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a b s t r a c t 

In this paper, we construct a new numerical method to solve the reactive Euler equations to cure the 

numerical stiffness problem. The species mass equations are first decoupled from the reactive Euler equa- 

tions, and then they are further fractionated into the convection step and the reaction step. In the convec- 

tion step, by introducing two kinds of Lagrangian points (cell-point and particle-point), a dual information 

preserving (DIP) method is proposed to resolve the convection characteristics. In this new method, the in- 

formation (including the transport value and the relative coordinates to the center of the current cell) of 

the cell-point and that of the particle-point are updated according to the velocity field. The information 

of the cell-point in a cell can effectively restrict the incorrect reaction activation caused by the numerical 

dissipation, while the information of the particle-point can help to preserve the sharp shock front once 

the strong shock waves are formed. Hence, by using the DIP method, the spurious numerical propaga- 

tion phenomenon in stiff reacting flows is effectively eliminated. In addition, a numerical perturbation 

method is also developed to solve the fractional reaction step (ODE equation) to improve the stability 

and efficiency. A series of numerical examples are presented to validate the accuracy and robustness of 

the new method. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In simulating problems governed by the reactive Euler equa-

ions, such as combustion and high-speed chemical reaction, the

ifference between the timescales of reaction and convection,

hich limits both the time step and grid spacing, may cause the

umerical stiffness problems, for example, the spurious numerical

ropagation phenomenon of the shock waves in flow fields [1–3] .

n order to attenuate the influence of the limited time step, the

mplicit time method or fractional step method is usually used to

alculate the reaction ODE equations. However, if the mesh is not

ne enough, the time method cannot remove the incorrect reaction

ctivation caused by the spatial discretization, especially in the

ows with shock waves. This is because the numerical dissipation

ntroduced to capture shocks smears the shock front and also leads

o the reaction activation in incorrect cells. Although the applica-

ions of high order shock capturing schemes can effectively reduce

he numerical dissipation and sharpen the discontinuity, the incor-

ect reaction activation and spurious propagation may still occur. 
∗ Corresponding author at: LHD, Institute of Mechanics, Chinese Academy of Sci- 
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Wang et al. [4] gave a comprehensive overview of the last two

ecades of effort s contributed to overcome the spurious numerical

henomenon. Since there is difference between timescales of the

onvection and the reaction, the fractional step method is usually

sed to solve the reactive Euler equations. Bao and Jin [3,5,6] de-

eloped a random projection method in the reaction terms to

apture the detonations, but the assumption of a priori stiff source

imits the application of this method. Zhang et al. [7] proposed

n equilibrium state method (ESM) by using appropriate equi-

ibrium states to activate the stiff source terms. The main defect

f the ESM in applications is that it is difficult to determine the

quilibrium states, especially in a complex chemical system. Based

n the idea of Harten ENO subcell resolution method [8] , Chang

9] developed a finite volume ENO method in the convection step,

hile Wang et al. [4,10] proposed high order finite difference

ethods with subcell resolution reconstructing the reaction step.

owever, as pointed out by Yee et al. [11] , the subcell resolution

ethod and its nonlinear filter counterparts [12] can delay the

nset of the wrong speed of propagation for the stiff detonation

roblem with coarse grids and moderate stiff source terms, but

his kind of method has additional spurious behavior as the grid

s refined and the stiffness is further increased. 

Ideally, the shock wave front can be regarded as an inter-

ace, hence, the interface tracking methods, such as the level set

http://dx.doi.org/10.1016/j.compfluid.2017.09.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.09.001&domain=pdf
mailto:yqshen@imech.ac.cn
http://dx.doi.org/10.1016/j.compfluid.2017.09.001
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method, the VOF method and the front tracking method, have

been used in the premixed combustion with the instantaneous

flame viewed as an infinitely thin interface between fresh and

burned gases [13,14] , and also used in alleviating the nonphysical

phenomena [15] in the simple two-phase detonations by track-

ing the inert shock as an interface. However, since the general

chemical dynamic model is composed of multi-species and finite

rate reactions, there are continuous reacting regions other than

a traditional two-phase interface, hence, these interface track-

ing methods mentioned above cannot solve the stiff problem

generated in general reacting flows well. 

For solving the interface/free surface fluid flow problems, the

marker and cell (MAC) method is regarded as the basis of the in-

terfacial tracking techniques [16] . The essence of the MAC method

is the Lagrangian virtual marker particles and the cells defined on

an Eulerian grid. Marker particles, often as many as 16 per cell, are

moved from their coordinates at time t n to their new coordinates

at time t n +1 according to the newly computed velocity u at the

cell center. The cell classification is updated every time step using

information provided by the virtual Lagrangian mesh constituted

by the marker particles. The MAC method has been applied to

interface/free surface flow problems successfully [17–19] . The

main advantages of the MAC method are that it eliminates all

logic problems associated with interfaces and readily extended

to three-dimension. However, because a large number of particle

coordinates must be stored, the storage increases significantly.

Another limitation in the MAC method as well as in the level set

and the VOF methods is that it is difficult to extend to the case

that the interface (free surface) is generated by the flow itself,

such as the shock waves and the chemical reaction. 

Recent years, the Lagrangian–Eulerian (LE) approaches with the

combination of Lagrangian particles and the Eulerian background

grids have attracted great attention in solving the convection-

diffusion problems [20–24] . The LE method takes advantage of

appropriate operator splitting techniques to solve different aspects

of the physical model with most suitable Lagrangian or Eulerian

formalism [24] . Shipilova et al. [25] applied a LE method (the par-

ticle transform method) to solve the convection-diffusion-reaction

problems, numerical results showed that the PTM can avoid the

numerical oscillation even for a very sparse grid. So far, there is

no attempt to use the LE approaches to deal with the spurious

numerical propagation phenomenon generated in simulating the

reacting flows. 

In this paper, by introducing two kinds of Lagrangian points,

we propose the dual information preserving method to cure the

spurious numerical propagation in the chemical reacting flows. In

this method, the information includes the transport value and the

relative coordinates to the center of the Eulerian cell containing

the point. The species mass fraction equations are first decoupled

from the reactive Euler equations, and then they are further frac-

tionated into the convection step and reaction step. In the species

convection step, one Lagrangian particle-point is introduced in

each cell at the beginning of the whole computation, and one

Lagrangian cell-point is introduced in each cell at the beginning

of each time step. All the particle-points are tracked in the whole

computation, and the information of the cell-point is determined

as: if there are particle-points in current cell, the information

is updated by averaging all the particle-points’ information; else

if there are cell-points entered, the information is updated by

averaging all the entered cell-points’ information; otherwise a

new cell-point is set at the cell center and its transport value is

obtained by interpolating its neighboring cell-points’ values. The

information of the cell-point in a cell can effectively restrict the

incorrect reaction activation possibly caused by the numerical

dissipation, while the information of the particle-point can help

to preserve the sharp shock front once the strong shock waves
re formed. Hence, the new method can effectively eliminate the

purious numerical propagation phenomenon in the stiff reacting

ows. Different from the MAC method, the new method does not

eed cell classification and has only two times of the cell num-

er’s points to be stored. As it contains information on two kinds

f Lagrangian points, we call the method as dual information

reserving (DIP) method. In addition, by multiplying a power-

eries of the time step to the explicit Euler scheme, a numerical

erturbation method is developed to solve the fractional reaction

tep (ODE equation) to improve the stability and efficiency. 

This paper is organized as follows. In Section 2 , we briefly

ntroduce the decoupling method for solving the reactive Euler

quations. In Section 3 , a dual information preserving method is

roposed to solve the convection step of species mass fraction

quations. In Section 4 , a numerical perturbation method is devel-

ped to solve the fractional reaction step, and analysis of stability

nd numerical examples are also presented. A series of examples,

ncluding one- and two-dimensional problems, simplified reaction

nd multi-species reaction models, are given to validate the accu-

acy and robustness of the new method in Section 5 . Conclusions

re shown in Section 6 . 

. Spurious reaction activation and the decoupling method for 

eactive Euler equations 

The one-dimensional governing equations of reacting flows

ithout consideration of heat conduction and viscosity are the

eactive Euler equations given as 

∂U 

∂t 
+ 

∂F 

∂x 
= S, (2.1)

here 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρ
ρu 

E 
ρz 1 
ρz 2 

. . . 
ρz ns −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, F = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρu 

ρu 

2 + p 
u (E + p) 

ρuz 1 
ρuz 2 

. . . 
ρuz ns −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, S = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 

0 

ω 1 

ω 2 

. . . 
ω ns −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

s is the number of reaction species, z i and ω i are the mass

raction and the production rate of the i th species. The mass

raction of the ns th species is given by 

 ns = 1 −
ns −1 ∑ 

i =1 

z i . 

nd the pressure is 

p = (γ − 1) 

( 

E − 1 

2 

ρu 

2 − ρ
ns ∑ 

i =1 

q i z i 

) 

, 

here q i is the formation enthalpy of species i and the ratio of

pecific heats γ is independent of temperature in this paper. 

In the shock-dominant reaction flows, such as the detonation

ows, the reaction follows the shock with a process of reaction

eat release. Obviously, if a shock-capturing method is used, the

umerical dissipation of the reaction is unavoidable. Especially

f the computational grid is not fine enough, then the numerical

issipation results in a relatively thick reaction region with large

emperature variation, and hence the reaction may be activated

t a wrong location. In order to avoid the presence of the wrong

eaction, a natural idea is to deal with the shock and the reaction,

eparately. 
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Usually, a fractioned method for Eq. (2.1) is as following, 

∂U 

∂t 
+ 

∂F 

∂x 
= 0 , (2.2) 

dU 

dt 
= S, (2.3) 

Actually, the fractioned method can handle some stiff problems

aused by the difference between the time scales of convection

nd reaction. However, the method hardly alleviates the wrong

ctivation caused by the numerical dissipation, because the mass

ractions of species and also the temperature have been contami-

ated by solving the Eq. (2.2) . Hence, we propose a different split

ethod. In the new method, Eq. (2.1) is decoupled as 
 

 

 

∂U 1 

∂t 
+ 

∂F 1 
∂x 

= 0 , 

∂U 2 

∂t 
+ 

∂F 2 
∂x 

= S 1 , 

(2.4) 

here, 

 1 = 

⎛ 

⎜ ⎝ 

ρ
ρu 

E 

⎞ 

⎟ ⎠ 

, F 1 = 

⎛ 

⎜ ⎝ 

ρu 

ρu 

2 + p 
u (E + p) 

⎞ 

⎟ ⎠ 

, 

 2 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρz 1 
ρz 2 

. . . 
ρz ns −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, F 2 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρuz 1 
ρuz 2 

. . . 
ρuz ns −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, S 1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ω 1 

ω 2 

. . . 
ω ns −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

or the second equation of Eq. (2.4) , there is 

 

∂ρ

∂t 
+ Z 

∂ρu 

∂x 
+ ρ

∂Z 

∂t 
+ ρu 

∂Z 

∂x 
= S 1 , (2.5)

here, Z = ( z 1 , z 2 , · · · , z ns −1 ) 
T . 

Applying the total mass equation, Eq. (2.5) is written as 

∂Z 

∂t 
+ u 

∂Z 

∂x 
= S e , (2.6)

here, S e = S 1 /ρ = ( ω 1 /ρ, ω 2 /ρ, · · · , ω ns −1 /ρ) T . 

Similar to the fractioned method, Eq. (2.6) is further split into

wo parts, i.e., the convection equation of mass fraction (2.8) and

he reaction equation (2.9). Hence, the splitting method results in

he following equations, 
 

 

 

 

 

 

 

 

 

 

 

∂U 1 

∂t 
+ 

∂F 1 
∂x 

= 0 , (2.7) 

∂Z 

∂t 
+ u 

∂Z 

∂x 
= 0 , (2.8) 

dZ 

dt 
= S e . (2.9) 

Obviously, Eq. (2.7) is the Euler equations, and can be solved

y using the conventional numerical methods. In this paper, the

ax–Friedrichs flux splitting, the fifth-order weighted essentially

on-oscillatory (WENO) scheme [26] and the fourth-order Runge–

utta scheme [27] are used for the spatial discretization and

emporal discretization, respectively. Eq. (2.8) is only related to

he velocity field and the distribution of the mass fraction at last

ime level, and hence a new method (DIP), which can effectively

void the spurious numerical propagation phenomenon in stiff

eacting flows, is developed to solve Eq. (2.8) in the next section.

q. (2.9) is an ordinary differential equation, and a numerical

erturbation (NP) is also developed to solve it to improve the

tability in this paper. 

The framework for solving the whole governing equations is

hown in Fig. 1 . The variables ˆ U and 

ˆ Z are the intermediate
1 
alues. E, A and R denote the operators for solving the Euler

quations (2.7) , the convection equation (2.8) and the reaction

quation (2.9) on the time interval [ t n , t n +1 ] , respectively. 

. Dual information preserving method 

In this section, a new method is proposed to cure the stiff prob-

em caused by the numerical dissipation generated by the strong

hock capturing method used in the chemical reacting flows. 

The two dimensional convection equation 

∂z 

∂t 
+ u (z) 

∂z 

∂x 
+ v (z) 

∂z 

∂y 
= 0 , (3.1)

s solved by the Dual Information Preserving method to be de-

cribed in the following. Before going into detail, there are two

omments for this method: 

Dual information : means the information on two different

inds of Lagrangian points (cell-points and particle-points). 

Information : includes the transport value and the relative

oordinates to the center of the Eulerian cell containing the point. 

The main idea of the dual information preserving method (DIP)

ethod is described as below. For simplicity, the particle-point

s taken as an example to illustrate the description and formula

f DIP method, and one can obtained those of the cell-point by

mitting the subscript p if there is no further explanation. The

etailed algorithm is given in Appendix A . 

As preparations, at the beginning of the computation, one

Lagrangian particle-point and one Lagrangian cell-point

are introduced for each Eulerian cell. The position of the

Lagrangian point is at the center of the Eulerian cell and the

transport value is the initial value. 

For example, for the particle-points, the relative coordinates

and the transport value are set as { 

X p (i, j) = 0 , 

Y p (i, j) = 0 , 

z̄ p (i, j) = z(i, j) . 

Note that, since the cell-points are transported only in each

time step, while the particle-points are tracked in the whole

computation, the index ( ip, jp ) is actually ( ip ( i, j ), jp ( i, j )),

and at the beginning {
ip(i, j) = i, 
j p(i, j ) = j. 

In the procedure of DIP method, the value of ( ip ( i, j ), jp ( i,

j )) also denotes which cell the initial particle-point ( i, j ) is

located in now. 

( 1) Get the velocities of the points (particle-point and cell-

point) by using an interpolation (in this paper only the 1D

linear interpolation is used) of the velocities of the current

cell and its neighbour cell. 

For example, for a particle-point ( i, j ) (i.e., initially set at ( i,

j )), the formula for calculating velocities are {
ū p (i, j) = (1 − | X p | ) u (ip, jp) + | X p | u (ip + s x , jp) , 
v̄ p (i, j) = (1 − | Y p | ) v (ip, jp) + | Y p | v (ip, jp + s y ) , 

where, {
s x = sign (X p (ip, jp)) , 
s y = sign (Y p (ip, jp)) . 

The velocity interpolation of a cell-point in x-direction is

showed in Fig. 2a . 

(2) Update the position of two kinds of points by using the

corresponding velocities and the time step �t . 
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Fig. 1. The framework of the solving process for the decoupling method. 

a

b

Fig. 2. (a) Sketch of the velocity interpolation in x-direction of cell-point ( i, j ). (b) 

Sketch of the movement process of cell-point ( i, j ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, for a particle-point ( i, j ), the relative coordi-

nates are changed to {
L x = X p (i, j) + ū p (i, j)�t/ �x, 

L y = Y p (i, j) + ̄v p (i, j)�t/ �y. 
Hence its cell is changed to {
ip(i, j) = ip(i, j) + floor (L x + 0 . 5) , 
j p(i, j ) = j p(i, j ) + floor (L y + 0 . 5) , 

with the new relative coordinates {
X p (i, j) = L x − floor (L x + 0 . 5) , 
Y p (i, j) = L y − floor (L y + 0 . 5) . 

The formula of a cell-point in x-direction is illustrated in

Fig. 2b . 

It should be noted that, for the cell-points, a temporary

index ( M, N ) is used to indicate the cell-point ( i, j ) moves to

the Eulerian cell ( M, N ). {
M = i + floor (L x + 0 . 5) , 
N = j + floor (L y + 0 . 5) . 

In this step, a marker is needed to record the Eulerian

cell contains which kind of points (or not any point) for

updating the information in the next step. 

(3) Update the information (both position and value) of

cell-points in three cases: 

(i) first of all, if there are particle-points in the current

cell, the information is updated by averaging (in

this paper, the arithmetical average is used) all the

particle-points’ information; 

(ii) else if there are cell-points in the cell, the information

is updated by averaging all the entered cell-points’

information; 

(iii) otherwise, there is no any kind of points, a new

cell-point is set at the cell center as X(i, j) = 0 and

Y (i, j) = 0 , and its transport value is obtained by

weighting the values of its neighbouring cell-points

(if there are), 

z̄ (i, j) = 

∑ 

i 1 , j 1 

[
ω i 1 , j 1 ̄z (i + i 1 , j + j 1 ) 

]
/ 
∑ 

i 1 , j 1 

ω i 1 , j 1 , 

where, i 1 = −1 , 1 and j 1 = −1 , 1 . And the weight is

inversely proportional to the distance between the

cell-point (i + i 1 , j + j 1 ) and the center of the cell ( i,

j ), ω i 1 , j 1 
= 1 /L i 1 , j 1 

. From the definition of the relative

coordinate, it is easy to find the distance as 

L i 1 , j 1 = 

√ 

(X(i + i 1 , j + j 1 ) + i 1 ) 2 + (Y (i + i 1 , j + j 1 ) + j 1 ) 2 . 

Specially, for an inlet Eulerian cell, if it has neither

particle-point nor cell-point, only a cell-point is reset,

and the transport value of the new cell-point is the

prescribed value in the inlet. 

(4) The transport value of the cell-point is used as the current

cell’s value, z(i, j) = z̄ (i, j) . 
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Fig. 3. Numerical solution of Example 3.1 , T = 6, CFL = 0.6. 

Fig. 4. Numerical solution of Example 3.2 , T = 0.4, CFL = 0.6. 
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Clearly, there is only one cell-point in each cell after a time

tep, and the particle-points are tracked and their transport val-

es are preserved all the time except those moved out of the

omputation domain. The information of the cell-point in a cell

an effectively restrict the incorrect reaction activation possibly

aused by the numerical dissipation, while the information of the

article-point can help to preserve the sharp shock front once the

trong shock waves are formed. 

Note that, in the detailed algorithm of the DIP method given

n Appendix A , for convenience in coding, the steps are not

trictly followed the above steps (1)–(4), and the order of dealing

ith cell-points and particle-points shows that if there are both

ell-points and particle-points in one cell, then the information is

pdated only by those particle-points. 

It is worthy to point out that, the splitting method Eqs.

2.7)–(2.9) is like Godunov splitting method, hence it has only

rst-order time accuracy. However, as remarked by Crandall and

ajda [28] , the second-order Strang splitting method generates

ven more dispersion near discontinuities than the first-order ac-

urate algorithm, so the first-order splitting method with iteration

s implemented for the DIP method in this paper. In addition, the

ovement of two kinds of points belongs to Lagrangian motion,

ence, the accuracy of the relative coordinates is dependent on

he accuracy of the velocities solved from the convective equation

2.7) and the linear interpolation of velocities, and hence it is

econd-order accurate. Finally, the step (4) is only a simple ap-

roximation, how to construct a high order formula is still worthy

o study for the DIP method. 

.1. Numerical test for the DIP method 

In this subsection, we test the capability of the DIP method in

iscontinuities/interface cases. 

xample 3.1. The linear equation 

∂u 

∂t 
+ 

∂u 

∂x 
= 0 , 

ith the following initial condition is solved as the first example

o test the DIP algorithm. 

 0 (x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 
6 ( G (x, β, z − δ) + G (x, β, z + δ) + 4 G (x, β, z) ) , −0 . 8 � x � −0 . 6 , 

1 , −0 . 4 � x � −0 . 2 , 

1 − | 10(x − 0 . 1) | , 0 � x � 0 . 2 , 
1 
6 ( F (x, α, a − δ) + F (x, α, a + δ) + 4 F (x, α, a ) ) , 0 . 4 � x � 0 . 6 , 

0 , otherwise , 

(3.2)

nd 

 (x, β, z) = exp (−β(x − z) 2 ) , 

 (x, γ , a ) = 

√ 

max (1 − α2 (x − a 2 ) , 0) . 

here a = 0 . 5 , z = −0 . 7 , δ = 0 . 05 and β = log 2 / 36 δ2 . The grid

umber is N = 200 . Fig. 3 gives the comparison of the results of

he fifth-order WENO scheme and the DIP method. For the linear

quation, as the velocity is constant, the DIP method is a La-

rangian point tracking method, and hence there is no numerical

issipation introduced in the propagation process. The solution

btained by the DIP method is the exact solution. 

xample 3.2. The inviscid Burgers equation is calculated as the

econd example. 

∂u 

∂t 
+ u 

∂u 

∂x 
= 0 , u 0 (x ) = sin (πx ) , 0 ≤ x ≤ 2 . (3.3) 
ig. 4 shows the results at T = 0 . 4 with N = 200 . It can be seen

hat, for nonlinear convection equation, even if the initial condi-

ion is a smooth solution, the discontinuity is generated with time

dvancing. The numerical results show that the DIP method can

apture this kind of discontinuity well. 

xample 3.3. Zalesak’s disk [29] is a classical example to exam

he capability of interface-tracking of a method [7] . The governing

quation is a 2D scalar equation 

∂u 

∂t 
+ v x 

∂u 

∂x 
+ v y 

∂u 

∂y 
= 0 . (3.4)

he velocity field is taken as 

v x (x, y ) = 2 πy, 
v y (x, y ) = −2 πx, 

nd the initial conditions are 

 (x, y ) = 

{ 

0 , 
√ 

x 2 + y 2 > 0 . 4 , 

0 , 0 . 4 < y < 0 . 6 and x > 0 . 5 , 

1 , else . 

he computation domain is [0, 1] × [0, 1]. Fig. 5 shows the results

t the time ( T 1 = 0 , T 2 = 0 . 25 , T 3 = 0 . 5 , T 4 = 0 . 75 , T 5 = 1 and

 6 = 20 ) with N = 200 × 200 . The DIP method can keep the shape

f the disk well. 
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Fig. 5. Numerical results of Example 3.3 with N = 200 × 200 at different time ( T 1 = 0 , T 2 = 0 . 25 , T 3 = 0 . 5 , T 4 = 0 . 75 , T 5 = 1 and T 6 = 20 ). The exact initial value is given by 

the black line. 
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Example 3.4. Using the same Eq. (3.4) , another 2D interfacial

problem is calculated [30,31] . At the initial time, a circle with the

radius of 0.2 is located at 

u (x, y ) = 

{
1 , 

√ 

(x − 0 . 5 π) 2 + (y − 0 . 7) 2 � 0 . 2 , 

0 , else . 

The velocity field is taken as {
v x (x, y ) = cos (x − 0 . 5 π) sin (y − 0 . 5 π) , 
v y (x, y ) = −sin (x − 0 . 5 π) cos (y − 0 . 5 π) . 

The computation domain is [0, π ] × [0, π ]. The interface is

stretched up to time T = t/ 2 , and then is brought back to its

initial configuration at time T = t . Fig. 6 shows the results at the

time t = 2 π and t = 8 π with N = 200 × 200 . The shape of the

circle at the time T = t is in agreement well with the initial shape

even after a long time. 

4. Numerical perturbation method for reactive ordinary 

differential equations 

The NP method was first proposed by Gao and co-workers

[32,33] to solve the convective-diffusion equations. The main idea

of constructing the algorithm is as follows: the coefficient of the

convective derivative in the basic discretization schemes (the first-

order upwind scheme, the second-order central scheme) are recon-

structed as a power-series of grid intervals; using the convective-

diffusion equation itself, the high order mathematical relation is

obtained; by eliminating truncated error terms in the modified

differential equation of the reconstructed scheme, the coefficients

in the power-series are determined and finally the numerical

perturbation algorithms are obtained. In the fractional method, the

reaction step forms a set of ordinary differential equations (ODE).

In this section, we construct several efficient schemes for solving

the reaction ODE based on the idea of numerical perturbation (NP).
.1. The numerical perturbation schemes 

Usually, the ODE equation is given as 

dx 

dt 
= f (t, x ) , x (0) = x 0 , (x ∈ R 

s , t � 0) . (4.1)

The first-order explicit Euler scheme 

 n +1 − x n = �t f (t , x n ) , (4.2)

s taken as the basic discretization scheme for the numerical

erturbation. Applying Taylor expansion, we get the modified

ifferential equation of Eq. (4.2) as 

dx 

dt 
= f (t , x ) − 1 

2 

�t 
d 2 x 

dt 2 
− O (�t 2 ) . (4.3)

imilar to the construction of the numerical perturbation method

or convective diffusion equation [32,34] , a perturbation polyno-

ial p is used to multiply the left of Eq. (4.2) , i.e., 

p(x n +1 − x n ) = �t f (t , x n ) , (4.4)

here the polynomial p is defined as 

p = 1 + 

∞ ∑ 

i =1 

a i �t i . (4.5)

ubstituting Eq. (4.5) into Eq. (4.4) and using Taylor expansion, we

et 

dx 

dt 
= f (t, x ) −

(
1 

2 

d 2 x 

dt 2 
+ a 1 

dx 

dt 

)
�t 

−
(

1 

6 

d 3 x 

dt 3 
+ 

a 1 
2 

d 2 x 

dt 2 
+ a 2 

dx 

dt 

)
�t 2 + O 

(
�t 4 

)
. (4.6)

learly, if the second term in the right hand side of Eq. (4.6) be-

omes zero, 

1 

2 

d 2 x 

dt 2 
+ a 1 

dx 

dt 
= 0 , (4.7)
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Fig. 6. Numerical results of Example 3.4 , N = 200 × 200 . The exact value is given by the black line. 
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t 3  
hen the scheme (4.4) has second-order accuracy. Similarly, we can

et higher order schemes by eliminating more terms of Eq. (4.6) .

ince all derivatives can be calculated by using Eq. (4.1) 

dx 

dt 
= f, 

d 2 x 

dt 2 
= f ′ t + f ′ x f, · · · , 

f a certain order of the truncation error is expected, we can get

he coefficients a 1 , a 2 , ��� as 

 1 = − f ′ t + f ′ x f 

2 f 
, 

 2 = 

−2 f ( f ′′ tt + 2 f ′′ tx f + f ′ x f 
′ 
t + f ′ x f 

′ 
x f + f ′′ xx f 

2 ) + 3( f ′ t + f ′ x f ) 
2 

12 f 2 
, 

· ·
sually, a better way to approximate a 1 , a 2 , ��� is using finite dif-

erence scheme of numerical solution. Specially, if f is the function

nly respecting to x , these coefficients a i have simple formulas as

ollows, 

 1 = − f ′ 
, a 2 = 

1 

f ′ 2 − 1 

f ′′ f, · · · . (4.8)

2 12 6 
For expressing conveniently, a N th-order NP scheme for the

q. (4.1) can be written as 

 n +1 = x n + �x f (t, x n ) /p N , (4.9)

nd the perturbation polynomial for the Nth-order NP scheme is

enoted as 

p N = 1 + 

N−1 ∑ 

i =1 

a i �t i . 

n addition, we construct a transformed function to replace the

riginal perturbation polynomial to improve the stability of the

hird-order NP(3NP) scheme. The function can be expressed as 

p 3 = 

1 + b 1 �t + b 2 �t 2 

1 − b 2 �t 
, (4.10) 

equiring p 3 to be a second-order approximation of p 3 we get 

 1 = a 1 − a 2 
a 1 + 1 

, b 2 = 

a 2 
a 1 + 1 

. (4.11)

he new third-order transformed NP (3TNP) scheme with the

ransformed function p has third-order accuracy, but its stability
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Fig. 7. Region of the stability in complex h plane for different schemes. 

Fig. 8. Numerical results of Example 4.1 . Exact solution with N = 30 0 0 . 

Fig. 9. The numerical results of Example 5.1 , t = 0 . 3 . Left:the non-stiff case; right: the stiff case. 
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Fig. 10. Numerical results of Example 5.2 , T = 3 × 10 −7 , N = 50 . 
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egion is larger than the 3NP scheme. The analysis and comparison

ill be given in the next subsection. 

.2. The stability analysis of the NP schemes 

The stability is necessary and important for a scheme to solve

he system of ODE equations with stiffness [35] . Generally, the

calar equation 

 

′ = qx, Re (q ) < 0 , (4.12)

s used to study the stability. For a scheme, the solution of

q. (4.12) can be expressed as 

 n +1 = E(h ) x n , (4.13)

here h = q �t . The A-stability was proposed and used to analyze

 numerical scheme in Refs. [36–38] . 

Two definitions for A-stability are given in Ref. [38] : 

efinition 1 (A-stable) . A scheme is A-stable, in the sense of

ahlquist [36] , if | E ( h )| < 1 for all complex h with negative real

art. 

efinition 2 (Strong A-stable) . A scheme is strongly A-stable, if it

s A-stable and lim 

Re (h ) →−∞ 

| E(h ) | = 0 . 

In order to show the performance of the stability of NP

chemes, several conventional schemes, include the first-order

xplicit Euler scheme (1EE), the first-order implicit Euler scheme

1IE), the second-order linearized implicit Euler scheme (2LIE) and
he third-order explicit Runge–Kutta scheme (3RK), are analyzed

nd compared. 

(1) The first-order explicit Euler scheme 

 n +1 − x n = �t f (t , x n ) , (4.14) 

nd 

 

1 EE (h ) = 1 + h. (4.15) 

(2) The first-order implicit Euler scheme 

 n +1 − x n = �t f (t , x n +1 ) , (4.16) 

nd 

 

1IE (h ) = 

1 

1 − h 

. (4.17) 

(3) The second-order linearized trapezoidal method [4,7] 

 n +1 − x n = 

�t f (t , x n ) 

1 − 1 / 2�t f ′ x (t , x n ) 
, (4.18) 

nd 

 

2LIE (h ) = 

1 + 

1 
2 

h 

1 − 1 
2 

h 

. (4.19) 

otice that, it has the same form as the 2NP scheme. 

(4) The third-order explicit Runge–Kutta scheme 

 n +1 = x n + 

1 

4 

k 1 + 

3 

4 

k 3 , 

k 1 = �t f (t n , x n ) , 
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Fig. 11. Numerical results of Example 5.2 , T = 3 × 10 −7 , N = 300 . 

Fig. 12. Numerical results of Example 5.2 with 100/ ε, T = 3 × 10 −7 , N = 300 . 

 

 

 

 

s

E

k 2 = �t f 

(
t n + 

1 

3 

�t , x n + 

1 

3 

k 1 

)
, 

k 3 = �t f 

(
t n + 

2 

3 

�t , x n + 

2 

3 

k 2 

)
, (4.20)

and 

E 3RK (h ) = 1 + h + 

1 

2 

h 

2 + 

1 

6 

h 

3 . (4.21)

For Eq. (4.12) , it’s easy to find the perturbation coefficients as

a 1 = − 1 q, a 2 = 

1 q 2 , ���. Hence, the functions E ( h ) for the NP
2 12 
chemes are 

E 2NP (h ) = 

1 + 

1 
2 

h 

1 − 1 
2 

h 

, 

E 3NP (h ) = 

1 + 

1 
2 

h + 

1 
12 

h 

2 

1 − 1 
2 

h + 

1 
12 

h 

2 
, 

 

3TNP (h ) = 

1 + 

1 
3 

h 

1 − 2 
3 

h + 

1 
6 

h 

2 
. 
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Fig. 13. Convergence history of Example 5.2 . 
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ig. 7 gives the stable region for different schemes in the complex

 plane. It shows that the first-order implicit, the second-order

erturbation, the third-order NP and the transformed third-order

P schemes are A-stable. The transformed third-order NP scheme
Fig. 14. Numerical results of Ex
as a larger stable region than its counterpart, moreover, only

his scheme and the first-order implicit Euler scheme are strongly

-stable schemes. 

.3. Numerical comparison of different schemes 

Before being used to solve chemical equations, the stability and

ccuracy of perturbation schemes are tested and compared with

ther schemes used in ODEs. 

xample 4.1. 

dx 

dt 
= f (t, x ) = −50(x − cos t) . (4.22)

his equation is calculated by Hairer and Wanner [37] and used

s the first case in this section. The perturbation coefficients in

q. (4.8) are 

 1 = 25 − sin t n 

2(x n − cos t n ) 
, a 2 = 

1 

4 

(
sin t n 

x − cos t n 
− 50 

)2 

−cos t n − 50 sin t n 

6(x − cos t n ) 
. 

ig. 8 shows the results of different schemes. We can see the 1EE

cheme and the 3RK schemes are not stable to solve Eq. (4.22) .

hile the 2NP scheme has one point overshot. The 3NP, the 3TNP

nd the 1IE schemes are stable. It also can be seen that the 3NP

nd the 3TNP are more accuracy than the 1IE scheme. It should

e noted that, although the implicit Euler scheme can get a stable

olution, they need iteration in every time step. 
ample 5.3 , T = 8 , N = 50 . 
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Fig. 15. Numerical results of Example 5.3 with 100/ ε, T = 8 , N = 300 . 

 

 

 

 

 

 

 

 

 

 

Table 1 

The accuracy of different schemes used in Example 4.2 . 

Scheme N L 1 error L 1 order L ∞ error L ∞ order 

1IE 20 7.7149d-3 – 8.7737d-3 –

40 3.9062d-3 0.98 4.4879d-3 0.97 

80 1.9656d-3 0.99 2.2712d-3 0.98 

160 9.8594d-4 1.00 1.1426d-3 0.99 

320 4.9377d-4 1.00 5.7304d-4 1.00 

3RK 20 1.3696d-5 – 1.7438d-5 –

40 1.6161d-6 3.08 2.0646d-6 3.08 

80 1.9601d-7 3.04 2.5119d-7 3.04 

160 2.4128d-8 3.02 3.0964d-8 3.02 

320 2.9924d-9 3.01 3.8433d-9 3.01 

2NP 20 5.0683d-5 – 6.0346d-5 –

40 1.2338d-5 2.04 1.4812d-5 2.03 

80 3.0414d-6 2.02 3.6679d-6 2.01 

160 7.5487d-7 2.01 9.1226d-7 2.01 

320 1.8803d-7 2.01 2.2750d-7 2.00 

3NP 20 1.9980d-6 – 2.5388d-6 –

40 2.3999d-7 3.06 3.0629d-7 3.05 

80 2.9376d-8 3.03 3.7628d-8 3.03 

160 3.6325d-9 3.03 4.6607d-9 3.01 

320 4.5143d-10 3.01 5.7972d-10 3.01 

3TNP 20 1.8060d-6 – 2.2866d-6 –

40 2.1766d-7 3.06 2.7702d-7 3.05 

80 2.6685d-8 3.03 3.4085d-8 3.02 

160 3.3025d-9 3.01 4.2255d-9 3.01 

320 4.1057d-10 3.01 5.2582d-10 3.01 

I

u

Example 4.2. The equation 

dx 

dt 
= f (t, x ) = −x 3 , x 0 = 1 , t = [0 , 1] , (4.23)

is calculated as the second case. In this case, the analytic solution

is 

x = 

1 √ 

2 t + 1 

. 

The perturbation coefficients of the second-order and the third-

order schemes are 

a 1 = 

3 x 2 n 

2 

, a 2 = −x 4 n 

4 

. 

Table 1 gives the errors and accuracy orders of different

schemes. It shows that the second-order, the third-order and the

transformed NP schemes can get their theoretical accuracy orders.

The errors of the third-order NP and transformed NP schemes are

lower than the third-order Runge–Kutta schemes, though all of

them are third-order accuracy. 

5. Applications in the reactive Euler equations 

In this section we apply the methods proposed in Sections 2 –4

to solve various reactive problems. 

5.1. Numerical examples for scalar problems 

Example 5.1. Consider a scalar model problem [2] 

∂u 

∂t 
+ 

∂u 

∂x 
= −μu (u − 0 . 5)(u − 1) . (5.1)
ts initial condition is given as 

 0 (x ) = 

{
1 , x � 0 . 3 , 

0 , x > 0 . 3 . 
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Fig. 16. Numerical results of Example 5.4 , T = π/ 2 , N = 300 . 

Fig. 17. Density contours results of Example 5.5 by the direct WENO method, T = 0 and T = 1 . 4 × 10 −7 , N = 20 0 0 × 400 . 
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he exact solution is 

 0 (x ) = 

{
1 , x � t + 0 . 3 , 

0 , x > t + 0 . 3 . 

he source term should always be zero theoretically. However,

f μ in Eq. (5.1) is very large, the wrong numerical result may

ppear in the transition region without a suitable method. Using
he fractional method, the convection step 

 : 
∂u 

∂t 
+ 

∂u 

∂x 
= 0 , t n � t � t n +1 , 

s solved by the DIP method, and the reaction step 

 : 
du = f (u ) = −μu (u − 0 . 5)(u − 1) , t n � t � t n +1 , 

dt 
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Fig. 18. Density contours of Example 5.5 at time (0, 0 . 25 × 10 −7 , 0 . 7 × 10 −7 , 1 . 12 × 10 −7 and 1 . 4 × 10 −7 ). Left: N = 150 × 50 . Right: N = 600 × 200 . The present method. 

Fig. 19. The distributions on the line y = 0 . 0025 of Example 5.5 , T = 1 . 4 × 10 −7 . 

Fig. 20. Mass fraction ( z = 0 . 5 ) of Example 5.6 . 
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Fig. 21. Comparison of the numerical results on the diagonal line, Example 5.6 , T = 5 . 
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s solved by the 3TNP scheme. For this case, it is easy to find the

rst-order and the second-order derivatives of f for calculating the

erturbation coefficients. 

Notice that, the scheme for ODE equations mainly influences

he stability of computation and the time step (the CFL num-

er). Due to its high order and stability, only the third-order

ransformed NP scheme is used in this paper. 

Fig. 9 gives the numerical results calculated by the present

ethod (DIP) and the WENO method for the non-stiff case μ = 10

nd stiff case μ = 10 , 0 0 0 . We can see the present method can

esolve Eq. (5.1) with both cases, while the result calculated by

he WENO method for the stiff case has a spurious propagation

henomenon. 

.2. Simplified reactive Euler system 

In this system, the reaction has only two states, burnt and un-

urnt. Un-burnt gas converts to burnt gas via a single irreversible

eaction. The governing equation is Eq. (2.1) , its mass fraction is

ontrolled by a scalar equation 

∂z 

∂t 
+ u 

∂z 

∂x 
= s 1 , (5.2)

nd the source term is 

 1 = −K(T ) z. 

he reaction rate K determines the stiffness and can be modeled

y the Arrhenius law 

(T ) = K 0 exp ( 
−T ign 

) , 

T 
r by the Heaviside law 

(T ) = 

{
1 /ε, T � T ign , 

0 , T < T ign , 

here K 0 is the reaction rate constant, T ign is the ignition temper-

ture and ε is the reaction time. 

xample 5.2. The first example is an ozone decomposition

hapman–Jouguet (C-J) detonation, which has been computed and

iscussed in [1,4,5,39] . The Arrhenius source term is used with the

ollowing parameter values 

(γ , q 0 , K 0 , T ign ) = (1 . 4 , 0 . 5196 × 10 10 , 0 . 5825 × 10 10 , 0 . 1155 × 10 10 ) . 

he initial values are piecewise constants with burnt gas on the

eft-hand side and un-burnt gas on the right-hand side, given as 

(ρ, u, p, z) = 

{
(ρb , u b , p b , 0) , x � 0 . 005 , 

( ρ0 , u 0 , p 0 , 1) , x > 0 . 005 , 

here ρ0 = 1 . 201 × 10 −3 , p 0 = 8 . 321 × 10 5 and u 0 = 0 . The states

f the C-J initial burnt gas are obtained by [1,40–42] 

p b = −b + (b 2 − c) 1 / 2 , 

ρb = ρu [ p b (γ + 1) − p u ] / (γ p b ) , 

 c j = [ ρ0 u 0 + (γ p b ρb ) 
1 / 2 ] /ρ0 , 

u b = S c j − (γ p b /ρb ) 
1 / 2 , 

b = −p u − ρu q 0 (γ − 1) , 

c = p 2 u + 2(γ − 1) p u ρu q 0 / (γ + 1) , (5.3) 

here S cj is the speed of the detonation front. 
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Fig. 22. Numerical results of Example 5.7 , T = 4 and N = 200 . Top: the direct WENO method; bottom: the present method. 
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This problem is solved on the interval [0, 0.05]. The “exact”

solutions are obtained by using the direct WENO method in a

fine mesh with the size �x = 5 × 10 −6 (i.e., N = 10 , 0 0 0 ), which

is suggested to resolve the reaction scale [1,5,39] . In this paper,

“the direct WENO method” means using the fifth-order WENO

scheme [26] and the fourth-order Runge–Kutta method [27] to

discretize the spatial derivatives and temporal derivatives in the

homogeneous Euler equations ( Eq. (2.1 ) without source term) in

the conventional fractional step method, and the 3TNP method is

also used to solve the reaction equations. The results obtained by

the direct WENO method is symboled as “WENO” in all figures. 

The solutions at the time t = 3 × 10 −7 with two meshes of

N = 50 and N = 300 are displayed in Figs. 10 and 11 , respectively.

They show that, the present method can capture the correct profile

of detonation wave even the coarse mesh N = 50 is used, while

applying the direct WENO method, a spurious weak detonation

appears ahead of the detonation wave. 

Kotov et al. [43] showed that the spurious behavior is influ-

enced significantly by the CFL number, and increasing the stiffness

coefficient may generate large derivation for predicting the shock

location. To test the influence of the CFL on the new method, we

change K 0 to 100 K 0 . Three different meshes of N = 50 , N = 100 and

N = 300 are used. Numerical results show that the influence of the

CFL number on the new method can be neglected. Fig. 12 gives the

pressure and the mass fraction distribution of N = 300 obtained

by the new method. 

In this example, we also test the convergence of the iteration

in the decoupling process, which is given in the framework of the
olving process in Fig. 1 . The error is measured by 

rror = max 
1 ≤i ≤N 

| u 

n,m +1 
i 

− u 

n,m 

i 
| . 

 convergence history given in Fig. 13 shows that the iteration pro-

ess introduced in the algorithm is useful to decrease the splitting

rror. However, although the solution is converged only after a few

teps, the computational cost is equivalent to the multiples of the

teration number. Considering that the max error is small enough

fter one step and always occurs in the detonation region, hence,

or the other examples in this paper, a direct computation of Eqs.

2.7) –(2.9) without iteration is implemented. 

xample 5.3. In this example, we considered a detonation case

ith more complex waves [4,6,7,44] . And the Heaviside model

ith following parameters are used, 

(γ , q 0 , 1 /ε, T ign ) = (1 . 2 , 50 , 230 . 75 , 3) . 

he initial conditions of this example are 

(ρ, u, p, z) = 

{ 

(2 , 4 , 40 , 0) , x � 10 , 

(3 . 64282 , 6 . 2489 . 54 . 8244 , 0) , 10 < x � 20 , 

( 1 , 0 , 1 , 1) , x > 20 . 

The solution contains a right moving strong detonation, a right

oving rarefaction wave, a right moving contact discontinuity and

 left moving rarefaction wave. The “exact” solution is obtained

ith N = 10 , 0 0 0 . The results at the final time T = 8 with N = 50

nd N = 300 (with 100/ ε) are plotted in Figs. 14 and 15 . It can be

een that the DIP method can capture different structures well,
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Fig. 23. Numerical results of Example 5.7 with k H 2 = 300 , T = 4 , N = 200 . 
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ven in the case with more complex waves and more serious

tiffness, while the direct WENO method still cannot obtain the

orrect location of detonation front. We notice that, the wrong

ropagation is out of computation region in the right boundary

nd we use an outflow boundary type here. 

xample 5.4. The last one-dimensional problem in this subsection

nvolves a collision with an oscillatory profile [4,5] . The parameters

or the Heaviside model are 

(γ , q 0 , 1 /ε, T ign ) = (1 . 2 , 50 , 10 0 0 , 3) . 

And the initial conditions are given as 

(ρ, u, p, z) = 

{
(1 . 79463 , 3 . 0151 , 21 . 53134 , 0) , x � 

π
2 
, 

(3 . 64282 , 6 . 2489 . 54 . 8244 , 0) , x > 

π
2 
. 

Similarly, the results of the direct WENO method with

 = 10 , 0 0 0 are taken as the “exact” solution. Fig. 16 gives

he comparison at t = π/ 2 with the mesh N = 300 . It shows that

he present method can not only capture the shocks well, but also

btains good resolution in smooth regions. 

xample 5.5. This is a two-dimensional detonation problem in

hich a moving detonation wave travels from left to right in a

ectangular channel [4,5,7] . In this example, the Arrhenius source

odel is used and the parameters γ , q 0 , K 0 , T ign are the same as

hose in Example 5.2 . The initial conditions are given as 

(ρ, u, v , p, z) = 

{
(ρb , u b , 0 , p b , 0) , x � ξ ( y ) , 

( 1 . 201 × 10 −3 , 0 , 0 , 8 . 321 × 10 5 , 1) , x > ξ (y ) , 
r

(y ) = 

{
0 . 004 , | y − 0 . 0025 | � 0 . 001 , 

0 . 005 − | y − 0 . 0025 | , | y − 0 . 0025 | < 0 . 001 . 

here ρb , u b and p b are also calculated by Eq. (5.3) . 

The “exact” solution is computed by the direct WENO method

ith N = 20 0 0 × 400 . Fig. 17 gives the density contours at the be-

inning and the final time ( t = 1 . 4 × 10 −7 ) with the fine mesh.

ig. 18 displays the density contours at time ( T = 0 , T 1 = 0 . 28 ×
0 −7 , T 2 = 0 . 7 × 10 −7 , T 3 = 1 . 12 × 10 −7 and T 4 = 1 . 4 × 10 −7 ) with

wo meshes of N = 150 × 50 and N = 600 × 200 . It can be seen

hat, the shock locations captured with different meshes agree

ell, and the flow structures are also resolved well even with

oarse mesh. The distributions of N = 600 × 200 on the line of y =
 . 0025 are also given in Fig. 19 , which shows that, the detonation

ave computed by the present method has a good agreement with

he reference solution, while the direct WENO method generates

nphysical results similar to those in one-dimensional examples. 

xample 5.6. This is another two-dimensional detonation wave

roblem taken from Ref. [6,45] . The following parameters are used

or modeling the Heaviside source term, 

(γ , q 0 , K 0 , T ign ) = (1 . 2 , 50 , 10 0 0 , 2) . 

he initial conditions are given as 

(ρ, u, v , p, z) = 

{
(1 . 79463 , 10 x/r, 10 y/r, 21 . 53134 , 0) , r � 10 , 

(1 , 0 , 0 , 1 , 1) , r > 10 , 

here 

 = 

√ 

x 2 + y 2 . 
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Fig. 24. Numerical results of Example 5.8 , T = 3 , N = 200 . 
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This problem represents a radial symmetrical detonation wave

moving in a rectangular region. The “exact” solution is computed

by the direct WENO method with a fine mesh of N = 10 0 0 × 500 .

The detonation front with the mesh N = 200 × 100 at time T 1 = 0 ,

T 2 = 1 , T 3 = 3 and T 4 = 5 are shown in Fig. 20 . We can see the

present method can capture the location of the detonation front

accurately. Fig. 21 compares the results at the time T = 5 . The

present method obtained the same discontinuity location for pres-

sure, density, temperature and mass fraction, but using the direct

WENO method, the mass fraction displays a different behavior

due to the stiffness, in addition, the distributions of pressure, den-

sity and temperature are also distorted compared to the “exact”

solution. 

5.3. Multi-species reactive Euler system 

For multi-species reactive Euler equations without heat con-

duction and viscosity, the decoupled species equations are in the

form of 

∂Z 

∂t 
+ u 

∂Z 

∂x 
= S e , 

where 

Z = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

z 1 
z 2 
. . . 

z ns −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, S e = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

s 1 
s 2 
. . . 

s ns −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 
b

ith the source terms given as 

 i = 

W i 

ρ

nr ∑ 

k =1 

(μ′′ 
i,k − μ′ 

i,k ) K k 

ns ∏ 

j 

(
ρz j 

W j 

)μ′ 
j,k 

, 

here nr is the number of reactions 

 ns = 1 −
ns −1 ∑ 

i =1 

z i . 

nd the pressure is given by 

p = (γ − 1) 
(

e − 1 

2 

ρu 

2 − q 1 ρz 1 − q 2 ρz 2 − · · · − q ns ρz ns 

)
. 

he temperature is defined as T = p/ρ . The reaction rate of the

rreversible chemical reaction K i determines the stiffness of the

roblem and is expressed in the Heaviside form 

 i (T ) = 

{
1 /εi , T � T ign , 

0 , T < T ign . 
i = 1 , 2 , · · · , nr 

he transformed third-order perturbation scheme is 

 

n +1 
i, j 

= z n i, j + 

1 

p̄ i 
�ts i (z n i, j ) , i = 1 , 2 , · · · , ns − 1 

nd 

p̄ i = 

1 + b i, 1 �t + b i, 2 �t 2 

1 − b i, 2 �t 
, 

here 

 i, 1 = a i, 1 −
a i, 2 

a i, 1 + 1 

, b i, 2 = 

a i, 2 
a i, 1 + 1 

, 
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Fig. 25. Numerical results of Example 5.9 , T = 3 , N = 200 . Top: the direct WENO method; bottom: the present method. 
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nd 

 i, 1 = −1 

2 

ns ∑ 

j=1 

∂s i 
∂z j 

s j /s i , 

 i, 2 = −1 

6 

ns ∑ 

j=1 

ns ∑ 

k =1 

(
∂ 2 s i 

∂ z j ∂ z k 
s j s k + 

∂s i 
∂z j 

∂s j 

∂z k 
s k 

)
/s i + a 2 i, 1 . 

In this paper, a numerical approximation is used 

∂s i 
∂z j 

= 

s i (z j + �z) − s i (z j ) 

�z 
, 

here �z is a small value compared to z j , and taken as 

z = 

{
z j / 100 , z j 	 = 0 , 

0 . 001 , z j = 0 . 

xample 5.7. The first multi-species example is taken from [3,7] ,

t uses a simple reaction model 

 H 2 + O 2 −→ 2 H 2 O . 

The parameters for the Heaviside source term are 

(γ , T ign , 1 /ε, q H 2 , q O 2 , q H 2 O , W H 2 , W O 2 , W H 2 O ) 

= (1 . 4 , 2 , 10 

6 , 100 , 0 , 0 , 2 , 32 , 18) . 

nd the initial values are given as following 

(ρ, u, p, z H 2 O , z O 2 , z H 2 O ) = 

{
(2 , 8 , 20 , 0 , 0 , 1) , 0 � x � 2 . 5 , 

(1 , 0 , 1 , 1 / 9 , 8 / 9 , 0) , 2 . 5 < x � 50 . 
he “exact” solution is computed by the direct WENO method

ith a fine mesh of N = 10 , 0 0 0 . The results of N = 200 at T = 4

re plotted in Fig. 22 . It shows that both the methods can capture

he correct propagation wave. However, if the value of q H 2 changes

rom 100 to 300, as used in [7] , the results plotted in Fig. 23 shows

hat the WENO method cannot maintain the correct propagation

peed, while the present method still performs well. 

xample 5.8. This example has been studied in [3] , its reaction

odel is 

H 4 + 2 O 2 −→ CO 2 + 2 H 2 O . 

he following parameters are used for modeling the Heaviside

ource term, 

(γ , T ign , 1 /ε, q CH 4 , q O 2 , q CO 2 , q H 2 O ) = (1 . 4 , 2 , 500 , 100 , 0 , 0) , 

(W CH 4 , W O 2 , W CO 2 , W H 2 O ) = (16 , 32 , 44 , 18) . 

he initial conditions are 

(ρ, u, p, z CH 4 , z O 2 , z CO 2 , z H 2 O ) 

= 

{
(2 , 10 , 40 , 0 . 325 , 0 , 0 , 0 . 675) , x � 2 . 5 , 

(1 , 0 , 1 , 0 . 1 , 0 . 4 , 0 . 6 , 0) , x > 2 . 5 . 

he solution of this problem consists of a detonation wave, fol-

owed by a contact discontinuity and a shock. The “exact” solution

s computed with a fine mesh of N = 10 , 0 0 0 . The results of

 = 200 at T = 3 are displayed in Fig. 24 . It can be seen that, the

olution obtained by the present method is in agreement well
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Fig. 26. Numerical results of Example 5.9 with T ign = 1 . 5 and q H 2 = −50 . T = 3 , N = 200 . 

Fig. 27. Density contours of Example 5.10 at T 1 = 0 , T 2 = 2 , T 3 = 4 , T 4 = 6 and T 5 = 8 . Left: the present method, N = 300 × 50 . Right: the direct WENO method, N = 1500 × 250 . 
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Fig. 28. Distribution on the line of y = 12 . 5 for Example 5.10 at T = 8 , N = 300 × 50 . 
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ith the reference solution, while a deviated propagation speed is

btained by the direct WENO method. 

xample 5.9. The last one-dimensional multi-species example is

aken from [3,7] . The reaction model consists of five species and

wo reactions 

 2 + O 2 −→ 2 OH , 2 OH + H 2 −→ 2 H 2 O . 

he species N 2 is used as a catalyst. All parameters given in

3] are 

(γ , T ign , 1 /ε1 , 1 /ε2 ) = (1 . 4 , 2 , 10 , 10 

5 , 2 × 10 

4 ) , 

(q H 2 , q O 2 , q OH , q H 2 O , q N 2 ) = (0 , 0 , −20 , −100 , 0) , 

(W H 2 , W O 2 , W OH , W H 2 O , W N 2 ) = (2 , 32 , 17 , 18 , 28) . 

nd the initial conditions are 

(ρ, u, p, z H 2 , z O 2 , z OH , z H 2 O , z N 2 ) 

= 

{
(2 , 10 , 40 , 0 , 0 , 0 . 17 , 0 . 63 , 0 . 2) , x � 0 . 5 , 

(1 , 0 , 1 , 0 . 08 , 0 . 72 , 0 , 0 , 0 . 2) , x > 0 . 5 . 

The computation domain is [0, 50]. The “exact” solution is ob-

ained with a fine mesh of N = 10 , 0 0 0 . Fig. 25 gives the results of

ressure, temperature, mass fractions of O 2 and OH. It shows that,

ith the parameters given by Ref. [3] , both the two methods can

et reasonable results, though the direct WENO method generates

scillation more clear than the present method. 

The study showed that [7] , with a smaller ignition temperature,

he first reaction equation is easier to be activated, and hence the

tiffness increased. Fig. 26 shows the results with T ign = 1 . 5 and

 H 2 
= −50 . For this case, the direct WENO method generates a

ifurcating wave pattern and a faster propagation speed similar to

he results in [7] , while the present method can capture all waves

ith correct speeds. 

xample 5.10. The last case is a two-dimensional example, which

as been studied in [3] . The source terms are calculated as those

n Example 5.9 . The initial conditions are 

(ρ, u, v , p, z H 2 , z O 2 , z OH , z H 2 O , z N 2 ) 

= 

{
(2 , 10 , 0 , 40 , 0 , 0 , 0 . 17 , 0 . 63 , 0 . 2) , x � ξ (y ) , 
(1 , 0 , 1 , 0 . 08 , 0 . 72 , 0 , 0 , 0 . 2) , x > ξ (y ) , 

here, 

(y ) = 

{
12 . 5 − | y − 12 . 5 | , | y − 12 . 5 | � 7 . 5 , 

5 , | y − 0 . 0025 | < 7 . 5 . 

The compute domain is [0, 150] × [0, 25]. Fig. 27 shows the evo-

ution of the detonation wave at time T = 0 , T = 2 , T = 4 , T = 6
1 2 3 4 
nd T 5 = 8 with a mesh N = 300 × 50 . In order to compare, the

esults simulated by the direct WENO method with a fine mesh

f N = 1500 × 250 are also plotted. This figure shows the present

ethod can resolve all the structures, even using a coarse mesh.

ig. 28 gives the numerical comparison on the line of y = 12 . 5 . The

esults obtained by the new method agree well with the “exact”

olution. 

. Conclusions 

The dual information preserving method is firstly proposed

o cure the numerical stiff problem generated in simulating the

eacting flows. First, the species mass fraction equations are

ecoupled from the reactive Euler equations, and then they are

urther fractionated into the convection step and reaction step.

he DIP method is actually proposed to deal with the species

onvection step. Two kinds of Lagrangian points are introduced,

ne is limited in each Eulerian cell, and another one is tracked

n the whole computation domain. Each kind of points has the

ame number of the Eulerian cells (grids). The information of the

ell-point in a cell can effectively restrict the incorrect reaction

ctivation possibly caused by the numerical dissipation, while the

nformation of the particle-point can help to preserve the sharp

hock front once the strong shock waves formed. Hence, by using

he DIP method, the spurious numerical propagation phenomenon

n stiff reacting flows is effectively eliminated. 

In this paper, the numerical perturbation (NP) methods are also

eveloped to solve the fractional reaction step (ODE equations).

he NP schemes show several advantages, such as no need of

teration, high order accuracy and large stable region. 

A series of numerical examples are used to demonstrate the

eliability and robustness of the new methods. 
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ppendix A. The algorithm of the DIP method for solving the 

onvection equations 

As preparations, at the beginning of the computation, 

http://dx.doi.org/10.13039/501100001809
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