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a b s t r a c t

Three critical frequencies independent of boundary conditions together with a critical length, which
determine the vibration behaviors of a nonlocal Timoshenko beam, are identified. Unlike a local Ti-
moshenko beam which has two frequency spectra, a nonlocal Timoshenko beam may have two fre-
quency spectra or one frequency spectrum depending on the nonlocal effect. The eigenfrequencies of the
higher modes of a nonlocal Timoshenko beam, irrespective of its boundary conditions, are shown to
asymptotically approach one critical frequency, which is mainly determined by the nonlocal effect and
beam material properties. This asymptotic behavior is proposed as a new and reliable way to determine
the nonlocal effect. The nonlocal effect is also shown to determine whether a special vibration mode
called thickness shear vibration can occur.

& 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Compared with the Euler–Bernoulli beam model, the Ti-
moshenko beam model [1,2] incorporates both the rotatory inertia
and shear effects, which better characterizes the beam deforma-
tion. An interesting issue of two frequency spectra on the Ti-
moshenko beam model was first brought up by Traill-Nash and
Collar [3], which induced heated debates [4–9]. There is a critical
frequency associated with the thickness shear vibration mode
[4,8,10], which divides the frequency domain into two zones: the
first frequency spectrum (frequency smaller than that of thickness
shear vibration) and the second frequency spectrum (frequency
larger than that of thickness shear vibration). For Traill-Nash and
Collar [3], it is very natural to have such division because the
frequency smaller or larger than this thickness shear vibration
frequency will mathematically yield two different solution forms.
Stephen [9] argued for the physical nonexistence of the second
frequency spectrum. While, the experiments [4,8] and computa-
tions [5–7,11] show the existence of the second frequency spec-
trum. For those authors who acknowledges the existence of the
second frequency spectrum, the debate still remains [7,8]. By de-
riving the analytical solutions to the hinged-hinged nonlocal Ti-
moshenko beam, this study presents a different view on the fre-
quency spectrum debate.

On the other hand, the nonlocal elasticity theory [12] is
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Beijing 100190, China.
developed by assuming that stress at a point depends not only on
the strain at that point but also on strains at all other points of the
body. In atomistic simulations, the above assumption can be
translated as follows: the forces acting on an atom of a solid are
due not only to the nearest neighbor atoms but also to all atoms in
the solid [13]. This is another way of stating the long-ranged
nature of interatomic forces. In the nonlocal elasticity theory, there
is an intrinsic length or lengths measuring the long-ranged effect
of interatomic forces [12], which is mainly determined by the in-
homogeneity of material microstructure [14]. In comparison, the
classical elasticity theory is established by two essential assump-
tions: homogeneity and ignoring the long-ranged effect of in-
teratomic forces [15], which is thus often referred to as the local
theory. Because the nonlocal effect is size-dependent [13,16],
which stands out as the structure dimensions diminish, the non-
local elasticity theory better describes the deformation/motion of a
micro/nanometer-scaled structure. For example, the local theory
predicts a wrongful dispersion relation, which says that the wave
velocity in an elastic continuum increases monotonically and un-
boundedly as the wave number increases; while, by properly
choosing the intrinsic length of the nonlocal effect, the nonlocal
theory can match the correct dispersion relation as predicted by
lattice dynamics [12]. The nonlocal elasticity has been applied to
study the vibration [17–19] and buckling [20,21] of micro/nano-
Timoshenko beams, and the vibration of a micro/nano-Euler–
Bernoulli beam [22,23]. However, in references [17–19], only the
first frequency spectrum is considered. Furthermore, in all of the
above studies [17–23], the nonlocal parameter is given a prior to
examine the nonlocal effect on the micro/nano beam behaviors. In
reality, the parameter is an unknown.
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A comprehensive study is presented by incorporating the
nonlocal effect and considering two frequency spectra of a Ti-
moshenko beam. A critical length, which is solely determined by
the micro/nano Timoshenko beam cross-section geometry, is
identified. If the intrinsic length of nonlocal effect is larger than
this critical length, there is only one frequency spectrum in a
nonlocal Timoshenko beam; otherwise, there are two frequency
spectra like a local Timoshenko beam. Besides the two frequency
spectra, a special case called thickness shear vibration, which vi-
brates at a particular frequency, is also studied. The frequency of
thickness shear vibration is shown to be independent on the
nonlocal effect. However, whether the thickness shear vibration
can occur or not depends on the nonlocal effect. There are three
critical frequencies determining the nonlocal Timoshenko beam
vibration. One is the frequency of thickness shear vibration, the
second one is associated with the intrinsic length of nonlocal ef-
fect and shear wave velocity, and the third one is associated with
the intrinsic length of nonlocal effect and longitudinal wave ve-
locity. The second and the third frequencies are the asymptotic
ones, which physically are also cut-off frequencies. Three nonlocal
Timoshenko beams with the hinged–hinged, clamped–clamped
and cantilevered boundary conditions are studied. Irrespective of
their boundary conditions and insensitive to the beam geometry,
the eigenfrequencies of the higher modes of these three beams are
all shown to asymptotically approach one of the cut-off fre-
quencies. This asymptotic property can be used as a reliable me-
chanism to determine the nonlocal effect.
2. Model development

2.1. Governing equations

The free vibration of a nonlocal Timoshenko beam is governed
by the following equation
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where ϕ and w are the rotation of cross-section and transverse
displacement; E and G are the beam Young’s modulus and shear
modulus; I and A are the second moment of area and cross-section
area; ρ and κ are the density and shear correction factor, respec-
tively. Here l is an intrinsic length of nonlocal effect; α is a di-
mensionless scalar indicator, which takes the value of either 0 or 1.
α = 0 means that the nonlocal effect is neglected in the shear
stress–strain constitutive relation; while, α = 1 means that the
nonlocal effect is considered in the shear stress–strain constitutive
relation [21]. When α = 1, Eq. (1) recovers those derived by Li and
Wang [17]; when α = 0, Eq. (1) recovers those derived by Wang
et al. [19]. The detailed derivation of Eq. (1) is given in Appendix A.

The following dimensionless quantities are introduced
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where L is the beam length. Eq. (1) is then nondimensionalized as
follows
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The dimensionless quantities of R1, R2 and R3 are defined as the
following
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Physically, R1 indicates the deformation by shear as compared with
that by bending; R2 indicates the geometric slenderness; and R3 is
the squared ratio of the nonlocal effect length to the beam length.

The dimensionless quantities of ϕ and W are assumed to have
the following forms

ϕ ξ τ Φ ξ ξ τ ξ( ) = ( ) ( ) = ( ) ( )ωτ ωτe W Y e, , , . 5i i

Here ω is the dimensionless circular frequency of vibration. Sub-
stituting Eq. (5) into Eq. (3), we have

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Φ
ξ

Φ
ξ

ω Φ ω Φ
ξ

α ω
ξ

Φ
ξ ξ

α ω
ξ

ω

∂
∂

− + ∂
∂

= − + ∂
∂

+ ( − ) ∂
∂

∂
∂

+ ∂
∂

− ∂
∂

= −
( )

R
Y

R R R
Y

R
Y

R
Y

Y

1 ,

6

2

2 1 2
2

3
2

2

2 3
2

1

2

2 3
2

2

2
2

The equation set of Eq. (6) consists of two coupled second order
ordinary differential equations (ODEs), which can be decoupled. By
eliminating Φ, the following uncoupled fourth order ODE for Y is
obtained
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where a, b and c are given as follows
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Similarly, if Y is eliminated, the following uncoupled fourth order
ODE for Φ, which is exactly the same form as Eq. (7), is obtained:
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2.2. Solution forms

The characteristic equation for both Eqs. (7) and (9) is

λ λ+ + = ( )a b c 0, 104 2

which leads to the following solutions
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As proved in Appendix B, in all the possible vibration frequency
(ω) range of a nonlocal Timoshenko beam, ω= ( )a a and ω= ( )b b as
defined in Eq. (8) are always positive. Therefore, λ2

2 is always ne-
gative; λ1

2 can be either positive or negative depending on the
value of ac (or c). In Fig. 1, ω α ω ω ω= ( − )( − )( − )ac R R R R R R1 2 3

2
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is plotted as a function of ω. The expression of ac gives the fol-
lowing three critical frequencies
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To illustrate the physical meanings of these three frequencies, we
present them in their dimensional forms. In conjunction with Eqs.
(2) and (4), the three dimensional frequencies are given as follows



Fig. 1. The schematic sketches on the three scenarios of
ω ω ω ω= ( − )( − )( − )ac R R R R R R1 2 3
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which corresponds to R3 o R2 or < ( )l h/ 2 3 . (2) ωS o ωo o ωE, which corres-
ponds to R2 o R3 o 1/R1 or ν κ( ) < < ( + ) ( )h l h/ 2 3 1 / 6 . (3) ωS o ωE o ωo, which
corresponds to R3 > 1/R1 or ν κ> ( + ) ( )l h1 / 6 . Here the three frequencies are de-
fined as ω = R R/ ,o 1 2 ω = R R/S 1 3 and ω = ( )R R1/ ,E 2 3 respectively.
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When α = 0, ΩS is infinite, which, as discussed and shown later, is
unphysical. From now on, only α = 1 is used in our discussion and
computation. Here ρE/ and ρG/ are the longitudinal and shear
wave speeds, respectively. Lei et al. [11] showed that ΩE and ΩS

are two cut-off frequencies, which means that the vibration fre-
quency of a nonlocal Timoshenko beam cannot surpass either of
these two frequencies. Mathematically, these two frequencies are
obtained as the asymptotic ones by letting the wave number ap-
proach infinity [11]. Another way of viewing these cut-off fre-
quencies in a nonlocal Timoshenko beam is by the wave propa-
gation method, which shows that the wave propagation velocity at
a certain large wave number (or frequency) will begin to decrease
dramatically and then approach zero [24,25]. Wang and Hu [25]
concluded that the microstructure (determining the nonlocal ef-
fect) blocks the propagation of waves at a certain high frequency.
Ωo is the frequency of the so-called thickness shear vibration
[4,8,10]. Some characteristics of these three critical frequencies can
be summarized from Eq. (13) as follows: (1) They are all in-
dependent of the boundary conditions and beam length (L); (2)ΩE

depends only on the nonlocal effect (l) and beam material prop-
erties (E, ρ), and thus independent of the beam geometry; (3) ΩS

andΩo are dependent on the beam cross-section geometry. While,
as the shear correction factor, κ, varies only very mildly with dif-
ferent cross-section geometries [26], the ΩS dependence on the
beam geometry is rather weak and is mainly determined by the
nonlocal effect and beam material properties; (4) nonlocal effect
has no impact on Ωo.

Here the shear correction factor is taken as
κ ν ν= ( + ) ( + )5 1 / 6 5 (ν: Poisson’s ratio) because this value is
suggested to be the best [9]. With ν= ( + )G E/2 1 and
κ ν ν= ( + ) ( + )5 1 / 6 5 , Ω Ω κ ν= = = ( + )R R G E/ / 5/ 12 10S E 1 2 is
derived. Therefore, ΩS o ΩE (or ωS o ωE) always holds in the
range of (0 r ν r 1/2). Because ωS o ωE, there are only three
possible sequence cases for these three frequencies

(1) ωo o ωS o ωE, which corresponds to R3 o R2.
(2) ωS o ωo o ωE, which corresponds to R2 o R3 o 1/R1.
(3) ωS o ωE o ωo, which corresponds to R3 4 1/R1.

Because ωS is the cut-off frequency [11], in cases 2 and 3, ω o
ωS always holds and as seen in Fig. 1, ac o 0 when ω o ωS.
Therefore, for cases 2 and 3, λ1

2 can only be positive. However, in
case 1, when ω o ωo, ac o 0 and λ1

2 is thus positive; when ωo o
ω o ωS, ac 4 0 and λ1

2 is thus negative. Clearly, ωo is a critical
frequency, which determines the solution forms of Eq. (7).ω o ωo

and ω 4 ωo give two different solution forms, which is also the
reason why Traill-Nash and Collar said that there are two fre-
quency spectra in the Timoshenko beam vibration [3]. As a con-
vention, ω o ωo is referred to as the first spectrum and ω 4 ωo

as the second spectrum [3]. For case 1 to occur, R3 o R2 is re-
quired, which is equivalent to <l I A/ and = ( )I A h/ / 2 3 for a
rectangular beam (h: thickness). Therefore, for the vibration of a
nonlocal Timoshenko beam, only when <l I A/ , can the scenario
of two frequency spectra occur.

We should briefly discuss the physical meaning of this critical
length I A/ . The flexural wave phase velocity of a nonlocal Euler–
Bernoulli beam is given as follows [24]
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where k is the wave number. The following asymptotic phase ve-
locity is obtain as k approaches infinity
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Here the asymptotic phase velocity of Va is also the maximumvelocity.
Clearly, Ω=I A V/ / ,a E which is the quotient of two asymptotic values.
This length I A/ can thus be interpreted as the longest traveling
distance in the period of 1/ΩE for the flexural wave of a nonlocal
Euler–Bernoulli beam. Physically, the Euler–Bernoulli beam can be
viewed as the limit case of the Timoshenko beam as both the rotatory
inertia and shear effects approach zero. It is noteworthy to point out
that this length I A/ , which is solely determined by the beam cross-
section geometry, is a measure of the flexural wave traveling distance
in a period along the length direction.

There are three solution forms for Eq. (7) depending on the
value of ac, i.e., ac o 0, ac 4 0 and =ac 0.
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Cis and Dis (i¼1 to 4) are the unknown constants to be determined
by the boundary conditions. Cis and Dis are related by the second
equation of Eq. (6), which yields the following:

Ψ Ψ Ψ Ψ= = = = − ( )D C D C D C D C, , , , 181 1 1 2 1 2 3 2 3 4 2 4

where Ψ1 and Ψ2 are given as follows
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Therefore, there are only four rather than eight unknown con-
stants to be determined.

2. ac 4 0
λ < 01
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Cis and Dis are now related as the following:
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The solution form difference between Eqs. (16) and (20) is noticed.
There are two trigonometric functions and two hyperbolic func-
tions in Eq. (16) and four trigonometric functions in Eq. (20). The
two trigonometric functions in Eq. (16) stand for the propagating
flexural wave [22,27]; the two hyperbolic functions are the non-
propagating evanescent components [22]. The four trigonometric
functions in Eq. (20) stand for the both the flexural and shear
waves [27]. Therefore, the physical difference between the first
frequency spectrum and the second frequency spectrum is whe-
ther a propagating shear wave coexists with a flexural wave.

3. =ac 0
Because ω o ωS and ω o ωE, =ac 0 is equivalent to ω ω= ,o

which is the scenario of so-called thickness shear vibration. In
thickness shear vibration, there is no transverse displacement, i.e.,
Y ≡ 0 [4], and Eq. (9) is reduced to the following (with α = 1)
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The solution form of Eq. (24) is as follows:
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The second equation of Eq. (6) still holds, i.e.,

( )Φ ξ ξ ω ξ ω∂ ∂ + ∂ ∂ − ∂ ∂ = −R Y R Y Y/ / /1
2 2

3
2 2 2 2 . With Y ≡ 0 and ∂2Y/∂ξ2

≡ 0, we conclude that Φ ξ β β ξ β β ξ∂ ∂ = − ( ) + ( ) =D D D/ cos cos 0,o o o o2 3 4

which leads to = = =D D D 02 3 4 for arbitrary ξ. Therefore,
Φ ξ( ) = D1 and the same result is also obtained by using a wave
propagation method [8].

The thickness shear vibration, which only vibrates at ω ω= ,o is
a special scenario of the Timoshenko beam vibration. Abbas and
Thomas [5], Bhashymam and Prathap [6] presented an interesting
way of viewing the Timoshenko beam vibration, which is the
coupling among the vibrations of the Euler–Bernoulli beam, simple
shear and pure shear. The thickness shear vibration is shown to be
the fundamental mode of the pure shear vibration [6]. For a rec-
tangular beam with =A bh and =I bh /123 (b, h: beam width and
thickness, respectively), the dimensional frequency of Ωo as given

in Eq. (13) is Ω κ ρ κ ρ= ( ) = ( )GA I h/ 12 / ,o
2 which is to say that

geometrically, this frequency depends on the beam thickness only.
Physically, this vibration only occurs in the cross-section and is the
type of the pure shear vibration [6]. For these geometric and
physical reasons, it is called the thickness shear vibration [8,10].
Because Y ≡ 0 and only cross-section rotation, ϕ (ϕ Φ= ωτei of Eq.
(5)), vibrates transversely (in the −y z plane), Downs called this
vibration “transverse vibration without transverse deflection” [4].
Because the beam vibration frequency (ω) cannot surpass ωS, for
cases 2 and 3 of ωS o ωo o ωE and ωS o ωE o ωo, the thickness
shear vibration can not occur. Clearly, whereas the nonlocal effect
has no impact on Ωo (ωo), ΩS (ωS) is determined by the nonlocal
effect. Only in the case 1 ofωo o ωS o ωE, can the shear thickness
vibration occur, which is the same condition for the occurrence of
two frequency spectra. Therefore, <l I A/ is the requisite for the
occurrence of both two frequency spectra and thickness shear
vibration.

2.3. Boundary conditions

In conjunction with Eq. (5), the bending moment M and shear
force Q as defined in Eq. (A.8) are now nondimensionalized as
follows
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e M Q
QL
EI

e Q, , 27
i

o
i

o

2

where Mo and Qo are given as follows

ω Φ
ξ

ω ω
ξ

Φ= ( − ) ∂
∂

− = ( − )∂
∂

+
( )

M R R R Y Q R R
Y

R1 , .
28o o2 3

2
3

2
1 3

2
1

For the hinged condition, the transverse displacement and mo-
ment at the ends are zero, i.e., ξ ξ( ) = ( ) =Y M 0e o e (ξ = 0e or 1). For
the clamped condition, the transverse displacement and cross-
section rotation at the ends are zero, i.e., ξ Φ ξ( ) = ( ) =Y 0e e (ξ = 0e or
1). For the free condition, the moment and shear force at the ends
are zero, i.e., ξ ξ( ) = ( ) =M Q 0o e o e (ξ = 0e or 1).
3. Results and discussion

The eigenfrequencies of the nonlocal Timoshenko beam
with three types of boundary conditions: hinged–hinged,
clamped–clamped and cantilever, are examined. The approx-
imate methods may lead to the incomplete solution set of
nonlocal beam eigenfrequency [28], the eigenfrequency pro-
blem here is formulated to extract its exact values. For all the
computations, h/L and ν are fixed as =h L/ 1/5, ν = 0.3 and
κ ν ν= ( + ) ( + )5 1 / 6 5 . As a result, the following parameters are
also fixed: =R 100,1 =R 1/300,2 ω = =R R/ 173.205o 1 2 and

ν= ( + ) =E G/ 2 1 2.6. R3 is thus the only varying parameter.

3.1. Hinged–hinged beam

The four boundary conditions are the following

( ) = ( ) = ( ) = ( ) = ( )Y M Y M0 0, 0 0, 1 0, 1 0. 29o o

In conjunction with Eq. (28) and ( ) =Y 0 0, ( ) =M 0 0o is shown to be
equivalent to Φ ξ∂ ∂ ( ) =/ 0 0. Similarly, in conjunction with Eq. (28)
and ( ) =Y 1 0, ( ) =M 1 0o is shown to be equivalent to Φ ξ∂ ∂ ( ) =/ 1 0.
The hinged–hinged boundary conditions of Eq. (29) can now be
written in a more convenient form as follows

Φ
ξ

Φ
ξ

( ) = ∂
∂

( ) = ( ) = ∂
∂

( ) =
( )

Y Y0 0, 0 0, 1 0, 1 0.
30

As discussed in Section 2.2, there are three different solution forms
depending on the value of ac. Since =ac 0 corresponds to a special
scenario of thickness shear vibration whose eigenfrequency is ωo

and its mode shape is easily obtained as presented above, here we
only deal with the two cases of ac o 0 and ac 4 0.
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For ac o 0 and in conjunction with Eqs. (16) and (18), the first
two boundary conditions of Eq. (30) are given as follows

⎪

⎪⎧⎨
⎩ Ψβ Ψ β

+ =
+ = ( )

C C

C C

0,

0. 31

1 3

1 1 1 2 2 3

For Eq. (31) to hold, there are two choices: Ψ β Ψβ− = 02 2 1 1 or
= =C C 01 3 . In conjunction with the definitions of Ψ1 and Ψ2 in Eq.

(19), Ψ β Ψβ− = 02 2 1 1 can only be satisfied by ω ω= =R R/ ,S1 3 which
is physically impossible. As discussed above, ωS is a cut-off fre-
quency and all frequencies of a vibrating nonlocal Timoshenko
beammust be smaller than this frequency, i.e.,ω o ωS, which also
means Ψ β Ψβ− ≠ 02 2 1 1 . Therefore, we have to conclude that

= =C C 01 3 . With = =C C 0,1 3 the third and fourth boundary con-
ditions yield the following transcendental equation:

β β Ψ β Ψβ( − ) =sinh sin 01 2 2 2 1 1 . Because Ψ β Ψβ− ≠ 0,2 2 1 1 we have
β =sinh 01 or β =sin 02 . β =sinh 01 leads to β = 01 ; with β1 defined

in Eq. (17), β = 01 yields =ac 0, which contradicts with our pre-
condition of ac o 0. Therefore, we conclude that sinh β1 ≠ 0. Now
the only choice is β =sin 0,2 which yields β π= n2 (n is a positive
integer). With the β2 definition in Eq. (17), β π= n2 gives

π( + − ) ( ) =b b ac a n4 / 22 and by performing two successive
squaring operations and substitutions of a, b and c as given in Eq.
(8), the following equation is obtained

ω ω* + * + * = ( )a b c 0, 324 2

where a*, b* and c* are defined as

( )

π π

π π

π

* = ( + + )
* = −[ ( + ) + ( + + ) + ]
* = 33

a R n R n R

b n R R R n R R R R R

c n R

2 1 ,

1 1 ,

.

2
4 4

3
2 2 2

3
4 4

3 1 2
2 2

1 2 1 3 1
4 4

1

The two roots of Eq. (32) are obtained as follows

ω = − * ± * − * *
* ( )

b b a c
a

4
2

. 341,2
2

2

Both ω1
2 and ω2

2 yield positive values; because ω ω> ,1
2

2
2 ω1

2 is re-
ferred to as the upper root and ω2

2 as lower root [3]. When R2
becomes vanishingly small, the upper root tends to infinity, which
is unphysical and thus must be discarded. In Eq. (34), only the
lower root should be kept, i.e.,

ω = − * − * − * *
* ( )

b b a c
a

4
2 35

2
2

For a local Timoshenko beam, i.e., =R 0,3 Eq. (35) gives the fol-
lowing result

( )
ω

π π π
=

( + ) + − [ ( + ) + ] −
36

n R R R n R R R n R R

R

1 1 4
2

.2
2 2

1 2 1
2 2

1 2 1
2 4 4

1 2

2

The shear effect on the Timoshenko beam eigenfrequencies is
much larger than that of the rotatory inertia [3]. For a local Ti-
moshenko beamwith no rotatory inertia effect, i.e., = =R R 0,2 3 Eq.
(32) becomes the following

π ω π−( + ) + = ( )n R n R 0, 372 2
1

2 4 4
1

which yields

ω
π

π
=

+ ( )
n R

n R
.

38
2

4 4
1

2 2
1

It is noted that the limit of Eq. (38) yields
ω π π π= ( + ) =→∞ n R n R nlim / ,R

2 4 4
1

2 2
1

4 4
1

which recovers the eigen-
frequencies of the hinged–hinged local Euler–Bernoulli beam.

For ac o 0, following the same derivation procedures pre-
sented above, we arrives at the transcendental equation of

β β Ψ β Ψβ* *( * − *) =sin sin 0,1 2 2 2 1 1 which leads to β π* = n1 and β π* = n2 . In
conjunction with the definitions of β*
1 and β *

2 in Eq. (21), both
β π* = n1 and β π* = n2 yield the same equation as Eq. (32), which is
somewhat surprising and worthy of some comments. Physically,
ac o 0 means ω o ωo and ac 4 0 means ω 4 ωo; and math-
ematically, these two scenarios also generate two different solu-
tion forms for Y and Φ. However, the two different solution forms
lead to the same eigenfrequency expression of Eq. (35). When the
integer n changes, the eigenfrequency (ω) obtained by either Eq.
(35) or Eq. (36) or Eq. (38) can be either larger or smaller than ωo.
Because the solution form prescribes one frequency spectrum, the
final derivation of eigenfrequency covers both frequency spectra
regardless of the solution form. Therefore, there is a logic incon-
sistency here, which is also noticed by Levinson and Cooke [7] in a
different way. They [7] showed that the eigenfrequency larger than
ωo can be obtained by the solution form of the first frequency
spectrum for a hinged–hinged (local) Timoshenko beam; and
about this logic inconsistency, they concluded that “the shear
mode frequency (which is ωo here) is not a boundary between
‘two frequency spectra’.” However, we must emphasize here that
this conclusion only holds for the hinged–hinged Timoshenko
beam. For other types of boundary conditions such as clamped–
clamped and cantilevered ones as discussed later, the eigen-
frequency larger than ωo can only be obtained by the solution
form of the second frequency spectrum and the eigenfrequency
smaller than ωo can only be obtained by the solution form of the
first frequency spectrum. That the two different solution forms
lead to the same eigenfrequency expression for the hinged–hinged
beam, by our opinion, is purely coincidence.

The nth eigenfrequency of ωn is obtained by Eq. (35). Because it
is customary to present the square root of the (dimensionless)
eigenfrequency [19,22,29]. the variations of the first twelve γns
( γ ω=n n ) as the functions of R3 are presented in Table 1. The
corresponding γns of the local Euler–Bernoulli (LEB) beam [29] are
also presented for comparison reason. In this study, all parameters
except R3 are fixed and γ ω= = ( ) =R R/ 13.161o o 1 2

1/4 . It is observed
that as R3 increases, all γns (eigenfrequencies) monotonically de-
crease, which is more straightforwardly demonstrated in Figs. 2
and 3. Furthermore, the γns of higher modes decreases much more
dramatically than those of lower modes as R3 increases, which can
be clearly seen in Table 1. The nonlocal effect is size-dependent,
which is determined by three sizes: the unit cell/microstructure
size, the specimen size and the wavelength of variation of the
applied mechanical field [30]. At higher modes, the wavelength is
shorter and the nonlocal effect is thus more prominent, which, as a
result, leads to larger decreases of eigenfrequencies of higher
modes [23]. Fig. 2 plots γ1, γ2 and γ3 as the functions of R3. Fig. 3
plots γ10, γ11 and γ12 as the functions of R3. In Fig. 3, γ = 13.161o is

plotted as a horizontal line. γ ω= = ( )R R/S S 1 3
1/4 is also plotted. In

Table 1 and Fig. 3, it is observed that in certain range of R3, some
γns (eigenfrequencies) are larger than γ = 13.161,o which is of the
second frequency spectrum. For example, in Table 1, when

= −R 10 ,3
4 γns with n Z 7 are larger than γo. While, when = −R 103

2

or larger, none of γns is larger than γo. The reason is explained in
Fig. 1. For the Timoshenko beam eigenfrequency to be in the
second frequency spectrum, i.e., larger than γo, R3 needs to be
smaller than R2. Only when < =R R 1/300,3 2 can some γns surpass
the value of γ = 13.161o . Therefore, when < =R R 1/300,3 2 there are
two frequency spectra; when > =R R 1/300,3 2 there is only the
first frequency spectrum. In Fig. 2, γ1, γ2 and γ3 are fairly well-
separated and the gap distance among them shrinks with the in-
crease of R3. In Fig. 3, the gap distance among γ10, γ11 and γ12 is so
small that three γns almost stick together. Furthermore, the gap
distance between γn and γ +n 1 decreases as mode number n in-
creases, which can be seen more clearly in Table 1. Lei et al. call
this phenomenon as “the clustering of vibration modes in the
higher frequency range” [11]. The reason for the gap distance
shrinking or the clustering of higher modes is the one mentioned
above: the nonlocal effect causes the larger eigenfrequency



Table 1
Variation of the first twelve γns (γ ω=n n ) of the hinged–hinged nonlocal Timoshenko beam with the nonlocal parameter R3. =R 03 corresponds to the local Timoshenko

beam case and the γns of local Euler–Bernoulli (LEB) beam are also given.

R3 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12

0 3.048 5.686 7.870 9.706 11.289 12.686 13.943 15.091 16.152 17.142 18.073 18.955

10 −4 3.047 5.680 7.853 9.668 11.220 12.576 13.779 14.861 15.844 16.743 17.571 18.336

2× −10 4 3.046 5.674 7.836 9.631 11.154 12.470 13.625 14.649 15.564 16.387 17.131 17.806

10 −2 2.977 5.231 6.714 7.659 8.273 8.685 8.971 9.176 9.327 9.441 9.529 9.598

0.1 2.567 3.812 4.439 4.795 5.015 5.160 5.260 5.332 5.385 5.425 5.456 5.480
LEB π 2π 3π 4π 5π 6π 7π 8π 9π 10π 11π 12π

Fig. 2. γ1, γ2 and γ3 of a hinged–hinged beam as the functions of R3. Here γi is the
square root of the eigenfrequency, i.e., γ ω=i i .

Fig. 3. γ10, γ11 and γ12 of a hinged–hinged beam as the functions of R3. The hor-
izontal straight line is γ ω= = 13.161o o . ωo is the frequency of the thickness shear
vibration. The square root of the asymptotic shear frequency, i.e., γ ω= ,S S as a
function of R3 is also plotted.
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decreases of higher modes [23]. In contrast, the gap distance be-
tween γn and γ +n 1 of a local Euler–Bernoulli beam is the constant of
π. It is also seen that in Fig. 3, all three γns are below the curve of
γS. Actually, all γns are below the curve of γS. Again, the reason is
that γS is a square root of a cut-off frequency and thus, physically
no γn can be larger than γS [11]. It is noteworthy to mention that γS
intersects γ = 13.161o at = =R R1/3003 2.

3.2. Clamped–clamped beam

The four boundary conditions are the following

Φ Φ( ) = ( ) = ( ) = ( ) = ( )Y Y0 0, 0 0, 1 0, 1 0. 39

For ac o 0, in conjunction with Eq. (18), by substituting Eq. (16)
into Eq. (39), the eigenfrequency of a clamped–clamped beam is
determined by the following equation

Ψ Ψ
β β β β

Ψ β Ψ β Ψ β Ψ β

−

−

=

( )

1 0 1 0
0 0

cosh sinh cos sin

sinh cosh sin cos

0,

40

1 2

1 1 2 2

1 1 1 1 2 2 2 2

where β1 and β2 are given in Eq. (17); Ψ1 and Ψ2 are given in
Eq. (19).

For ac 4 0, in conjunction with Eq. (22), by substituting
Eq. (20) into Eq. (39), the following equation is obtained

Ψ Ψ

β β β β

Ψ β Ψ β Ψ β Ψ β

* *

* * * *

* * − * * * − *

=

( )

1 0 1 0
0 0

cos sin cos sin

sin cos sin cos

0,

41

1 2

1 1 2 2

1 1 1 1 2 2 2 2

where β*
1 and β *

2 are given in Eq. (21); Ψ*
1 and Ψ*

2 are given in Eq.
(23).

Unlike the analytical derivations for the hinged–hinged beam,
the eigenfrequencies of the clamped–clamped beam are de-
termined by the transcendental equations of Eqs. (40) and (41),
which have to be solved numerically by the Newton–Raphson
method [31]. When applying the Newton–Raphson method to find
the eigenfrequencies, we need to switch between Eqs. (40) and
(41) depending on whether ω o ωo or ω 4 ωo. The variations of
the first twelve γns (γ ω=n n ) as the functions of R3 together with
those of the local Euler–Bernoulli beam [29] are presented in
Table 2. In Fig. 4, γ1, γ2 and γ3 are plotted and in Fig. 5, γ10, γ11 and
γ12 are plotted. Except the differences in values, the γns of the
clamped–clamped beam share the following four trends with
those of the hinged–hinged beam: (1) All γns decreases mono-
tonically as R3 increases and the R3 impact on the γns of higher
modes is much more significant; (2) the gap distance between γn
and γ +n 1 becomes smaller as the mode number n increases, i.e., “the
clustering of vibration modes” [11] occurs; (3) all γn curves are
under/smaller than the asymptotic γS curve; (4) when

< =R R 1/300,3 2 there are two frequency spectra; when R3 4 R2,
there is only the first frequency spectrum.
In the computation of the eigenfrequencies of the clamped–
clamped beam, there are two distinct facts as compared with that
of the hinged–hinged beam. Firstly, the eigenfrequency of the first
frequency spectrum is obtained from Eq. (40) and that of the
second frequency spectrum is obtained from Eq. (41). Eqs. (40) and



Fig. 4. γ1, γ2 and γ3 of a clamped–clamped beam as the functions of R3.

Fig. 5. γ10, γ11 and γ12 of a clamped–clamped beam as the functions of R3. The
dotted lines are the horizontal γ ω= = 13.161o o and the asymptotic γS,
respectively.
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(41) result from two different solution forms and different solution
form prescribes different frequency spectrum. It is a unique and
unusual scenario for the hinged–hinged beam that the two dif-
ferent solution forms lead to the same eigenfrequency expression,
which covers two frequency spectra. Secondly, in the analytical
derivations of the hinged–hinged beam, the usage of ωS as a cut-
off frequency is a crucial one in the whole derivation. In contrast,
no (explicit) cut-off frequency information in Eqs. (40) and (41) is
used.

3.3. Cantilever beam

The four boundary conditions are the following

Φ( ) = ( ) = ( ) = ( ) = ( )Y M Q0 0, 0 0, 1 0, 1 0. 42o o

For ac o 0, in conjunction with Eqs. (18) and (28), by substituting
Eq. (16) into Eq. (42), the eigenfrequency of a cantilever beam is
determined by the following equation

Ψ Ψ
β β β β

β β β β

−

−

=

( )

f f f f

f f f f

1 0 1 0
0 0

cosh sinh cos sin

sinh cosh sin cos

0,

43

1 2

1 1 1 1 2 2 2 2

3 1 3 1 4 2 4 2

where fis are defined as follows

ω Ψβ ω ω Ψ β ω

ω β Ψ ω β Ψ

= ( − ) − = ( − ) −

= ( − ) + = − ( − ) + ( )

f R R R f R R R

f R R R f R R R

1 , 1 ,

, , 44

1 2 3
2

1 1 3
2

2 2 3
2

2 2 3
2

3 1 3
2

1 1 1 4 1 3
2

2 1 2

where β1 and β2 are given in Eq. (17); Ψ1 and Ψ2 are given in Eq.
(19).

For ac 4 0, in conjunction with Eq. (22) and (28), by sub-
stituting Eq. (20) into Eq. (42), the following equation is obtained

Ψ Ψ

β β β β

β β β β

* *

* * * * * * * *

* * − * * * * − * *

=

( )

f f f f

f f f f

1 0 1 0
0 0

cos sin cos sin

sin cos sin cos

0,
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1 2

1 1 1 1 2 2 2 2

3 1 3 1 4 2 4 2

where *f i s are defined as follows

ω Ψ β ω ω Ψ β ω

ω β Ψ ω β Ψ

* = ( − ) * * − * = ( − ) * * −

* = −( − ) * + * * = − ( − ) * + * ( )

f R R R f R R R

f R R R f R R R

1 , 1 ,

, , 46

1 2 3
2

1 1 3
2

2 2 3
2

2 2 3
2

3 1 3
2

1 1 1 4 1 3
2

2 1 2

where β*
1 and β *

2 are given in Eq. (21); Ψ*
1 and Ψ*

2 are given in Eq.
(23).

The variations of the γns ( γ ω=n n ) are presented in Table 3,
Figs. 6 and 7. The trends are the same as summarized in the above
section except a striking difference: γ1 monotonically increases
while all other γns decrease as usual with the increase of R3. In
Table 3, at =R 0.1,3 γ = 1.883,1 which is even larger than γ = 1.8751
as predicted by the local Euler–Bernoulli beam model. The ab-
normal γ1 increasing behavior with R3 is also verified by the finite
element analysis. This abnormal phenomenon is also observed by
Table 2
Variation of the first twelve γns (γ ω=n n ) of the clamped–clamped nonlocal Timoshenko

beam case and the γns of local Euler–Bernoulli (LEB) beam are also given.

R3 γ1 γ2 γ3 γ4 γ5 γ6

0 4.256 6.449 8.333 9.966 11.424 12.729

10 −4 4.254 6.442 8.314 9.927 11.357 12.624

2× −10 4 4.253 6.436 8.296 9.890 11.291 12.523

10 −2 4.140 5.905 7.102 7.879 8.404 8.765

0.1 3.497 4.248 4.705 4.945 5.119 5.224
LEB 4.730 7.853 10.995 14.137 17.279 20.420
Wang et al. [19] in a nonlocal cantilever Timoshenko beam and by
Lu et al. [22], and Xu [23] in a nonlocal cantilever Euler–Bernoulli
beam. Xu even found that the first two eigenfrequencies of a
nonlocal cantilever Euler–Bernoulli beam are larger than those of a
local one [23]. This abnormal phenomenon is somewhat puzzling.
Because the presence of rotatory inertia and shear force, which
increases the system inertia and decreases the system stiffness, the
γns predicted by the local Timoshenko beam model are always
smaller than those by the local Euler–Bernoulli beam model.
beam with the nonlocal parameter R3. =R 03 corresponds to the local Timoshenko

γ7 γ8 γ9 γ10 γ11 γ12

13.577 13.910 14.589 15.049 15.797 16.127
13.569 13.763 14.555 14.840 15.736 15.838

13.561 13.620 14.526 14.641 15.570 15.679

9.023 9.210 9.351 9.457 9.541 9.607

5.308 5.363 5.410 5.442 5.470 5.490
23.562 26.704 29.845 32.987 36.128 39.270



Fig. 6. γ1, γ2 and γ3 of a cantilever beam as the functions of R3.

Fig. 7. γ10, γ11 and γ12 of a cantilever beam as the functions of R3. The dotted lines
are the horizontal γ ω= = 13.161o o and the asymptotic γS, respectively.
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Furthermore, the presence of the nonlocal effect is to decrease the
system stiffness and thus eigenfrequencies as observed in both
nonlocal hinged–hinged and clamped–clamped Timoshenko
beams. Another example on the nonlocal effect reducing system
stiffness is in statics: the buckling loads with different boundary
conditions including the cantilevered ones all monotonically de-
crease with the increase of nonlocal effect (R3); and the nonlocal
Timoshenko beam model predicts smaller buckling loads than
those by the local Euler–Bernoulli beam model for the beams with
all different boundary conditions [20]. The static buckling of a
beam can be viewed dynamically as that its first eigenfrequency
approaches zero [32]. One explanation for this abnormal phe-
nomenon is that the buckling problem of nonlocal beams (Euler–
Bernoulli and Timoshenko) is self-adjoint for all types of boundary
conditions; while, the bending vibration problem of the nonlocal
cantilever beam is a special one, which is nonself-adjoint [33]. The
nonself-adjointness property can be attributed to a non-
conservative inertia moment acting on the beam free end [33],
which cannot be derived from a potential [33,34]. Reddy and El-
Borgi [34] pointed out that it is not possible to construct the un-
derlying quadratic functionals for nonlocal beam theories. Ac-
cording to Fernández-Sáez et al. [35], the nonself-adjointness is
also responsible for another problem that in a nonlocal Euler–
Bernoulli beam depending on the nonlocal parameter l, only a few
or even none of the natural frequencies can be calculated [22]. The
nonself-adjointness problem can be corrected by the following
two ways: One is to construct a functional by an inverse proce-
dure, which in essence modifies the boundary conditions of the
nonlocal cantilever beam as given in Eq. (42) to make the problem
self-adjoint [33]. The other is to formulate the nonlocal problem by
the integral form [35]. In comparison, Eq. (1) is the differential
formulation as reflected by Eq. (A.2).

This abnormal behavior can also be explained from another
different angle. Romano et al. [36] argued that due to the differ-
ential formulation, the nonlocal beam bending problem must sa-
tisfy additional constraint conditions called constitutive boundary
conditions to assure the existence and uniqueness of the solution.
While, the constitutive boundary conditions are incompatible with
the equilibrium equation in the bending field. Therefore, no
bending field solution in general exists [36]. If Romano’s statics
conclusion is extended to dynamics, this abnormal behavior is
caused by Eq. (16) because it cannot satisfy the constitutive
boundary conditions and it is thus not a real solution.

3.4. Vibration of higher modes as a mechanism to determine the
nonlocal effect

Although the first mode of the cantilever beam shows some
abnormal behaviors, it is noticed that Figs. 3, 5 and 7 are almost
the same: the γns of higher modes all approach γS and their dif-
ferences shrink as R3 increases. For example, at

= −R 10 ,3
4 γ =12 18.336, 15.838, 15.406 for the hinged–hinged,

clamped–clamped and cantilevered beams, respectively; and at
=R 0.1,3 γ =12 5.480, 5.490, 5.466 for the hinged–hinged, clamped–

clamped and cantilevered beams, respectively. It is noticed that in
Tables 1–3, as the mode number changes, the gap distance
Table 3
Variation of the first twelve γns (γ ω=n n ) of the cantilever nonlocal Timoshenko beam

case and the γns of local Euler–Bernoulli (LEB) beam are also given.

R3 γ1 γ2 γ3 γ4 γ5 γ6

0 1.847 4.295 6.635 8.559 10.214 11.644

10 −4 1.847 4.293 6.628 8.538 10.172 11.574

2× −10 4 1.847 4.292 6.620 8.517 10.131 11.506

10 −2 1.851 4.157 6.034 7.211 7.980 8.483

0.1 1.883 3.385 4.349 4.679 4.998 5.106
LEB 1.875 4.694 7.855 10.996 14.137 17.279
between γn and γ +n 1 fluctuates mildly around 3 for the local Euler–
Bernoulli beams with three different boundary conditions. In
contrast, for a nonlocal Timoshenko beam, the gap distance be-
tween γn and γ +n 1 shrinks dramatically as either mode number or
R3 increases. This gap distance shrinking phenomenon of eigen-
frequency is also observed by Wang et al. for a nonlocal Ti-
moshenko beam [19] and by Lu et al. for a nonlocal Euler–Bernoulli
beam [22]. Boundary conditions have very little impact on the
eigenfrequency variations of higher modes with R3. The facts of
the γns of higher modes approaching γS and their shrinking gap
with the nonlocal parameter R3. =R 03 corresponds to the local Timoshenko beam

γ7 γ8 γ9 γ10 γ11 γ12

12.872 13.467 14.059 14.443 15.215 15.582
12.775 13.431 13.961 14.346 15.086 15.406

12.679 13.389 13.867 14.252 14.953 15.248

8.830 9.074 9.252 9.384 9.485 9.563

5.257 5.300 5.385 5.404 5.457 5.466
20.420 23.562 26.704 29.845 32.987 36.128
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distances are responsible for the so-called “the clustering of vi-
bration modes in the higher frequency range” [11].

The intrinsic length of nonlocal effect, l, is often written as
=l e ao [12,19,20,22]. Here a is the elastic body internal length such

as lattice parameter or grain size, and eo is a constant to be de-
termined for each material. The nonlocal effect indicated by l is
determined by the inhomogeneity of material microstructure [14].
Generally speaking, the nonlocal effects in amorphous solids are
larger than those of crystalline solids [14]. So far, there are still no
definite experimental methods of determining l or eo. An effective
way of finding l or eo is to match the results predicted by the
nonlocal theories of elastic continuum with those by the discrete
atomistic simulation or lattice dynamics. For example, Eringen [12]
found =e 0.39o by matching the dispersion relation predicted by
the nonlocal elasticity theory with that by Born–Kármán model of
lattice dynamics. However, it should keep in mind that different
matching methods may give quite different results. For example,
by matching the buckling strains of carbon nanotubes (CNT) pre-
dicted by the nonlocal elasticity theory and by the molecular
mechanics simulation, Zhang et al. found =e 0.82o [37]; while,
Sudak found =e 112.7o [38]. By matching the transverse deflec-
tions predicted by the nonlocal elasticity theory and by the mo-
lecular dynamics simulation, Liang and Han [39] found that rather
than a constant, the eo for a CNT depends on its chirality and
geometry, which is fitted as = +e R a0.0297 / 0.204o for the zigzag
CNT and = +e R a0.052 / 0.1528o for the armchair CNT (R: CNT ra-
dius). Wang et al. [19] showed that eo may even vary in a large
range when a CNT vibrates transversely at different frequencies.
Zhang et al. [40] found that the eo of a nonlocal beam varies
(mildly) with different boundary conditions when an axial force is
present. Besides the difficulty and inconsistency in the above
matching methods, boundary conditions, which are a big issue in
the micromechanics tests, also play a key role [19,37,39,40]. In
contrast, γS (or ΩS) is independent of the boundary conditions.
Furthermore, as defined in Eq. (13),ΩS is independent of the beam
length and insensitive to the beam cross-section geometry (as
embodied in κ). Therefore, the asymptotic property of the eigen-
frequencies of higher modes can be used as a reliable mechanism
to determine the nonlocal effect: once the eigenfrequency of a
higher mode is measured, which is (close to) ΩS, the nonlocal
effect l is then easily determined by Eq. (13).

It should be noted that, whereas the number of modes in the
continuum Timoshenko beam is infinite, the number of modes in
the lattice beam is equal to the number of layers. The differential
equation (such as Eq. (1)) of an elastic continuum in essence is the
long wave, low frequency limit of the finite difference equation of
lattice dynamics [41]. With the increase of mode number, fre-
quency increases and wave length decreases, the lattice mode
shape will deviates more and more from the sinusoidal form (as
given in Eq. (20)) characteristic of the continuum [41], which leads
to an increasing error and final break-down of the continuum
theory. Therefore, for a nanometer scaled beam, one should be
cautious about the validity of the higher modes’ eigenfrequencies
computed by the nonlocal continuum theory.

3.5. Comparison of nonlocal Timoshenko and nonlocal Euler–Ber-
noulli beams

The eigenfrequencies predicted by the nonlocal Timoshenko
and nonlocal Euler–Bernoulli beam theories are compared in Fig. 8.
In Fig. 8, (a), (b) and (c) are the γ1s of the hinged-hinged, clamped–
clamped and cantilever beams, respectively; (d), (e) and (f) are the
γ2s of the hinged-hinged, clamped–clamped and cantilever beams,
respectively. The nonlocal Euler–Bernoulli beam theory and its
derivation on the eigenfrequency computation are presented in
Appendix C. In all the cases, the eigenfrequencies predicted by the
nonlocal Euler–Bernoulli beam theory are always larger than those
by the nonlocal Timoshenko beam theory. The reasons are that in
the Timoshenko beam model, the rotatory inertia effect (the
ρI∂2ϕ/∂2t term in Eq. (1)) and shear force effect (the
κ ϕ( + ∂ ∂GA w x/ ) term in Eq. (1)) are considered. The rotatory inertia
increases the system effective mass and shear force decreases the
system stiffness. As a result, the Timoshenko beam theory leads to
lower eigenfrequencies than those by the Euler–Bernoulli beam
theory. It is also noticed that in Fig. 8(c), the abnormal behavior of
γ1 increasing with R3 is also captured by the nonlocal Euler–Ber-
noulli beam theory. Another characteristics noticed is that the γ2
differences predicted by the nonlocal Timoshenko and Euler–Ber-
noulli beam theories are larger than those of γ1 for all three beams
with different boundary conditions.
4. Conclusions

To model a nonlocal Timoshenko beam, the nonlocal shear ef-
fect must be considered. Otherwise, it leads to an infinite ωS,
which is unphysical. There are three frequencies (ωS, ωE and ωo)
determining the vibration behavior of a nonlocal Timoshenko.
Since ωS o ωE for an isotropic Timoshenko beam, ωo and ωS are
the two defacto frequencies playing the roles: ωo determines the
solution forms; ωS is the cut-off frequency; when ωo o ωS, there
are two frequency spectra and thickness shear vibration; when ωo

4 ωS, there is only the first frequency spectrum. For a rectangular
Timoshenko beam, ωo o ωS also leads to an important geometric
relation of <l I A/ and = ( )I A h/ / 2 3 for a rectangular beam (h:
thickness). As l measures the nonlocal effect, ( )h/ 2 3 is a critical
length determining the beam frequency spectra: when nonlocal
effect is weak, i.e., < ( )l h/ 2 3 , there are two frequency spectra
and thickness shear vibration; when nonlocal effect is strong, i.e.,

> ( )l h/ 2 3 , there is only the first frequency spectrum. Boundary
conditions have significant impact on the eigenfrequencies of
lower modes and much less impact on those of higher modes. The
eigenfrequencies with large mode numbers asymptotically ap-
proach ωS. “The clustering of vibration modes in the higher fre-
quency range” phenomenon [11] is caused by that the nonlocal
effect on different vibration mode is different. Because ωS is in-
dependent of the boundary boundary conditions, the beam length
and insensitive to the beam cross-section geometry, which is a
huge advantage in the micro/nanomechanics test, it is suggested
as a new and reliable method to determine the nonlocal effect.
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Appendix A. Derivation of the governing equations for the
nonlocal Timoshenko beam vibration

The kinematic assumptions of the Timoshenko beam model are
the followings [17]

⎜ ⎟⎛
⎝

⎞
⎠

ϕ ϕϵ = ∂
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ϵ = + ∂
∂ ( )

z
x

w
x

,
1
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,
A.1xx xz

where ϵxx and ϵxz are the normal axial strain and shear strain; ϕ is
the rotation of cross-section and w is the transverse displacement.
Here x, y and z are the directions along the beam length, width and
thickness, respectively. A generalized nonlocal constitutive rela-
tions are given as follows [21]
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where sxx and sxz are the normal and shear stresses, respectively. E
is the Young’s modulus and G is the shear modulus. l is an intrinsic



Fig. 8. (a), (b) and (c) are the γ1s of the nonlocal hinged–hinged, clamped–clamped
and cantilever beams, respectively. (d), (e) and (f) are the γ2s of the nonlocal hin-
ged–hinged, clamped–clamped and cantilever beams, respectively.
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length of nonlocal effect and α is a dimensionless scalar indicator.
By definition, the bending moment (M) and shear force (Q) are

given as

∫ ∫σ σ= = = ϵ ( )M z dA Q dA G, 2 .
A.3A

xx
A

xz xz

where A is the cross-section area. Substituting the constitutive
relations of Eq. (A.2) into Eq. (A.3) leads to the following
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In the above derivation,the shear stress and strain are assumed
constant across the thickness direction, which is not true in the
viewpoint of a strict analysis of elasticity [26]. Therefore, κ, the
shear correction factor, is introduced.

The elastodynamics of plane deformation gives the following
equations of motion
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where ρ is the density. For the beam model, σ σ= ∂ ∂ =z/ 0zz zz .
Multiplying z to the both sides of Eq. (A.5) and integrating over the
cross-section (the −y z plane), we obtain the following equation
in conjunction with Eq. (A.3)
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where q is a prescribed transverse load per unit length. The fol-
lowing two equations are obtained by eliminating Q and taking the
derivative on the second equation of Eq. (A.6), respectively
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Substituting Eq. (A.7) into Eq. (A.4), we have
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By substituting Eq. (A.8) into Eq. (A.6), the governing equations of
a nonlocal Timoshenko beam are obtained as follows
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For free vibration, i.e., = ∂ ∂ = ∂ ∂ =q q x q x/ / 0,2 2 Eq. (A.9) is reduced
to Eq. (1).
Appendix B. Proof of a and b being positive

When α = 0, b as given in Eq. (8) becomes the following

ω ω ω ω

ω ω
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When α = 1, b now becomes the following
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In conjunction with Eqs. (B.1) and (B.2), the sufficient and neces-
sary condition for b 4 0 is ω < [ + ( + )] ( )R R R R R2 1 /2

1 2 3 2 3
= ( ) + +R R R R R R1/ / /2 3 1 3 1 2 . As discussed in Section 2 and proved by
Lei et al. [11], ω2 o 1/(R2R3) and ω2 o R1/R3 because of the
presence of two cut-off frequencies, which leads to

ω < ( ) + < ( ) + +R R R R R R R R R R2 1/ / 1/ / /2
2 3 1 3 2 3 1 3 1 2 and the proof of b

4 0 is done. Similarly, because ω2 o 1/(R2R3) and ω2 o R1/R3, it
is obvious that ω α ω= ( − )( − ) >a R R R R1 02 3

2
1 3

2 .
Appendix C. The nonlocal Euler–Bernoulli beam theory and its
eigenfrequency solution

The nonlocal Euler–Bernoulli beam theory gives the following
governing equation [22]:
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With the same nondimensionalization scheme as given in Eq. (2),
the above equation now becomes the following
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Again, by assuming ξ τ ξ( ) = ( ) ωτW Y e, i and substituting it into the
above equation, the following equation is obtained
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Y is with the following solution form:

( )ξ β ξ β ξ β ξ β ξ( ) = ( ) + ( ) + ( ) + ( ) C.4Y C C C Ccosh sinh cos sin ,1 1 2 1 3 2 4 2
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where β1 and β2 are defined as follows:

β
ω ω ω

β
ω ω ω

=
− + +

=
+ +

( )

R R

R R

4
2

,

4
2

.
C.5

1
3

2
3
2 4 2

2
3

2
3
2 4 2

The bending moment M and shear force Q are given as follows [22]:
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In conjunction with Eq. (C.6), the following boundary conditions
hold for a hinged–hinged beam
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By substituting Eq. (C.4) into the above boundary conditions, the nth
eigenfrequency of a hinged–hinged beam (ωn) can be analytically
derived as follows
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For the clamped–clamped beam, the following boundary conditions
hold
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By substituting Eq. (C.4) into Eq. (C.9), the following eigenvalue
problem is formulated to numerically compute ωn.
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In conjunction with Eq. (C.5), the following boundary conditions
hold for a cantilever beam

ξ ξ
ω

ξ
ω

ξ

( ) = ∂
∂

( ) = ∂
∂

( ) + ( ) =

∂
∂

( ) + ∂
∂

( ) =
( )

Y
Y Y

R Y

Y
R

Y

0 0, 0 0, 1 1 0,

1 1 0.
C.11

2

2 3
2

3

3 3
2

Substituting Eq. (C.4) into Eq. (C.11) leads to the following eigenvalue
problem for a cantilever beam
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where f1 and f2 are defined as β ω= +f R1 1
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respectively.
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