane ( z = L z / 2 ) when the particle rotates around z axis located at ε = 0 . 16 in fluid flow at Re �= (a) 3.516, (b) 10.368, (c) 30.500, (d) 

72.202, (e)140.719, and (f) 236.153. 
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Fig. 21 shows the drag and moment coefficients for a rotating

particle for different Re ′ 
�

and ε. The current models for B 23 and D 33 

denoted as thick lines are reasonably consistent with the drag and

moment correlations proposed by Lee and Balachandar (2010) de-

noted as thin lines. 

4.5.4. Particle rotating around y axis 

For the case of particle rotating around y axis, comparison of

the discrete coefficient D 

N 
11 at Re � → 0 is made with the theoret-

ical results of coefficient D from Jeffery (1915) . The coefficient
11 
 

N 
11 

at Re � = 0 . 6485 is computed for comparison. It’s obvious that

he curve of D 

N 
11 at Re � = 0 . 6485 is consistent with Jeffery’s result,

s depicted in Fig. 22 , which validates Jeffery’s result using lattice

oltzmann method. 

Through data fitting, we get the formula of coefficient D 

T 
11 

of

effery’s theoretical result for ε ≤ 0.5 as 

 

T 
11 = −1 . 277 + 0 . 285 · ε 0 . 25 (39)
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Fig. 20. Comparisons of the contribution of tangential viscous stress Tx(long dash 

line), normal viscous stress Nx(dash dot line) and pressure Px(short dash line) to 

the coefficient B 23 versus Re � . The dash line denoted as “Fx” is the value of B 23 

calculated from the velocity and pressure fields, which is the sum of the above 

individual contributions to B 23 . The solid line denoted as “Fx B ” is the value of B 23 

for ε = 0 . 16 at different Re � from Fig. 17 (a). 
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Fig. 22. The numerical values of D 11 at Re � = 0 . 6485 comparing with theoretical 

results of D 11 obtained by Jeffery (1915) . 
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The numerical values of D 

N 
11 

can be used to get the corrected

ormula expressed with ε and Re �, as shown 

 11 = D 

T 
11 − (0 . 00329 + 0 . 00141 · ε) · Re �, Re � ≤ 370 , (40) 

 

∗
11 = 

D 11 − D 

T 
11 

−0 . 00329 − 0 . 00141 · ε = Re �. (41) 

Fig. 23 (a) shows the curves of coefficient D 11 as a function of ε
t different Re �. For a given ε, the absolute value of coefficient D 11 

ncreases with Re � monotonically. In Fig. 23 (b), the values of D 

∗
11 

at

ifferent Re � are close to the line with a slope of 1, demonstrating

he validity of Eq. (40) . 
ε

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

ig. 21. (a) Drag coefficient and (b) moment coefficients for a rotating particle at different

nt patterns denote (a) drag correlation and (b) moment correlation proposed by Lee and

ransformed from the corrected formula of (a) B 23 given in Eq. (34) and (b) D 33 given in E
.6. Validation 

.6.1. Particle’s general motions 

After obtaining the models for the hydrodynamic force and

orque through four simple motions of particle, it is necessary to

alidate the accuracy of the models through particle’s general mo-

ions to study the effects of the nonlinear coupling characteristics

f fluid flow on particle motions. 

For the first example, parameters are set to Re p = 30 . 500 and

 x = 0 . 015 , v y = 0 . 02 , where v x , v y are respectively velocity of x -

irection and y -direction. This is the particle’s composite motion

f the first and second types in Section 2.3 . The coefficients A 11 

nd A 22 as a function of ε are both depicted in Fig. 24 . 

In Figs. 24–26 , the dash line and the solid line respectively

enote the curves of theoretical expressions in Stokes flow limit

nd the proposed models. The gradient symbols denote the nu-

erical results. In Fig. 24 , it can be observed that the coefficients

n particle’s composite motion are much closer to the proposed

odels than the theoretical expressions in the Stokes flow limit,
ε

Ω

Ω

Ω

Ω

Ω

 rotational particle Reynolds numbers and gap distances. The thin lines with differ- 

 Balachandar (2010) , the thick lines with different patterns denote the expressions 

q. (36) . The symbols denote numerical results from Lee and Balachandar (2010) . 
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Fig. 23. (a) The coefficient D 11 as a function of ε at different rotational particle Reynolds numbers, where the solid line denotes the curve of theoretical expression in the 

Stokes flow limit, the dashed-lines denote corrected formula, the discrete symbols denote the numerical values of D N 11 at Re �= 3.516, 10.368, 30.500, 72.202, 140.719, 236.153, 

297.148 and 370.263 respectively. (b) The normalized coefficient D ∗11 using the dimensionless gap. The slope of solid line is 1, the symbols show the numerical results. 

Fig. 24. The coefficients (a) A 11 and (b) A 22 versus ε for the particle’s composite motion comparing with the proposed models and theoretical expressions in the Stokes flow 

limit when Re p = 30 . 500 . 

Fig. 25. The coefficients (a) B 23 , (b) D 33 and (c) D 11 versus ε for the particle’s composite motion comparing with the proposed models and theoretical expressions in the 

Stokes flow limit when Re � = 140 . 719 . 
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Fig. 26. The coefficients (a) A 22 and (b) D 11 versus ε for the particle’s composite motion comparing with the proposed models and theoretical expressions in Stokes flow 

limit when Re p = Re � = 166 . 986 . 
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Fig. 27. Drag coefficients of a translating-rotating sphere in a stagnant ambient flow 

when L = 0 . 505 (ε = 0 . 01) . The thin lines denote the drag correlation Eq. (43) pro- 

posed by Lee and Balachandar (2010) , the thick lines denote the linear superposi- 

tion of corrected formulae of A 22 and B 23 given in Eq. (44) and the numerical results 

are plotted as symbols. 
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hich denotes that the corrected formulae can significantly im-

rove the prediction of A 11 and A 22 of a particle in a general

otion. 

For the second example, parameters are set to Re � = 140 . 719

nd �y = �z = 0 . 002 , where �y , �z are respectively angular ve-

ocity of the particle rotating around y and z axis. This is the parti-

le’s composite motion of the third and fourth types in Section 2.3 .

he plots of coefficients B 23 , D 33 and D 11 versus ε are depicted in

ig. 25 . 

Fig. 25 shows that the numerical results of B 23 , D 33 and D 11 for

he particle’s composite motion coincide well with the proposed

odels, demonstrating that the proposed models are applicable for

he general motion of a particle. 

For the third example, parameters are set to Re p = Re � =
66 . 986 , v x = 0 . 025 ∗

√ 

2 and �y = 0 . 001 ∗
√ 

2 , which represents a

ore general case with both translational and rotational motions.

his is the particle’s composite motion of the second and fourth

ypes in Section 2.3 . The coefficients A 22 and D 11 versus ε are plot-

ed in Fig. 26 . 

Considering the effects of inherent nonlinearity of the govern-

ng equations of the flow at finite particle Reynolds number, we get

 reasonable agreement between the proposed models and the nu-

erical data compared with the linear lubrication theory, as shown

n Fig. 26 . 

.6.2. The validation of proposed models through comparison with 

revious modeling results 

For further validation of the proposed models, we shall com-

are the corrected formulae with the modeling results by Lee and

alachandar (2010) and Lee et al. (2011) . In this case, the hydrody-

amic force on a finite-sized particle undergoing both translation

long x axis and rotation around z axis in quiescent ambient fluid

lose to the wall was studied using an immersed boundary tech-

ique ( Lee and Balachandar, 2010; Lee et al., 2011 ). According to

ee and Balachandar (2010) , the translation Reynolds numbers is

efined as Re p = 

∣∣ ˜ V p 
∣∣d /ν, with 

˜ V p the translational velocity of the

article. The translational drag coefficient on the particle is defined

s 

 Dt = 

F x 
π
8 
ρ ˜ V p 

∣∣ ˜ V p 

∣∣d 2 = −A 22 · 24 

Re p 
. (42) 
f  
or a given dimensionless gap L = 0 . 505 or ε = 0 . 01 , they gave the

xpressions, 
 

 

 

 

 

C Dt� = −C Dt − C D � · �′ 
V p 

∣∣∣�′ 
V p 

∣∣∣ − �′ 
V p 

g t�, 

C Dt (L = 0 . 505) = 

81 . 96 
Re p 

(
1 + 0 . 01 Re 0 . 959 

p 

)
, 

C D �(L = 0 . 505) = 

18 . 84 
Re ′ 

�

. 

(43) 

In the current model, we can relate the drag coefficient C Dt � on

 particle with both translational and rotational motions as 

 Dt� = A 22 · 24 

Re p 
− B 23 · 48 

Re ′ 
�

· �′ 
V p 

∣∣∣∣�′ 
V p 

∣∣∣∣. (44) 

Fig. 27 shows the drag coefficients plotted against the trans-

ational Reynolds number for different ratios of �′ / V p when

 = 0 . 505 or ε = 0 . 01 . The non-dimensional quantity �′ /V p =
( ̃  �d/ 2) / ̃  V p . The thick lines denote the combination of corrected

ormulae of A and B given in Eq. (44) , which coincide well with
22 23 
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L  
the drag correlation Eq. (43) without including translation-rotation

coupling term g t � proposed by Lee and Balachandar (2010) and de-

noted as thin lines. The drag coefficients obtained from the present

numerical simulations, which include the translation-rotation cou-

pling effects, are shown with symbols. It can be observed that the

translation-rotation coupling effects could be ignored over the pa-

rameter range considered and the results obtained from particle’s

general motion of translation-rotation using the lattice Boltzmann

method are validated. 

5. Conclusions 

In this paper, the models for the hydrodynamic force and torque

acting on a particle moving near a solid wall in a viscous fluid at fi-

nite particle Reynolds numbers are proposed. The conventional lu-

brication theory for force and torque is based on the assumption

of Stokes flow at vanishing particle Reynolds number, which is not

suitable for general situations at finite particle Reynolds numbers.

Therefore, this paperwork is aimed to consider the effects of finite

particle Reynolds numbers on the hydrodynamic force and torque.

The multiple-relaxation-time lattice Boltzmann model is used to

simulate the flow field induced by the prescribed motion of a

finite-size spherical particle moving at a given particle Reynolds

number. The method is extensively validated using previous nu-

merical and experimental data. The resolution is up to 50 grids per

particle diameter. Given different particle Reynolds numbers and

gap sizes between the sphere and the wall, we can compute the

coefficients of hydrodynamic force and torque. The results show

that the effects of finite particle Reynolds number have a signifi-

cant impact on the coefficients of hydrodynamic force and torque

at a given gap. 

We obtain the models for the hydrodynamic force and torque,

as shown in Eqs. (29) , (32), (34), (36) and (40) respectively. When

the particle Reynolds number is close to be zero, the values of co-

efficients as a function of ε all approach the conventional lubrica-

tion theory. For a given ε, the absolute values of coefficients A 11 ,

A 22 , D 33 and D 11 increase with particle Reynolds number mono-

tonically, while the coefficient B 23 varies from a positive value to

a negative value. To understand this variation in B 23 , we compute

the individual component of forces along the x axis on the parti-

cle by integrating the viscous stress and pressure over the particle

surface when it rotates around the z axis in the fluid flow at in-

creasing Re �. It is discovered that the coefficient B 23 varies from

a positive value to a negative value mainly due to the asymmetric

distribution of pressure. The asymmetric distribution of pressure

leads to a rapid increase of negative contribution to B 23 . 

We further validate the new developed models for the hydrody-

namic force and torque, not only by numerically calculating parti-

cle’s general motions but also by comparing with available models

from literature. Those validations demonstrate that the proposed

models can be used in general motions in which the fluid motions

in different directions induced by the particle moving at finite par-

ticle Reynolds number are coupled. The proposed models for the

hydrodynamic force and torque can be used as sub-grid models in

any PR-DNS simulation approaches where the flow in the gap be-

tween the particle and wall can not be sufficiently resolved, and in

Lagrangian simulations of particle-laden flows where particles are

very close to a wall, such as particles in cyclone separators. 
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