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ABSTRACT ARTICLE HISTORY
Surface modification of laser cladding coating NiCoCrAlY was Received 22 August 2022
carried out by high-current pulsed electron beam irradiation. Accepted 10 March 2023

The microstructure of the NiCoCrAlY coating after irradiation
was studied by XRD and SEM. The results showed that the EEYWORD.S‘ b

. X . . X aser cladding; high-current
NiCoCrAlY claddl_ng Iay_er displays slip and a nanocrystalline pulsed electron beam
structure following high-current pulsed electron beam irradiation; microhardness;
irradiation. The high-density slip structure affects the wear
residual stress on the surface of the melted coating,
resulting in a change of the phase structure. The
mechanical properties of the NiCoCrAlY coating were
studied using a Vickers micro-hardness tester and a
straight-line-reciprocating dry sliding wear tester. The
results showed the average microhardness of the melted
coating increased by 9%, and the average wear coefficient
decreased by 33.7% after five electron beam irradiations.

1. Introduction

As a representative advanced manufacturing technology, surface treatment
technology has been widely studied and developed in recent years [1, 2].
Laser cladding technology, is also known as laser metal deposition technology,
is a new type of surface treatment [3, 4]. In laser cladding, the coupling between
the laser and substrate, laser and powder, and substrate and powder is carefully
designed and controlled. Although optimal process parameters can be deter-
mined experimentally, residual stress [5] or crystal precipitation [6] can
occur in the cladding coating owing to complex interactions between laser
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energy, powder, and substrate, thus causing surface cracks in the cladding
coating, which affects its mechanical properties [7].

As an advanced surface treatment using energetic beams [1, 8], high-current
pulsed electron beam (HCPEB) technology allows for greater control of the
injected energy. Using this technology, a high-temperature gradient can be
formed in the surface layer of the material to a depth of tens of microns, result-
ing in a rapid and strong deformation of the surface of the material. Many
researchers use HCPEB technology to modify metal surfaces to improve their
mechanical or corrosion resistance. Gao et al. [9] improved the microhardness
of TC4 alloy by regulating the energy density of the HCPEB. Wu et al. [10]
suggested that a reasonable number of HCPEB irradiations could improve
the corrosion resistance of AZ91 magnesium alloy. Gao et al. [11] formed a
bilayer hyperfine crystal structure in the surface layer of Al-20Si-5Mg using
HCPEB irradiation, which improved its mechanical properties.

In this study, a NiCoCrAlY coating prepared by laser cladding technology
was irradiated by a HCPEB. The evolution of the phase structure and micro-
structure of the NiCoCrAlY cladding layer was studied, and its hardness, fric-
tion, and wear properties after irradiation evaluated.

2. Experimental details

NiCoCrAlY metal powder purchased from the Hunan Metallurgical Institute
was dried in a vacuum oven at 120°C for 24 h before the laser cladding treat-
ment. A coating layer approximately 1.5 mm thick was then prepared on the
surface of a 20 x 20 x 10 mm 304 stainless steel sample using a German Laser-
line Gmbn fiber-coupled semiconductor laser. The chemical composition of the
NiCoCrAlY powder is shown in Table 1. The laser cladding process parameters
were a laser power of 1600 W, a scanning speed of 8 mm/s, and an overlap size
of 50%. The HCPEB equipment used was a Nadezhda-2 system. The main
experimental parameters were as follows: electron beam energy 27 keV,
energy density 4 J/cm?, pulse width f 1.5 um, pulse interval 10 s, and number
of pulses 5 and 15. Mechanical experiments were conducted to measure the
microhardness, friction, and wear properties before and after HCPEB
irradiation. A micro-Vickers hardness test was carried out on a JMHVS-
1000AT microhardness tester with a load of 200 g and a holding time of 5
s. The friction and wear properties at room temperature (298.15 K) were
measured using an HSR-2M high-speed reciprocating friction tester. The
experimental load was 10 N and the single experiment time was 30 min. The

Table 1. Chemical composition of NiCoCrAlY powder (wt.%).
Element Ni Co Cr Al Y 0

Content Bal. 22.92 17.08 12.81 0.49 0.08
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friction pair material was a Si3N, ceramic ball with a diameter of 4 mm. The
phase composition of the NiCoCrAlY laser cladding layer before and after
HCPEB irradiation was analysed by X-ray diffraction (XRD) using a Cu Ka
X-ray diffractometer. The morphologies of the worn surfaces of the coatings
were investigated by scanning electron microscopy.

3. Results and discussion

Figure 1 shows the phase composition changes of the NiCoCrAlY coating
before and after HCPEB irradiation. It can be seen from the figure that the
HCPEB irradiation did not affect the phase composition. The NiCoCrAlY
coating before and after irradiation was composed of y/y” and -NiAl phases
with a face-centered cubic structure. However, with increasing irradiation
time, the diffraction peaks moved to high angles and gradually broadened.
According to the Bragg equation (formula 1) and the Scherrer formula
(formula 2)

d = nA/2sin6 (1)
Dpy = kA/Bcosbpy (2)

it can be seen that the reason for this is refinement of the grains of the NiCo-
CrAlY fusion layer. When X-rays are incident on the small crystals, the diffrac-
tion line becomes dispersed and widens. Combined with the work of Zou et al.
[12] and Chai et al. [13], it can be seen that thermal stress and thermal fields
formed on the surface of the metal fusion blanket owing to HCPEB irradiation,
resulting in rapid heating and cooling. The accompanying stress resulted in a
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Figure 1. XRD patterns of NiCoCrAlY cladding layers subjected to HCPEB.
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solidification texture on the surface of the fusion blanket and macroscopically
affected the blanket’s mechanical properties.

Figure 2a-d shows the morphologies of the NiCoCrAlY coating surface
before and after HCPEB. Figure 2a shows a micrograph of the original NiCo-
CrAlY fused layer after polishing. It can be seen that the polished fused layer
contained many pores and inclusions. Figure 2b-c shows the surface mor-
phology after 5 and 15 pulses of HCPEB irradiation, respectively. After 5
pulses of irradiation, many second-phase elements had escaped from the
melted layer surface. The high-temperature gradient generated by the
HCPEB led to the immediate evaporation of defects and inclusions from the
melted layer surface. The evaporated impurities then condensed on the
surface of the irradiated layer on account of rapid cooling. During the evapor-
ation-recondensation process under 5 pulses of irradiation, the evaporation
mode dominated [14], resulting in a morphology characteristics of the
melted layer shown in Figure 2b. Upon increasing the number of pulses to
15 (Figure 2c), the multiple rapid cooling-solidification cycles further
purified the melted layer surface. The multiple pulses increased the storage
entropy of the melted layer surface and the subsurface, which induced a stron-
ger current and further evaporation. In this case, most of the impurities in the
melted layer and the redeposited layer were removed, such that the NiCoCrAlY
irradiated layer after 15 pulses was cleaner.

It is worth noting that Figure 2b-c shows different numbers and sizes of
melted peak and valley structures, with the number of crater structures decreas-
ing with increasing pulse time. According to references [15-17], these

(a) (b)

100pm

Figure 2. SEM images of (a) initial NiCoCrAlY alloy surface and (b—c) NiCoCrAlY alloy surfaces
after (b) 5 and (c) 15 pulses. (d) Typical crater map after irradiation. (e—f) Typical grains and slip
lines after 5 pulses.
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characteristics arise from a melt-blown mechanism. That is, under the influence
of pulse irradiation, the coating begins to melt from the subsurface, resulting in
the formation of small droplets at the grain boundaries. With further
irradiation, and thus increasing temperature, the droplets continue to grow.
Some erupt under the action of interfacial stress, whereas some continue to
grow until the irradiation is completed. At this time, the small droplets make
contract owing to the cooling effect, forming a funnel-shaped crater mor-
phology. The number and morphology of the craters are related to the
number of irradiation cycles. In general, the more the number of pulse
irradiation times, the higher the number of small droplets are sprayed and
purified, and the number of droplets without spraying grow with heating time.

Figure 3a-b shows typical SEM images of the melted layer after five HCPEB
cycles. There are different angles between the sliding lines and numerous nano-
crystalline structures form around the sliding lines [14, 18]. The main reason
for these results is boiling in the evaporation mode. Many small bubbles dis-
solve, evaporate, and are deposited from the liquid melt, a process that is
repeated until a more stable condensation nucleus is formed at the end of
irradiation. Many nanoscale deposited particles are formed during the ultrafast
cooling process. After 15 irradiation cycles, the grain size increased signifi-
cantly, as shown in Figure 3c-d. This is because the cooling of the cladding
layer after HCPEB irradiation occurs mainly through heat conduction of the
matrix. With an increase in the number of irradiation cycles, the heat conduc-
tion rate of the matrix decreases, resulting in a decrease in the supercooling
degree of the molten layer front and grain growth.

Figure 4 shows the microhardness of the NiCoCrAlY fusion layer before and
after HCPEB irradiation. It can be seen that the surface microhardness of the

(a) (b

Figure 3. SEM images of typical grains and slip lines after (a-b) 5 and (c-d) 15 pulses.
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Figure 4. Microhardness of NiCoCrAlY cladding layer after HCPEB irradiation.

coating after irradiation was higher than that of the original coating. However,
the hardness is not linearly correlated with the number of pulsed electron beam
irradiations. The average microhardness of the cladding layer surface after 5
pulse treatments is the largest, reaching 216 HV,.

The reason for the increase in microhardness of the NiCoCrAlY coating layer
after HCPEB irradiation is that irradiation causes rapid local heating and
melting of the sample surface in a nearly adiabatic manner, followed by rapid
solidification caused by the self-excited cooling of the matrix itself. During the
cooling and solidification process, the irradiation layer changes from a liquid
to a solid phase to form nanocrystals; that is, fine-grain strengthening occurs
during pulse irradiation, which affects the microhardness of the coating
surface. A large number of nanocrystallites appear in the coating after 5 pulse
irradiations (see Figure 3). Thus, the microhardness of the coating after 5
pulse irradiations is the highest. The difference in hardness behaviour
between coatings is closely related to the microstructure and phase composition
of the coatings [19]. In an MCrAlY superalloy, the microhardness of the f phase
is higher than that of the y phase. After HCPEB irradiation, the elements on the
coating surface are further homogenised and Al is more likely to combine with
Ni to form an aluminum-rich 3-NiAl phase. Therefore, the microhardness of the
current coating was further strengthened after irradiation [20].

Figure 5a-b shows the variations of the wear coefficient and amount of wear
of the NiCoCrAlY coating before and after HCPEB irradiation. It can be seen
from Figure 5a that the friction coeflicient of the NiCoCrAlY coating tended to
stabilise 2 min after the friction and wear experiment, indicating that the
coating had good moulding quality and uniform surface and internal com-
ponents. The friction, the wear coefficient and the amount of wear of the
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Figure 5. (a) Wear coefficient and (b) wear amount before and after HCPEB irradiation.

coating surface irradiated by HCPEB were lall ower than those of the original
coating, indicating that HCPEB irradiation improved the friction and wear
properties of the coating. The average friction coeflicient of the original
fusion layer was 1.04, whereas it was 0.70 after 5 pulses of irradiation and
0.89 after 15 pulses. Compared with the original coating, the wear volume
decreased by 66.9% after 5 pulses of irradiation, indicating that the wear resist-
ance of the NiCoCrAlY coating was relatively good after 5 pulses of irradiation.

Figure 6. The worn surface morphologies of the substrate and HCPEB surface: (a—b) original, (c—
d) after 5 pulses, and (e—f) after 15 pulses.
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Figure 6 shows a SEM image of the NiCoCrAlY coating after HCPEB
irradiation showing the result of friction and wear testing. It can be seen in
the figure that the coating after friction and wear testing consists mainly of
furrows and debris. It is worth noting that the surface wear morphology of
the coating irradiated by HCPEB after 5 pulses is mainly furrow-like because
the surface wear resistance of the coating after 5 pulses of irradiation was
good and thus not easy to deform. The main wear mechanism of the coating
is abrasive wear [21]. Compared to the coating after 5 pulses, the original NiCo-
CrAlY coating had more debris on the worn surface, which led to a certain
amount of spalling on the worn surface. The main reason for the difference
in the wear morphology between the two coatings is that there were pores on
the surface of the original coating owing to the laser-cladding coating. The frac-
ture of pores leads to the change of the surface stress of the coating, which
assists the coating surface to fall off.

At room temperature, the main wear mechanism of the NiCoCrAlY
coating was a combination of abrasive wear and adhesive wear. At the
edge of the wear scar, plastic deformation occurred on the coating
surface under the action of friction. At the same time, high-speed recipro-
cating wear generated heat on the worn surface by friction, resulting in a
slight oxidation reaction on the coating surface. The surface oxidation of
the NiCoCrAlY coating generated protective oxides such as Al,O; and
Cr,0;. The adhesion between the oxides and the NiCoCrAlY coating was
relatively high, but the formation and removal of oxides were caused by
mechanical action during friction and wear. Therefore, layering of the
coating occurs in some regions as can be seen in Figure 6. It is worth
noting that, compared with the melted coating after 5 pulses of irradiation,
there was more delamination in the melted coating after 15 pulses. There
are two possible reasons for this. First, owing to multiple irradiations, the
surface remelted many times. Compared with the 5 pulses, the grains of
the coating after 15 pulses of irradiation grew into coarse grains that
were prone to brittle cracking during the friction and wear process, result-
ing in significant spalling and a large amount of debris. The second reason
is that multiple re-melting led to a more uniform formation of elements on
the coating surface and, thereby, various oxides were formed earlier in the
wear process. The high viscosity of oxides led to delamination of the coating
during the wear process.

4, Conclusions

(1) A residual stress in a NiCoCrAlY fusion layer was induced by high-current
pulsed electron beam irradiation. The diffraction peak of the fusion layer
shifted to a higher angle after irradiation.
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(2) Slip lines and a nanocrystalline structure appeared on the surface of the
fusion layer as a consequence of the high-current pulsed electron beam
irradiation.

(3) The mechanical properties of the fusion layer after irradiation were greatly
improved. The average microhardness of the melted coating increased by
9%, and the average wear coefficient decreased by 33.7% after 5 irradiations.

(4) Wear features of the NiCoCrAlY coating occurred during high-current
pulsed electron beam irradiation owing to a combination of abrasive and
adhesive wear.
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