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A three dimensional microbial continuous culture model with a restrained microbial growth rate

is studied in this paper. Two types of dilution rates are considered to investigate the dynamic

behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are

detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation.

When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one

and period-two are given by researching the Poincar�e map, corresponding to different bifurcation

cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-

Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or

disappear and even change their stability, when the Poincar�e map of the forced system undergoes

Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a

cascade of period doublings and some phase portraits are given at last. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.5000152]

The microbiological fermentation technique is widely

applied in many fields for its economic importance. It is

also investigated due to the complex behaviours observed

during the process. We study bifurcations of the microbial

continuous culture model with two types of dilution rates:

the steady dilution rate and periodically forced dilution

rate. For the steady dilution rate, we prove that the model

undergoes fold bifurcation and Hopf bifurcation. When the

dilution rate is periodically forced, we find that the bifurca-

tions of the equilibria of the unforced system can be

extended to the forced system as bifurcations of periodic

solutions. Furthermore, periodic perturbation can give rise

to complex dynamics, such as quasiperiodic solutions, peri-

odic solutions of various periods, and chaos. In addition,

the various periodic solutions can well explain the oscilla-

tion phenomena observed in laboratory experiments.

I. INTRODUCTION

The microbiological fermentation technique, as a mature

and practical technology, is used to produce useful materials

such as industrial raw materials and pharmaceutical prod-

ucts. Among various microbial production methods, the

microbial continuous culture of glycerol to 1, 3-propanediol

(1,3-PD) is particularly attractive to industry, because of

renewable feedback and potential use of 1, 3-propanediol. It

is a complicated biochemical reaction process, in which the

substrate and product are transported or diffused through the

cell membrane, and a series of sequential and branched reac-

tion are carried out by catalysis of enzymes in cells.1

Many experiments and numerical simulations have been

done for microbial fermentations, see Refs. 2–5 and the

references therein. Based on the experimental results in Ref. 5,

the authors established a parameter identification model6 and

then discussed the equilibria and their stability.7 However,

some complex behaviours, such as oscillation phenomena4,8 in

a microbial continuous culture process, are not explained in

Refs. 6 and 7. To better understand the phenomena, we study

the complex dynamics of continuous culture by using the

bifurcation theory and continuation technique for the nonau-

tonomous system. For simplicity, by-products in a continuous

culture process such as ethyl alcohol and acetic acid are not

considered. Therefore, the model in Ref. 6 can be rewritten as

dx

dt
¼ x l� Dð Þ;

dy

dt
¼ D a0 � yð Þ � x ns þ

l
Ys

� �
;

dz

dt
¼ x np þ Yplð Þ � Dz;

8>>>>>>><
>>>>>>>:

(1)

where x, y, and z are the concentration of the microorganism

(biomass), glycerol, and 1,3-PD in the culture container, respec-

tively. The coefficients in model (1) are illustrated in Table I.

In (1), the growth rate l is a function of the variables y
and z, which plays an important role in the process for deter-

mining the output of the product. There are several types of

growth rates for microorganism and cultural conditions, such

as Contios type9 for limiting nutrient conditions and

Andrews type10 for the high concentration of the initial sub-

strate. Considering that the excessively high concentration of

the glycerol and 1,3-PD restrains the growth of the microor-

ganism, the growth rate can be expressed as

l ¼ lmax

y

yþ K
1� y

c

� �
1� z

d

� �
; (2)

a)Author to whom correspondence should be addressed: renjl@zzu.edu.cn
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where c and d are the critical values of the concentration of

the substrate and product, respectively. The definitions of

lmax and K are also given in Table I. Clearly, if y¼ c or

z¼ d, then l¼ 0. That is to say, the microorganism will stop

growing when the concentration of the substrate or product

reaches the critical value.

It is found from Refs. 11 and 12 that the substrate con-

centration has a great influence on the microbial growth rate.

The microorganism grows very slowly not only at a low sub-

strate concentration but also at a high substrate concentra-

tion. If the substrate is added with a steady dilution rate,

where D is constant, the concentration of the substrate will

be excessively high. The excess substrate will limit the

growth of the microorganism. A feasible method towards the

problem is to add the substrate periodically. Due to this rea-

son, we consider the periodically forced dilution rate in sys-

tem (1), i.e.,

DðtÞ ¼ rð1þ e sinð2ptÞÞ: (3)

In this paper, we study the microbial continuous culture

model with the restrained growth rate (2) and periodically

forced dilution rate (3). Notice that the forced system is non-

autonomous, which makes plenty of results on the autono-

mous system no longer available. In recent years, few

pioneering works have been done with periodically forced

systems, such as a predator-prey model with seasonal prey

harvesting,13 NF-kB oscillations with a circadian oscilla-

tion14 and a seasonally forced predator-prey system with

generalized Holling type IV functional response.15 These

studies all focus on the physical model or population dynam-

ics, and the dimension of these models is two. Here, we

study the microbial continuous culture model with the peri-

odically forced dilution rate, and the dimension is three,

which is novel and more intricate.

The rest of this paper is organized as follows. In Sec. II,

we discuss the equilibria of the system. In Sec. III, we ana-

lyse the saddle-node bifurcation, Hopf bifurcation, and its

direction. In Sec. IV, we investigate the periodically forced

system and display some bifurcation diagrams. Section V is

the discussion of the paper.

II. EXISTENCE AND TYPES OF EQUILIBRIA

From expression (2), we have 0< y< c and 0< z< d for

l > 0. Following this, we can get

@l
@y
¼ lmax

cK � y2 � 2yK

c yþ Kð Þ2
1� z

d

� �
;

@l
@z
¼ y2 � cy

yþ K

lmax

cd
:

Let y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Kc
p

� K, where y0 is the result from impos-

ing @l/@y¼ 0. Then, we obtain the following results:

• If y 2 (0, y0), then @l
@y > 0. The growth rate of the microor-

ganism monotonically increases with y. If y 2 (y0, c), then
@l
@y < 0. The growth rate is restrained and monotonically

decreases with y.
• @l
@z < 0 for all z 2 (0, d). This means that the growth rate

will decrease with the increase in the concentration of 1,3-

PD.

To verify the above results, one can see the trend of

growth rate l from Fig. 1. It is easy to find that system (1)

has a trivial equilibrium E0(0, a0, 0). For any nontrivial equi-

librium E(x, y, z), it satisfies

x l� Dð Þ ¼ 0;

D a0 � yð Þ � x ns þ
l
Ys

� �
¼ 0;

x np þ Yplð Þ � Dz ¼ 0:

8>>><
>>>:

(4)

To get the solution of (4), we should solve a cubic polyno-

mial equation. It is obvious from (4) that all equilibria lie on

the line

L0 :

z ¼ a0 � yð Þ
np þ YpD

ns þ
D

Ys

;

x ¼ a0 � yð Þ
YsD

Ysns þ D
:

8>>>>><
>>>>>:

(5)

Noticing that x> 0, z> 0, then all equilibria of system (1)

should be in the region

TABLE I. The mean of the coefficients in the system.

x Biomass concentration (mmol l�1)

y Extracellular glycerol concentration in the reactor (mmol l�1)

z Intracellular 1,3-propanediol concentration in the reactor (mmol l�1)

D Dilution rate (h�1)

l Specific growth rate (h�1)

lmax Maximum specific growth rate (h�1)

K Monod saturation constant for the substrate (mmol l�1)

c Maximum residual substrate concentration (mmol l�1)

d Maximum product concentration (mmol l�1)

a0 Glycerol concentration in feed medium (mmol l�1)

ns Maintenance term of the substrate (mmol g�1 h�1)

np Product formation under substrate-limited Condition (mmolg�1 h�1)

Ys Maximum growth yield (mmol g�1)

Yp Maximum product yield (mmol g�1)

FIG. 1. The diagram of the function l(y, z) for the case lmax¼ 30, c¼ 6,

d¼ 5, and K¼ 0.1.
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R0 ¼ fðx; y; zÞ 2 R3jx > 0; 0 < y < a0; 0 < z < dg:

Thus, we consider orbits of the model in R0.

Substituting (5) in the first equation of (4), we obtain a

cubic polynomial function with y

FðyÞ :¼ y3 þ x2y2 þ x1yþ x0; (6)

where

x0 ¼
DcdK ns þ

D

Ys

� �
lm np þ YpDð Þ

;

x1 ¼ ca0 þ
Dcd ns þ

D

Ys

� �
lm np þ YpDð Þ

�
cd ns þ

D

Ys

� �
np þ YpD

;

x2 ¼ d
ns þ

D

Ys

np þ YpD
� c� a0

0
B@

1
CA:

Clearly, x0> 0. The number of equilibria is determined

by the number of real roots of F(y)¼ 0 in the interval I0

:¼ (0, a0). Derivative

F0ðyÞ ¼ 3y2 þ 2x2yþ x1:

Denote D the discriminant of F0ðyÞ ¼ 0 with y, then

D ¼ 4x2
2 � 12x1. If D � 0, we know that F0ðyÞ ¼ 0 has two

roots

n6 ¼
�2x26

ffiffiffiffi
D
p

6
: (7)

Then, we get

Lemma 1. System (1) has one trivial equilibrium E0(0,

a0, 0) and at most two nontrivial equilibria in R0.

(i) System (1) has two nontrivial equilibria in R0 if and
only if D > 0, 0 < nþ < a0, F(nþ) < 0, and F(a0) > 0;

(ii) System (1) has only one nontrivial equilibrium in R0 if
D > 0, 0 < nþ < a0, and F(nþ) ¼ 0, or F(a0) < 0.

Proof. If y¼ a0, we know that the system has a trivial

equilibrium E0 from (5). Clearly, equation F(y)¼ 0 has at

most three real solutions because deg(F)¼ 3. Just suppose

that equation E(y)¼ 0 has three real solutions y1, y2, and y3,

without loss of generality, we assume y1< y2< y3. Then,

F(y) can be written as

FðyÞ ¼ ðy� y1Þðy� y2Þðy� y3Þ

and we have

Fð0Þ ¼ x0 ¼ �y1y2y3: (8)

In view of x0> 0, we obtain that equation F(y)¼ 0 has at

least one negative root, let y1< 0, as shown in Fig. 2(a).

Therefore, F(y)¼ 0 has at most two positive real roots in I0.

In other words, system (1) has at most two nontrivial equilib-

ria in region R0.

If system (1) has two nontrivial equilibria in R0, then

F(y)¼ 0 has two different real roots y2< y3 in I0. That is to

say, D> 0, one can also find 0< y2< nþ< y3< a0.

According to the property of continuous function, we get

F(nþ)< 0, F(a0)> 0, just as the statement (i), see Fig. 2(c).

For statement (ii), if F(a0)< 0, then F(y)¼ 0 must have

a root in I0 for F(0)¼x0> 0. System (1) has only one non-

trivial equilibrium in R0, see Fig. 2(b).

If nþ< a0 and F(nþ)¼ 0, then nþ¼ y2¼ y3. Therefore,

F¼ 0 has the two same positive solutions. In other words,

system (1) has only one equilibrium in R0, as shown in

Fig. 2(d).

Remark 1. We denote the nontrivial equilibrium as
Eð�x; �y; �zÞ. Let E1 and E2 be the two different nontrivial equi-
libria whenever they exit, whose corresponding y component

satisfies 0< y1< y2< a0. For simplicity, we denote ly ¼ @l
@y ;

lz ¼ @l
@z ; �ly ¼ @l

@y jEð�x;�y;�zÞ; �lz ¼ @l
@z jEð�x;�y;�zÞ, and �l ¼ lð�x; �y; �zÞ.

Theorem 1. For system (1), the trivial equilibrium E0(0,
a0, 0) is

(i) a stable node if ! < 0;

(ii) a hyperbolic saddle if ! > 0;

(iii) a saddle-node if ! ¼ 0;

where ! ¼ lmaxa0

kþa0
1� a0

c

� �
� D.

Proof. For the trivial equilibrium E0, we know x¼ 0 is

an invariant of the system, and the trivial steady state resides

on this plane. Plugging x¼ 0 into the last two equation of

system (1), we obtain a linear system with the corresponding

eigenvalues k1¼ k2¼ –D. From the first equation of system

(1), we find that the third eigenvalue is

k3 ¼ ! ¼ lmaxa0

k þ a0

1� a0

c

� �
� D:

If !< 0, E0 is an attracting node because it has three

negative eigenvalues. If !> 0, E0 is a hyperbolic saddle. If

!¼ 0, then –D, –D, and 0 are the three eigenvalues of the

system at E0. Therefore, E0 is a saddle-node and we need to

calculate the one dimensional center manifold.

FIG. 2. Zeros of F.
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To obtain the one dimensional center manifold, some

necessary transformation is done by us. We consider a poly-

nomial system which has yþK> 0 the same orbits as system

(1). By a new time transformation dt¼ (yþK)ds system (1)

is topologically equivalent to

_x ¼ x
lmax

cd
c� yð Þ d � zð Þy� D yþ Kð Þ

� �
;

_y ¼ D a0 � yð Þ yþ Kð Þ � x ns yþ Kð Þ
��

þ lmax

Yscd
c� yð Þ d � zð Þy

��
;

_z ¼ x np yþ Kð Þ þ Yp
lmax

cd
c� yð Þ d � zð Þy

� �
�Dz yþ Kð Þ:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(9)

Instead of discussing the original system, we study the

system (9) in this part. By the straightforward calculation,

one can find that �V1; �V2; �V3 are three eigenvectors of sys-

tem (9)

�V 1 ¼

1

U
D K þ a0ð Þ

W
D K þ a0ð Þ

0
BBBBBB@

1
CCCCCCA
; �V 2 ¼

0

1

0

0
BB@

1
CCA; �V3 ¼

0

0

1

0
BB@

1
CCA;

where

U ¼ �Kns � ns þ
lmax

Ys

� �
a0 þ

lmax

cYs
a2

0;

W ¼ Knp þ np þ Yplmaxð Þa0 �
Yp

c
lmaxa2

0:

We derive the normal form on the one dimensional cen-

ter manifold as follows. The translation

~x ¼ x� 0; ~y ¼ y� a0; ~z ¼ z� 0;

can bring E0 to the origin. Let

~x

~y

~z

0
B@

1
CA ¼ T

X

Y

Z

0
B@

1
CA; T ¼ �V1; �V2; �V3½ �:

Under the transformation T which diagonalizes the Jacobian

J(E0), system (9) becomes

_X ¼ l200X2 þ l110XY þ l101XZ þ oðjX; Y; Zj2Þ;
_Y ¼ �DðK þ a0ÞY þ m200X2 þ m110XY

þm101XZ þ oðjX; Y; Zj2Þ;
_Z ¼ �DðK þ a0ÞZ þ n200X2 þ n110XY

þn101XZ þ n011YZ þ oðjX; Y; Zj2Þ;

8>>>>>>>><
>>>>>>>>:

where

l200 ¼ lmax�D� 2

c
lmaxa0

� �
U

D Kþ a0ð Þ

þ
Wlmaxa0 a0� cð Þ

Dcd Kþ a0ð Þ ;

m200 ¼
�W

D Kþ a0ð Þ
lmaxa0 a0� cð Þ

Yscd
þ nsþ

clmax� 2lmaxa0

cYs

� ��

þ U
Kþ a0

�
;

n200 ¼ npþYplmax�
2

c
Ypa0

� �
U

D Kþ a0ð Þ�
UW

D Kþ a0ð Þ2

þ
WYplmaxa0 a0� cð Þ

Dcd Kþ a0ð Þ :

Here, we do not present other lijk, mijk, and nijk. In the follow-

ing, we give the form of one dimensional center manifold.

For X �0, there exist a center manifold

Y ¼ m200

D K þ a0ð ÞX
2 þ o X2ð Þ; Z ¼ n200

D K þ a0ð ÞX
2 þ o X2ð Þ:

(10)

System (9) reduced on the one dimensional center manifold

(10) is given by

_X ¼ l200X2 þ oðX2Þ:

Hence, if l200 6¼ 0, E0 is a saddle-node of codimension 1.

Theorem 2. For system (1), let Eð�x; �y; �zÞ be a nontrivial
equilibrium and Cð�yÞ 6¼ 0, then E is a hyperbolic saddle if
Hð�yÞ < 0, it is anti-saddle if Hð�yÞ > 0, where

C �yð Þ ¼ Dþ
�xly

Ys
� �xYplz;

H �yð Þ ¼
�xly nsYs þ Dð Þ

Ys
� np þ DYpð Þ�xlz:

Proof. The Jacobian at E of system (1) is given by

J Eð Þ ¼

0 �xly �xlz

� ns þ
D

Ys

� �
�D� �x

Ys
ly � �x

Ys
lz

np þ DYp �xYply �xYplz � D

2
66664

3
77775:

Then, we get the characteristic matrix

A Eð Þ ¼

k ��xly ��xlz

k
Ys
þ ns þ

D

Ys

� �
kþ D 0

�Ypk� np � DYp 0 kþ D

2
66664

3
77775:

By the straightforward calculation, the characteristic equa-

tion of A(E) has the form

ðkþ DÞðk2 þ Cð�yÞkþHð�yÞÞ ¼ 0: (11)

One can verify k¼ –D is always an eigenvalue, the other two

eigenvalues of J(E) are roots of

083124-4 J. Ren and Q. Yuan Chaos 27, 083124 (2017)



k2 þ Cð�yÞkþHð�yÞ ¼ 0:

Hence, E is a hyperbolic saddle if Hð�yÞ < 0 and E is an anti-

saddle if Hð�yÞ > 0.

III. BIFURCATIONS OF UNFORCED SYSTEM

A. Bifurcations analysis

We study saddle-node bifurcation and Hopf bifurcation

of the nontrivial equilibria in this section.

Theorem 3. Assume Cð�yÞ 6¼ 0. If Fð�yÞ ¼ F0ð�yÞ ¼ 0;
Hð�yÞ ¼ 0, and ~l200 6¼ 0, the nontrivial equilibrium of multi-
plicity 2 is a saddle-node of codimension 1, and system (1)

undergoes a saddle-node bifurcation, where

~l200 ¼
ns

D
þ 1

Ys

� �
Dþ np þ DYp � Ypnp �

n2
p

D
þ Ysns þ D

Y2
s

 !
:

Proof. If Fð�yÞ ¼ F0ð�yÞ ¼ 0, from (ii) of lemma1, two non-

trivial equilibria E2 and E3 coalesce at one point E. That is to

say, system (1) has one positive equilibrium.

We still study the system (9) in the following. If

Hð�yÞ ¼ 0, from (11) one can find that 0;�Cð�yÞ, and –D are

the three eigenvalues of J(E) with associated eigenvectors
�V1; �V2, and �V 3, where

�V1 ¼

1

� ns

D
� 1

Ys

np

D
þ Yp

0
BBBBB@

1
CCCCCA; �V2 ¼

1

ns

C �yð Þ � D
� 1

Ys

Yp þ
np

C �yð Þ � D

0
BBBBBB@

1
CCCCCCA
;

�V3 ¼

0

1

�
ly

lz

0
BBBB@

1
CCCCA:

By using translation x̂ ¼ x� �x; ŷ ¼ y� �y, and ẑ ¼ z ��z,

we can bring E to the origin. Let

x̂

ŷ

ẑ

0
B@

1
CA ¼ �T

X

Y

Z

0
B@

1
CA; �T ¼ �V1; �V2; �V3½ �:

Under the translation �T , we diagonalize the linear part of

system (9) and it becomes

_X ¼ ~l200X2 þ ~l110XY þ ~l101XZ þ ~l011YZ þ oðjX; Y; Zj2Þ;

_Y ¼ �Cð�yÞY þ
Xiþjþk¼2

i;j;k2N

~mijkXiYjZk þ oðjX; Y; Zj2Þ;

_Z ¼ �DZ þ
Xiþjþk¼2

i;j;k2N

~nijkXiYjZk þ oðjX; Y; Zj2Þ:

8>>>>>>>>><
>>>>>>>>>:

Here, we choose not to present the form of ~lijk; ~mijk, and ~nijk.

For X �0, there exists a center manifold

Y ¼ �m200

C �yð Þ
X2 þ o X2ð Þ; Z ¼ �n200

D
X2 þ o X2ð Þ: (12)

System (1) reduced on the one dimension center manifold

(12) is given by

_X ¼ ~l200X2 þ oðX2Þ:

Clearly, if Fð�yÞ ¼ F0ð�yÞ ¼ 0 and ~l200 6¼ 0, immediately we

know that the system on the center manifold is topologically

equivalent to

_X ¼ rX2 þ oðX2Þ;

so E is a saddle-node of codimension 1.

Theorem 4. A Hopf bifurcation occurs at Eð�x; �y; �zÞ, if
Fð�yÞ ¼ 0; Cð�yÞ ¼ 0, and Hð�yÞ > 0.

Proof. From (11), one can find that the eigenvalues of

J(E) of system (9) have the form

k1 ¼ �D; k2;3 ¼ �
C �yð Þ

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 �yð Þ � 4H �yð Þ

q
2

:

Following, we try to verify the transversality condition. Let

v ¼ � Cð�yÞ
2

be the real part of the complex eigenvalues of the

characteristic equation.

Consider D as the bifurcation parameter and fix all

the other parameters, then suppose there exists D¼D0 such

that

v ¼
�x Yp�lz �

�ly

Ys

� �
� D0

2
¼ 0; H �y D0ð Þð Þ > 0:

Therefore, system (1) has the eigenvalues

k2;3 ¼ 6i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð�yðD0ÞÞ

p
;

where i represents an imaginary unit. The transversality con-

dition can be verified as

dv
dD
¼ � 1

2
C0 �y D0ð Þð Þ ¼ � 1

2
6¼ 0:

Hence, system (9) undergoes Hopf bifurcation.

In order to consider the stability and direction of bifur-

cating periodic solutions, we should compute the first

Lyapunov coefficient l1 of the Hopf Bifurcation.

We still study the topologically equivalent system (9).

Without loss of generality, assume system (9) has a nontriv-

ial equilibrium E ¼ ð�x; �y; �zÞ; �ly, and �lz have the same mean-

ing as those in Remark 1.

The Jacobian at equilibrium Eð�x; �y; �zÞ is given by

JðEÞ ¼ Jð1Þ; Jð2Þ; Jð3Þ½ �;

where

083124-5 J. Ren and Q. Yuan Chaos 27, 083124 (2017)



J 1ð Þ ¼

0

�ns �y þ Kð Þ þ �l
Ys

np �y þ Kð Þ þ Yp�l

0
BBB@

1
CCCA;

J 2ð Þ ¼

�x �ly � D
� �

�D 2�y þ K � a0ð Þ � �x

Ys
�ly � �xns

� �x

Ys
�lz

0
BBBBB@

1
CCCCCA;

J 3ð Þ ¼

�x�lz

� �x

Ys
�lz

�xYp�lz � D �y þ Kð Þ

0
BBB@

1
CCCA:

One can verify that k¼ –D(Kþ a0) is always an eigen-

value, and the other two eigenvalues of J(E) are roots of

k2 � T ð�yÞkþ Sð�yÞ ¼ 0;

where

T ¼ �xYp�lz �
�x

Ys
�ly � D
� �� D K þ a0ð Þ;

S ¼ �x �y þ Kð Þ ns þ
D

Ys

� �
�ly � D
� �� �lz np þ YpDð Þ

� �
:

To compute the first Lyapunov coefficient, we fix the param-

eter D at its critical point D0. Then, system (9) satisfies

T ð�yðD0ÞÞ ¼ 0; Sð�yðD0ÞÞ > 0:

One can verify that J(E) has three eigenvalues k1 ¼ �D0ðK
þa0Þ; k2;3 ¼ 6i

ffiffiffiffi
S
p

: Obviously, by using the following vari-

able transformation

e1 ¼ x� �x;

e2 ¼ y� �y;

e3 ¼ z� �z:

8><
>:

we can move the equilibrium to the origin. Therefore, system

(9) becomes

de1

ds
¼ A11e1 þ A12e2 þ A13e3 þ B11e1e2 þ B12e1e3

þB13e2e3 þ B14e2
2 þ C11e1e2

2 þ C12e1e2e3

þC13e2
2e3 þ D11e1e2

2e3;

de2

ds
¼ A21e1 þ A22e2 þ A23e3 þ B21e1e2 þ B22e1e3

þB23e2e3 þ B24e2
2 þ C21e1e2

2 þ C22e1e2e3

þC23e2
2e3 þ D21e1e2

2e3;

de3

ds
¼ A31e1 þ A32e2 þ A33e3 þ B31e1e2 þ B32e1e3

þB33e2e3 þ B34e2
2 þ C31e1e2

2 þ C32e1e2e3

þC33e2
2e3 þ D31e1e2

2e3;

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(13)

where the coefficients of system (13) are given as follows:

A11 ¼ �D0K þ lmax �D0ð Þ�y � lmax

�y2

c
� �y2�z

cd
þ �y�z

d

� �
; A12 ¼ lmax �D0ð Þ�x � lmax

2�x�y

c
� 2�x�y�z

cd
þ �x�z

d

� �
;

A13 ¼ lmax

�x�y2 � c�x�y

cd

� �
; B11 ¼ lmax

c� 2�y

c
þ 2�y�z

cd
� �z

d

� �
�D0; B12 ¼ lmax

�y2

cd
� �y

d

� �
; B13 ¼ lmax

2�x�y

cd
þ �x lmax �D0ð Þ;

B14 ¼ lmax

�x�z

cd
� �x

c

� �
; C11 ¼ lmax

�z

cd
� 1

c

� �
; C12 ¼ lmax

2�y

cd
� 1

d

� �
; C13 ¼

lmax

cd
�x; D11 ¼

lmax

cd
;

A21 ¼ �nsK � ns þ
lmax

Ys

� �
�y þ lmax

�y2

cYs
� �z�y2

cdYs
þ �y�z

dYs

� �
; A22 ¼ D0 a0 �K � 2�yð Þ � ns þ

lmax

Ys

� �
�x

þ lmax

Ys

2�x�y

c
� 2�x�y�z

cd
þ �x�z

d

� �
; A23 ¼ �

lmax

Ys

�x�y2

cd
� �x�y

d

� �
; B21 ¼ � ns þ

lmax

Ys

� �
þ lmax

Ys

2�y

c
� 2�x�y

cd
þ �z

d

� �
;

B22 ¼ �
lmax�y

Ys

�y

cd
� 1

d

� �
; B23 ¼

lmax

Ys

�2�y�z

cd
þ �x

d

� �
; B24 ¼ �

lmax

Ys

�x�y

cd
� �x

c

� �
�D0; C21 ¼ �

lmax

Ys

�z

cd
� 1

c

� �
;

C22 ¼ �
lmax

Ys

2�y

cd
� 1

d

� �
; C23 ¼ ��x

lmax

cdYs
; D21 ¼ �

lmax

cdYs
; A31 ¼ npK þ lmaxYp þ npð Þ�y � lmaxYp

�y2

c
� �y2�z

cd
þ �z�y

d

� �
;

A32 ¼ �D0�z þ lmaxYp þ npð Þ�x � lmaxYp
2�x�y

c
� 2�x�y�z

cd
þ �x�z

d

� �
; A33 ¼ �D0 �y þKð Þ þ lmaxYp

�x�y2

cd
� �x�y

d

� �
;

B31 ¼ lmaxYp þ np � lmaxYp
2�y

c
� 2�z�y

cd
þ �z

d

� �
; B32 ¼ lmaxYp

�y2 � c�y

cd

� �
; B33 ¼ lmaxYp

2�y�z � c�x

cd

� �
�D0;

B34 ¼ lmaxYp
�x�z

cd
� �x

c

� �
; C31 ¼ lmaxYp

�z

cd
� 1

c

� �
; C32 ¼ lmaxYp

2�y

cd
� 1

d

� �
; C33 ¼ lmaxYp

�x

cd
; D31 ¼

lmaxYp

cd
:

Then, we write system (9) in terms of multilinear functions B and C

de
ds
¼ Aeþ 1

2
B e; eð Þ þ

1

6
C e; e; eð Þ þ o kek3

� �
;
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where A¼A(D0), the multilinear functions B and C have the

form

Bðn; gÞ ¼
B11q1 þ B12q2 þ B13q3 þ 2B14q4

B21q1 þ B22q2 þ B23q3 þ 2B24q4

B31q1 þ B32q2 þ B33q3 þ 2B34q4

2
64

3
75

and

Cðn; g; fÞ ¼
2C11q5 þ C12q6 þ 2C13q7

2C21q5 þ C22q6 þ 2C23q7

2C31q5 þ C32q6 þ 2C33q7

2
64

3
75:

For the planar vectors n ¼ ðn1; n2ÞT ; g ¼ ðg1; g2ÞT , and

f¼ (f1, f2)T, we have

q1 ¼ n1g2 þ n2g1; q2 ¼ n1g3 þ n3g1; q3 ¼ n2g3 þ n3g2;

q4 ¼ n2g2; q5 ¼ n1g2f2 þ n2g1f2 þ n2g2f1;

q6 ¼ n1g2f3 þ n1g3f2 þ n2g1f3 þ n2g3f1 þ n3g1f2 þ n3g2f1;

q7 ¼ n2g2f3 þ n2g3f2 þ n3g2f2:

In the following, to obtain the first Lyapunov coefficient

we should calculate the eigenvectors of matrix A(D0) for the

eigenvalues k2,3 and the eigenvector of matrix AT(D0). The

matrix A(D0) has the form:

AðD0Þ ¼
A11 A12 A13

A21 A22 A23

A31 A32 A33

2
4

3
5:

For simplicity, denote x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð�yðD0ÞÞ

p
and k2,3¼6 ix. Let

q1 ¼ ða; b; cÞT 2 C3 be eigenvector of matrix A(D0). For

Aq1¼ ixq1, we have

awi� b�x �ly � D0

� �� c�x�lz ¼ 0;

a
ix
Ys
þ ns �y þ Kð Þ þ �l

Ys

� �
þ b ixþ D0 �y þ Kð Þ½ � ¼ 0;

a �ixYp � np �y þ Kð Þ � �lYp

	 

þ c ixþ D0 �y þ Kð Þ½ � ¼ 0:

8>>>><
>>>>:

(14)

By solving (14), we can get

q1 ¼

1

� ixþ �l þ �y þ Kð ÞnsYs

Ys ixþ D �y þ Kð Þ½ �
iYpxþ np �y þ Kð Þ þ Yp�l

ixþ D �y þ Kð Þ

0
BBBBBBBB@

1
CCCCCCCCA
;

Let �q; p 2 C3. For A�q ¼ �ix�q and ATp¼ –ixp, we have

�q ¼

1

�ixþ �lþ �yþKð ÞnsYs

ix�D0 �yþKð Þ
iYpx� np �yþKð Þ�Yp�l
�ixþD0 �yþKð Þ

0
BBBBBBBB@

1
CCCCCCCCA
; p¼

1

ixþD0 �yþKð Þ
�x �l�D0ð Þ

ixþD0 �yþKð Þ
�x�lz

0
BBBBBBBB@

1
CCCCCCCCA
:

Taking p¼ p, q ¼ q1

hp;q1i we achieve the necessary normaliza-

tion hp; qi ¼ 1. Then, we can compute the first Lyapunov

coefficient of system (9) (Ref. 16)

l1 ¼
1

2x
Re½hp;C q; q; �qð Þi � 2hp;Bðq;A�1Bðq; �qÞÞi

þhp;Bð�q; 2ixI3 � Að Þ�1B q; qð ÞÞi�:

Let ln (n 2 N) be the Lyapunov coefficients of the equilib-

rium Eð�x; �y; �zÞ. In order to prove the existence of a generic

Hopf bifurcation, in addition to transversality condition, we

also need to verify that the first Lyapunov coefficient l1
6¼ 0. Generally, we have the following three cases for sys-

tem (9)

(1) If l1 < 0, the system undergoes supercritical Hopf

bifurcation;

(2) If l1 > 0, the system undergoes subcritical Hopf

bifurcation;

(3) If l1 ¼ 0, the system undergoes degenerate Hopf bifurca-

tion. Moreover, Hopf bifurcation is of codimension 2 in

a small neighborhood of BT singularities of codimension

3 in the parameter space.17,18

B. Numerical simulations

In this section, we select some parameter values to show

the existence of the Hopf bifurcation and fold (saddle-node)

bifurcation. Some phase portraits, bifurcation curves, bifur-

cation diagram, and time series of limit cycle are given in

Figs. 3 and 4. All these figures are obtained by software

package MATLAB and software package AUTO.19 For con-

venience, we fix K¼ 0.1, c¼ 10, d¼ 3, ns¼ –0.1, Ys¼ 4, and

lmax¼ 30 and select np, Yp, a0, and D as free parameters.

Figure 3(b) shows the bifurcation diagram for np¼ 0.018

and Yp¼ 0.001. On the solid (dashed) line, the equilibrium is

stable (unstable), and the sign of H(L) represents the Hopf

(fold) bifurcation point. The saddle point and the other nontriv-

ial equilibrium collide at the fold bifurcation point (L) and then

disappear when parameter D crosses the vertical line D¼ 0.42

to the left of it. Figure 3(c) shows the bifurcation curves for

np¼ 0.018 and Yp¼ 0.001; here, we select a0and D as the

bifurcation parameters. The blue line in the figure represents

the Hopf bifurcation curve and the black line represents the

fold bifurcation curve. By the computation of the AUTO pack-

age, we find that all the first Lyapunov coefficient of the Hopf

points in Fig. 3(c) satisfies l1< 0, that is to say, system (1)

undergoes supercritical Hopf bifurcation. When the Hopf

bifurcation curve is crossed to the left part, a stable limit cycle

appears and the stable equilibrium becomes unstable. Besides,

phase portrait of a stable limit cycle which bifurcates from the

supercritical Hopf point and corresponding time series are

given in Figs. 4(a) and 4(b), respectively.

Figure 3(d) shows bifurcation curves for np¼ 0.026 and

Yp¼ 0.004; here, we do not present the corresponding bifur-

cation diagram because it has a similar shape to that in Fig.

3(b). The blue line denotes the Hopf bifurcation curve, and

the black line denotes the fold bifurcation curve. The small

triangle (D¼ 0.41 and a0¼ 6.1) in the middle of the Hopf

bifurcation curve represents a degenerate Hopf bifurcation
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point, which means the first Lyapunov coefficient l1¼ 0 at this

point. In addition, we can find that if D> 0.41(< 0.41), then

l1> 0(< 0), the system undergoes subcritical (supercritical)

Hopf bifurcation. When the upper branch of the Hopf bifurca-

tion curve (D> 0.41) is crossed to the right side, system (1)

generates a stable equilibrium point and an unstable limit cycle

appears. The phase portrait of the unstable limit cycle and time

series are given in Figs. 4(c) and 4(d), respectively.

IV. PERIODICALLY FORCED SYSTEM

A. Bifurcations

In this section, we try to investigate the dynamic behav-

iors of a periodically forced microbial continuous culture

system. We use the software package AUTO to obtain the

bifurcation diagram. The model can be expressed as

dx

dt
¼ x l� D tð Þð Þ;

dy

dt
¼ D tð Þ a0 � yð Þ � x ns þ

l
Ys

� �
;

dz

dt
¼ x np þ Yplð Þ � D tð Þz:

8>>>>>><
>>>>>>:

(15)

where l has the same expression as it in (2), and

DðtÞ ¼ rð1þ e sinð2ptÞÞ:

In this system, r and e are added parameters. The time-

periodic function D(t) describes the influence of periodic

variability of the dilution on the dynamic behaviors. The

time is scaled to make a period 1 in length. To make

D(t)> 0, we have 0< e < 1. In AUTO package, the forced

system can be done by adding a nonlinear oscillator with the

desired periodic forcing as one of the solution components.

In our case, the forced system can be transformed into the

autonomous five dimensional system

dx

dt
¼ x l� r 1þ evð Þð Þ;

dy

dt
¼ r 1þ evð Þ a0 � yð Þ � x ns þ

l
Ys

� �
;

dz

dt
¼ x np þ Yplð Þ � r 1þ evð Þz;

dv

dt
¼ vþ 2pw� v v2 þ w2ð Þ;

dw

dt
¼ w� 2pv� w v2 þ w2ð Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(16)

FIG. 3. (b) Bifurcation diagram for np¼ 0.018 and Yp¼ 0.001. The solid (dashed) line represents the stable (unstable) equilibrium. The letter H (L) represents the

Hopf (fold) bifurcation point. (c) The bifurcation curves for np¼ 0.018 and Yp¼ 0.001. (d) The bifurcation curves for np¼ 0.026 and Yp¼ 0.004. The blue (black)

line of (c) and (d) represents the Hopf (fold) bifurcation curve, where the small triangle in the blue line of (d) represents a degenerate Hopf bifurcation point.
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and the last two equations of (16) have the asymptotically

stable solutions v ¼ sinð2ptÞ;w ¼ cosð2ptÞ. For e¼ 0, the

system reduces to the autonomous system (1); if the unforced

system has equilibrium (x*, y*, z*), then the periodically

forced system has periodic solution ðx�; y�; z�; sin 2pt;
cos 2ptÞ. For e 6¼ 0, we like to find if the periodic solution

can survive and bifurcate. Parameter values for which the

period Th of the appearing limit cycle is integer play an

important role. Because in these cases, the ratio between the

period Th and the period of forcing function is integer.

We use the Poincar�e map to study the dynamics of the

continuous five dimensional system. The first return map can

be defined as

P :ðxð0Þ; yð0Þ; zð0Þ; vð0Þ;wð0ÞÞ7!
ðxð1Þ; yð1Þ; zð1Þ; vð1Þ;wð1ÞÞ:

The stable (unstable) fixed points of the kth iterate of the

map correspond to the stable (unstable) periodic solutions

with period k of the forced system. We can refer these points

to period k fixed points. Moreover, closed and regular invariant

curves of the Poincar�e map correspond to quasiperiodic solu-

tions (invariant tori), while irregular sets represent the chaotic

solutions (strange attractors) of the five dimensional system. As

parameters changed, the fixed point of the Poincar�e map of the

forced system can bifurcate, and it will change its stability or

disappear. For the bifurcation diagrams below, we use the fol-

lowing notations for codimension one bifurcation curves and

codimension two bifurcation points of the map P.

• h(k), Hopf (Neimark-Sacker) bifurcation curve. For param-

eter values on this curve, the map has a period k fixed

point with a pair of multipliers on the unit circle

lk
1;2 ¼ e6ix; 0 < x < p.

• f (k), flip (Period doubling) bifurcation curve. For parame-

ter values on this curve, the map has a period k fixed point

with a multiplier lk
1 ¼ �1.

• t(k), fold (tangent) bifurcation curve. For parameter values

on this curve, the map has a period k fixed point with a

multiplier lk
1 ¼ 1.

FIG. 4. Phase portrait of the limit cycle and corresponding time series. (a) A stable limit cycle generated by supercritical Hopf bifurcation for np¼ 0.018,

Yp¼ 0.001, and D¼ 0.6. (b) Time series of the stable limit cycle. (c) An unstable limit cycle generated by subcritical Hopf bifurcation for np¼ 0.026,

Yp¼ 0.004, and D¼ 0.61. (d) Time series of the unstable limit cycle.
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We have to mention that the description of the following

diagrams is about the Poincar�e map. To make the diagrams

more readable, some necessary explanations for solutions of

the five dimensional system in different regions are given in

figure captions.

Figure 5 is the bifurcation diagram of the forced system

in the (e, r)-plane and the parameter values are selected as

those in Fig. 3(c). At this group of parameter values, the

unforced system has a stable limit cycle and its asymptotic

period Th¼ 1.72. On the r-axis, point H represents the Hopf

bifurcation in the unforced system and it is the origin of

curve h(1). Point T represents the fold bifurcation in the

unforced system and it is the origin of curve t(1).

Two fixed points of period-one collide on the curve t(1),

forming a nonhyperbolic point, then disappear when t(1) is

crossed to the below. Curve h(1) is formed by continuation of

a Neimark-Sacker bifurcation of Poincar�e map P. As the

parameter value of r crosses curve h(1) from region 1 to

region 5, stable fixed point of P changes its stability and a

stable closed invariant curve appears. While continuing the

curve h(1) from left to right on the (e, r)-plane, both multi-

pliers l1
1;2 of the fixed point vary smoothly and become equal

to �1 as the terminal point A is reached. This is a codimen-

sion two bifurcation point called strong resonance 1:2, and

the different types of resonances have been well studied in

previous works.20,21 Thus, passing through the point A there

is a bifurcation curve related to period-two orbits. Curve f (1)

is the flip bifurcation curve. Along this curve away from A,

the fixed point has a simple multiplier l1
1 ¼ �1. The two

branches of curve f (1) can be obtained by numerical continu-

ation starting from A in two directions. Crossing curve f (1)

from region 1 to region 3 above point A results in the appear-

ance of a couple of period-two fixed points, while the stable

period-one fixed point becomes unstable. When f (1) is

crossed from region 3 to region 2, another pair of unstable

period-two fixed points appear and the period-one fixed point

becomes a repelling point.

The analysis of the flip bifurcation on the upper branch

of f (1) shows that there is another codimension two bifurca-

tion point B at which a nondegenerate generalized flip bifur-

cation occurs. Thus, crossing the part of f (1) located above

the point B leads to a pair of attracting period-two fixed

points. Moreover, there is a tangent bifurcation curve t
ð2Þ
1

whose root is point B. The tangent bifurcation curve has

another branch t
ð2Þ
2 , and these two branches terminate at the

same point on the r-axis. If the curve t
ð2Þ
1 or t

ð2Þ
2 is crossed

from region 2, all the period-two fixed points disappear. If

f (2) is crossed from region 3 to region 4, the two stable

period-two fixed points lose its stability. Certainly, flip bifur-

cation curves f (4), f (8),…, always exist, and this cascade of

period doubling leads to strange attractors in some subre-

gions of region 4.

Figure 6 is the bifurcation diagram of the forced system

in (e, r)-plane, and the parameter values are fixed as those in

Fig. 3(d). The asymptotic period of the unstable limit cycle

of the unforced system is Th¼ 2.22. On the r-axis, the point

T corresponding to the fold bifurcation point in the unforced

system is the root of curve t(1). In Fig. 6(a), curves t(2) and

FIG. 5. Bifurcation diagram of the forced system for np¼ 0.018 and

Yp¼ 0.001. The solutions of the original continuous system are as follows:

region 1-stable period-one solution, region 2-unstable period-one solution,

stable and unstable period-two solutions, region 3-unstable period-one solu-

tion and stable period-two solutions, region 4-unstable period-one and

period-two solutions, stable period-four solution or chaos in some subregion,

and region 5-unstable period-one solution and stable quasiperiodic solution.

FIG. 6. The bifurcation diagram of the forced system for np¼ 0.026 and Yp¼ 0.004. (a) Bifurcation diagram. (b) The partial enlargement drawing of (a) for the

part mn. Solutions of the original continuous system are as follows, region 1- stable and unstable period-one solution, region 2-stable period-one solution, and

unstable quasiperiodic solution. region 3-unstable period-one and unstable period-two solutions, region 4- unstable period-one solution, unstable period-two

solutions and period-four solutions or chaos in some subregion, and region 5-unstable period-one and unstable period-two solutions.
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f (1) have two crossover points m and n, which are too close

to distinguish so we present an enlargement as shown in Fig.

6(b). Point H represents the subcritical Hopf bifurcation in

the unforced system. It is the initial point of curve h(1) which

terminates at point A, a 1:2 resonance, and point A is the ori-

gin of the Neimark-Sacker bifurcation curve h(2). Moreover,

there is a flip bifurcation curve f (1), at which a pair of

period-two fixed points appear that pass through the point A.

In Fig. 6, if t(1) is crossed to the below, two period-one

fixed points collide on t(1) and then disappear. If the curve

h(1) is crossed from region 1 to region 2, the unstable fixed

point will turn into stable and an unstable closed invariant

curve will appear. Two pairs of period-two fixed points

appear when t(2) is crossed from region 2 to region 5 in (b).

They are a pair of saddle fixed points and a pair of repelling

fixed point. The saddles disappear when f (1) is crossed from

region 5 to region 3, while the two repelling fixed points will

become attracting when crossing the curve h(2) to the below.

The attracting fixed points will disappear when f (1) is crossed

to region 1. When f (2) is crossed from region 3 to region 4,

the two repelling period-two points become saddle fixed

points and period-four solution appear.

B. Solutions, chaos, and bistability

In the periodically forced system (15), the equilibrium

of system (1) becomes the periodic solution of period T¼ 1

due to the adding nonlinear oscillator with frequency

x¼ 2p. Since there are no equilibrium solutions of system

(15), the bifurcation types are those of periodic orbits.

Periodic forcing is a key feature in the model, and it can

induce different bifurcations. We find fold bifurcations of

periodic orbits, period-doubling bifurcations, and torus

bifurcations, which can lead to the appearance of various

solutions, see Figs. 7 and 8.

In this section, the parameter values are the same as

those in Sec. IV, where np, Yp, r, and e are selected as free

parameters. Figure 7(a) is a stable period-two orbit for

np¼ 0.026, Yp¼ 0.004, r¼ 0.61, and e¼ 0.17; one can find

that the period of the solution is two from the time series. In

fact, period-two orbits can be found in many regions of Figs.

5 and 6 (region 2, region 3, and region 4). When period-

doubling bifurcation of period-two orbit occurs, period-two

orbit changes the stability and period-four orbit appears.

Figure 7(c) is a stable period-four orbit for np¼ 0.018,

Yp¼ 0.001, r¼ 0.594, and e¼ 0.2, and from Fig. 7(d) we

know that the period is T¼ 4. Period-eight orbits also exist

in some regions of Figs. 5 and 6 as a result of bifurcation of

period-four orbit; here, we do not show it. Figure 7(e) shows

a stable torus for np¼ 0.018, Yp¼ 0.001, r¼ 0.595, and

e¼ 0.08, which arises from a torus bifurcation. We cannot

judge the period of the torus from the corresponding time

series because it has an infinite period. Thus, we give the

Poincar�e section of the torus, see Fig. 7(g). The closed curve

indicates that the phase portrait of Fig. 7(e) is torus, not

chaos. Moreover, some other torus can be found in region 5

of Fig. 5 and region 2 of Fig. 6.

Following, we discuss the chaotic attractor in periodi-

cally forced system (15). To verify the existence of chaos,

we show the spectrum of the Largest Lyapunov exponents of

system (15), see Figs. 8(a) and 8(b). It is calculated based on

the algorithm in Ref. 22. When the largest Lyapunov expo-

nent of the time series k> 0, the corresponding attractor can

be regarded as the chaotic attractor. Figure 8(a) is the spec-

trum of the Largest Lyapunov exponents in the (k � e) plane

FIG. 7. Phase portrait of different solutions. (a) A stable period-two orbit for np¼ 0.026, Yp¼ 0.004, r¼ 0.61, and e¼ 0.17. (b) Time series of the stable

period-two orbit. (c) A stable period-four orbit for np¼ 0.018, Yp¼ 0.001, r¼ 0.594, and e¼ 0.2. (d) Time series of the stable period-four orbit. (e) Phase por-

trait of torus for np¼ 0.018, Yp¼ 0.001, r¼ 0.595, and e¼ 0.08. (f) Time series of the torus. (g) Poincar�e section of the torus.
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for np¼ 0.018, Yp¼ 0.001, and r¼ 0.59, and Fig. 8(b) is the

spectrum in the (k -r) plane for np¼ 0.018, Yp¼ 0.001, and

e¼ 0.7. Both of them indicate that chaotic areas exist in

some parameter spaces of system (15). On the other hand,

some ribbon-like structures with self-similarity in the dia-

gram of Poincar�e section also indicate that the corresponding

attractor shows chaotic behavior. There are many chaotic

attractors in region 4 of Figs. 5 and 6, which are generated

by a cascade of period doublings. Figure 8(c) is phase por-

trait of the chaotic attractor for np¼ 0.018, Yp¼ 0.001,

r¼ 0.59, and e¼ 0.23; we can find that its Poincar�e section

has a ribbon-like structure. Besides, the largest Lyapunov

exponent of the chaotic attractor in Fig. 8(c) corresponds to

the point P in Fig. 8(a), from which one can easily find that

it is positive. Figure 8(e) is another example of the chaotic

attractor for np¼ 0.018, Yp¼ 0.001, r¼ 0.58, and e¼ 0.7; the

corresponding Poincar�e section and largest Lyapunov expo-

nent [the point Q in Fig. 8(b)] indicate that it is chaos.

The results also show that periodical forcing will lead to

bistability, where two stable solutions can be converged

towards only by taking different initial histories. We can

detect the bistability from the bifurcation diagrams, just take

the bifurcation diagram Fig. 5 as an example. In fact, a case

of bistability is obtained between a stable quasiperiodic and

a stable period-two solution for the same group of parameter

values, which is generated by the coexistence of Neimark-

Sacker bifurcation and flip bifurcation in some parameter

regions. A pair of period-two orbits appear in region 2, one

of them is stable, due to the period-doubling bifurcation

(f (1)) of period-one orbit. On the other hand, a stable quasi-

periodic solution also exists in the subregion of region 2 as a

result of torus bifurcation. That is to say, we can find a bist-

ability in the subregion of region 2. In Fig. 9, the parameter

values of two kinds of solutions are selected as np¼ 0.018,

Yp¼ 0.001, r¼ 0.6, and e¼ 0.1. In Fig. 9(a), the initial his-

tory of period-two orbit is x¼ 101.72, y¼ 3.65, and z¼ 2.97.

In Fig. 9(c), the initial history of quasiperiodic solution is

x¼ 62.33, y¼ 4.88, and z¼ 3. This clearly shows that there

are regions in the (r-e) plane where bistability exists.

V. DISCUSSION

A three dimensional microbial continuous culture model

with the restrained microbial growth rate function is studied

for both the unforced and periodically forced dilution rates.

It is shown in this paper that the unforced system undergoes

saddle-node bifurcation, generic Hopf bifurcation, and

degenerate Hopf bifurcation. For the periodically forced sys-

tem, we find that the Poincar�e map of the forced system

undergoes Neimark-Sacker bifurcation, flip bifurcation, and

fold bifurcation, which lead to the appearance of periodic

solutions with different periods and stabilities.

Throughout the results on the unforced and periodically

forced systems, we have the following conclusions. (1)

Bifurcations of the unforced system can be extended to the

periodically forced case as bifurcations of periodic solutions.

(2) As the unforced system undergoes Hopf bifurcation, the

resulting bifurcations of the periodically forced system are

distinct only if the directions of Hopf bifurcation are differ-

ent (supercritical and subcritical), see Figs. 5 and 6. (3) The

periodically forced system can result in more complex

dynamics, such as chaos [Figs. 8(c) and 8(e)] and bistability

(Fig. 9).

Apart from the theoretical meaning, our results can also

explain some biological phenomena in laboratory experi-

ments of microbial continuous culture.4,8,23

In Ref. 4, Menzel et al. noticed some oscillations in the

process of glycerol continuous fermentation by Klebsiella
pneumoniae. They found that the biomass concentration and

the specific growth rate (l) of cells change periodically with

time, and the frequencies of them are nearly the same, see

Fig. 1(b) in Ref. 4. Corresponding to the results in Chap. III,

when system (1) undergoes a supercritical Hopf bifurcation,

a stable periodic solution will appear. That is to say, the bio-

mass, glycerol, and 1,3-PD concentration (variable x, y, and

z, respectively) will vary periodically with a period T0.

Recalling that the growth rate (l) is a function of the varia-

bles y and z, see expression (2), l will change periodically

and have the same frequency 1/T0 with the oscillation of the

biomass concentration.

FIG. 8. (a) Spectrum of largest Lyapunov exponents for np¼ 0.018, Yp¼ 0.001, and r¼ 0.59. (b) Spectrum of largest Lyapunov exponents for np¼ 0.018,

Yp¼ 0.001, and e ¼ 0.7. (c) and (d) Chaotic attractor for np¼ 0.018, Yp¼ 0.001, r¼ 0.59, e¼ 0.23, and corresponding Poincar�e section. (e) and (f) Chaotic

attractor for np¼ 0.018, Yp¼ 0.001, r¼ 0.58, e ¼ 0.7, and corresponding Poincar�e section.
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Moreover, the occurrence and disappearance of oscilla-

tion of the CO2 concentration are observed in glycerol con-

tinuous fermentation, see Fig. 4 in Ref. 4. (The periodic

change of the CO2 concentration in the exit gas is often seen

as an indicator of oscillations in a cultural process. This is

because the oscillations of biomass concentration and CO2

have similar patterns and synchronism.) When system (1)

undergoes a subcritical Hopf bifurcation, an unstable peri-

odic orbit and a stable equilibrium will appear, and the gen-

erating unstable periodic orbit will tend to the stable

equilibrium as t!þ1, see Fig. 4(d). That is why the ampli-

tude of the observed oscillation declines with time.

In Ref. 8, Wang et al. detected special oscillations of

biomass concentration in the fed-batch fermentation of

glycerol to 1,3-PD by Klebsiella pneumoniae. The oscilla-

tions can be divided into four distinct phases, cells rapidly

grow and the concentration reaches a maximum (phase I),

cells cease to grow and the concentration reaches a mini-

mum (phase II), cells grow again and the concentration

reaches a second maximum (phase III), and the biomass

concentration declines to a second minimum (phase IV),

see Fig. 1 in Ref. 8.

During the fed-batch fermentative process, the dilu-

tion rate (D) is no longer a constant but a periodic func-

tion. For the observed oscillations, we can draw an

analogy with the bifurcation results of the periodically

forced system (15). A stable period-two solution, which is

generated by the Neimark-Sacker bifurcation in the peri-

odically forced system, results in the mentioned phenom-

ena above. To be more clear, we show the time series of a

period-two solution in one period, see Fig. 10. Obviously,

the period-two solution in Fig. 10 can be divided into four

phases, which has two maximum and two minimum in one

period. It gives a clue for the appearance of oscillations in

Ref. 8.

In Ref. 23, Grosz and Stephanopoulos observed the

multiply steady state in a microbial continuous culture pro-

cess, where the steady-state solution can change from the

upper to the lower solution branches. The different stable

equilibria in this paper correspond to the observed multiply

steady state, see Lemma 1 and Theorem 2. Moreover, the

bistability generated by bifurcations in the forced system

can also illustrate the multiply steady state, where two

stead states can be reached just by taking different initial

FIG. 9. Bistability for np¼ 0.018, Yp¼ 0.001, r¼ 0.6, and e¼ 0.1. (a) A stable period-two orbit. (b) Time series of the stable period-two orbit. (c) A stable qua-

siperiodic solution. (d) Time series of quasiperiodic solution.
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histories. When the system undergoes Hopf bifurcation or

flip bifurcation, the corresponding stable solution becomes

unstable. Then, the generating unstable solution will tend

to another stable solution as time changes, that is why the

steady-state solution changes to other branches.

Besides, some unusual oscillations, which have irregular

period or no period completely, are discovered in glycerol

fermentation, see Figs. 3(c) and 3(d) in Ref. 4 and Fig. 2 in

Ref. 8. We suggest that these oscillations could be caused by

the quasiperiodic solutions or chaos in a short time. In fact,

the chaotic attractors obtained by a cascade of period dou-

blings in our paper are not absolutely ruleless. If the time

series of the chaos are considered in a short time, we find that

it is an oscillation with an irregular period, see Fig. 11. In a

word, the limit cycles, periodic solutions, quasiperiodic solu-

tions, and chaotic attractor obtained by different bifurcations

are mechanisms of the oscillations in a microbial continuous

culture process.
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