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Transition routes of thermocapillary convection are complex and diversiform in rectangular layers. In
general, three types of transition routes were observed in thermocapillary convection, including quasi-
periodic bifurcations, period-doubling bifurcations and tangent bifurcations. The tangent bifurcation is
a peculiar type of bifurcations, which often appears accompanied with other types of bifurcation
sequences. In our experiments, a detailed research on tangent bifurcations of thermocapillary convection
in rectangular liquid layers was conducted through the measurement of single-point temperature oscil-
lation in liquid. There are different tangent bifurcation series for various of experimental conditions,
including different Prandtl numbers of silicone oil and different aspect ratios. It has certain occasionality
for appearance of the tangent bifurcation, mainly in the experimental condition of Prandtl number of sil-
icone oil equal to 16 (1 cSt) or Prandtl number equal to 25 (1.5 cSt). Chaotic characteristics of bifurcations
are investigated by the method of phase-space reconstruction, maximum Lyapunov exponent and per-
mutation entropy.

� 2017 Published by Elsevier Inc.
1. Introduction

The thermocapillary convection is driven by non-uniformity of
surface tension, which comes from non-uniformity of surface tem-
perature [1]. Thermocapillary–buoyancy flow is the main form of
natural convection. Transition between the steady and the oscilla-
tory states involves a nonlinear instability process [2]. A bifurca-
tion is a complex structure in the nonlinear system. Deep
investigations of this nonlinear phenomenon are of great benefit
to understand the nonlinear behavior. In the past few decades, this
classic physical phenomenon has attracted many researchers’
interest. In general, there are three types of bifurcations in chaotic
dynamics: period-doubling bifurcations, quasi-periodic bifurca-
tions and tangent bifurcations. These bifurcations have been found
in various convection including Rayleigh-Bénard convection and
thermocapillary convection. Gollub and Benson [3] have done the
experiment on Rayleigh-Bénard convection and research transition
routes from laminar to turbulent flow. They observed four routes
to non-periodic motion, including quasi-periodic motion at two
frequencies-phase locking or entrainment, period doubling bifur-
cations of a periodic flow, quasi-periodic motion of three generally
incommensurate frequencies, and the process of intermittent non-
periodicity by varying the geometrical aspect ratio, Prandtl num-
ber, and mean flow. Mukutmoni [4] has reported the numerical
study on bifurcation sequences in Rayleigh-Bénard convection.
He investigated the counter-intuitive transition route: steady state
– periodic – quasi-periodic – steady state. Bucchignani and Fulvio
[5,6] has detected three different bifurcation sequences, but only
identified two individual mechanisms for the transition to the
non-periodic motion: the subharmonic cascade and the quasi-
periodicity with three incommensurate frequencies. Li et al. [7]
reported the numerical results about the transition to chaos in
double-diffusive Marangoni convection in a rectangular cavity
with horizontal temperature and concentration gradients. They
found that the supercritical solution branch takes a quasi-
periodicity and phase locking route to chaos while the subcritical
branch follows the Ruelle–Takens–Newhouse scenario. Transient
intermittency in the supercritical branch is observed and physical
instability mechanisms of the subcritical branch are identified.
Yu et al. [8] reported a counter-intuitive transition route from a
perspective of the flow field in the capillary flow. They considered
that the reverse transition from the three-dimensional unsteady
flow to the steady flow is the reason that the spatial complexity
of the flow increases as the thermal Marangoni number increases.
Hu et al. [9] have researched the liquid-bridge model of the floating
half zone, and reported the experimental and numerical results of
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Nomenclature

d thickness of the liquid layer, mm
t time, s
L the length of the liquid layer between the cold-side and

hot-side, mm
g gravitational acceleration, m�s�2

T temperature of the measurement point, �C
DT applied temperature difference between the two side-

walls, �C
Pr Prandtl number of silicone oil
Ma Marangoni number of thermocapillary convection
f1 the first fundamental frequency, Hz
f2 the second fundamental frequency, Hz

m the embedding dimension
hp the permutation entropy

Greek symbols
ki the Lyapunov exponent
m kinematic viscosity, m2�s�1

b thermal expansion coefficient, �C�1

j thermal diffusivity, m2�s�1

q density, kg�m�3

r surface tension, N�m�1

C aspect ratios of the liquid layer
s the time-delay of the phase-space reconstruction

H. Jiang et al. / Experimental Thermal and Fluid Science 88 (2017) 8–15 9
the transition process and the period-doubling bifurcation transi-
tion route in oscillatory thermocapillary convections. Zhu et al.
[10] did some research on thermocapillary convection in rectangu-
lar liquid layers, and observed two types of transition routes, the
period-doubling bifurcation and the quasi-periodic bifurcation. In
addition, Zhu et al. [11] also researched characteristics of surface
oscillation in the same experimental model.

The research about transition routes of thermocapillary convec-
tion has been a difficult job all the time, especially in rectangular
liquid layers. Due to the weakness of temperature oscillations
and the complexity and diversity of transition processes, our study
has been immensely challenging. The aim of the present research
work is to explore and summarize different types of bifurcations
in transition routes of thermocapillary convection on the basis of
our previous research work [10].

In the present paper, an important experimental finding is the
tangent bifurcation transition route. Different types of tangent
bifurcation transition cascades could be observed obviously in
our experiments, and chaotic characteristics of tangent bifurca-
tions could be analyzed in the phase-space.

2. Experimental setup and techniques

In order to research on evolvement of temperature oscillation in
the experiment, we constructed a thermocapillary convection sys-
tem as shown in Fig. 1.

It consists of a rectangular container lateral heated, a tempera-
ture controller system and a temperature measurement system.
The rectangular container is made of K9 optical glass with the
thickness of 6 mm. The size of the rectangular container is
52 mm � 36 mm � 6 mm, and the left cold end is a copper wall
cooled by a semiconductor radiator while the right end is the same
Fig. 1. The controlling system of
copper wall heated by an electrothermal film, as is shown in Fig. 2.
The two ends of the rectangular container are controlled through
two T-type thermocouples connected with Eurotherm 904P tem-
perature controllers, which is the temperature controller system.
The temperature measurement system consists of T-type thermo-
couples, the Keithley 2182A Nanovoltmeter and a LabVIEW soft-
ware platform. The filament diameter of T-type thermocouples is
60 lm, and the size of welding head is 0.2 mm. The thermocouple
as a sensor transfers the temperature signal to voltage signal which
could be measured by the Nanovoltmeter. Then the temperature
oscillation signal could be imported into the LabVIEW software
platform shown in Fig. 3 that could calculate power spectra of
the temperature signal with the fast Fourier transform and time-
frequency spectra of temperature oscillation series with the
short-time Fourier transform. The sensitivity of the temperature
measurement system is 0.001 �C.In our experiment, the sampling
frequency is 5 Hz due to the fundamental frequency of tempera-
ture oscillation is rather small.

For a single-point measurement mode, the selection of measur-
ing point position is of vital importance. In the experiment, the
measuring point is located in the middle of liquid layers and kept
away from the side wall, which also could avoid the influence of
boundary layers. In addition, a Plexiglas lid is put on the rectangu-
lar container, which can reduce the influence of evaporation of
fluid in convection. Therefore, a steady thickness of the liquid layer
can be maintained in the experimental run. There is a slit in the
middle of the Plexiglas lid, which can be passed through by the
thermocouple across a plastic tubing fixed in a holder. The holder
with a spiral micrometer can rise and fall through regulating the
scale, and then thermocouples could be located in the appropriate
position according to our experimental needs. In addition, we have
different arrangements for thermocouples in various location of
thermocapillary convection.



Fig. 2. The picture of a rectangular liquid container.
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liquid layers in the experiment. The sound experimental results
show that the same flow characteristic has been measured on
the basis of the collected data, which indicates that thermocouples
do not affect the thermocapillary convection.

To conduct the measurement on temperature oscillation stea-
dily, the step-heating mode has been adopted over the experimen-
tal run and the step interval of temperature difference is 0.5 �C.
Gradually escalate temperature difference between the hot wall
and the cold wall to establish the convection system.When the tar-
get temperature difference has been attained, a period of constant
temperature difference is maintained. Then the power spectrum
analysis on temperature oscillation in each stage of constant tem-
perature differences has been carried out, which could avoid and
exclude the transient effect of the step-heating mode in the
experiment.
Fig. 3. The sketch map of Lab
The working fluid used in our experiments is Shin-Etsu KF96 sil-
icone oil of 1 cSt and 1.5 cSt, which could be characterized by
Prandtl number (Pr). Physical properties of silicone oil are listed
in Table 1. In addition, we could control over the influence of buoy-
ancy by changing the thickness of the layer, which is defined as
C = L/d. Here L is the length of the liquid layer between the cold-
side and hot-side, and d is the thickness of the liquid layer. The
strength of thermocapillary convection is characterized by the

Marangoni number, Ma ¼ ð@r=@TÞðDT=LÞd2
qmj , where q is the density, m is

the kinematic viscosity, j is the thermal diffusivity, @r/@T is the
temperature coefficient of surface tension, and DT is the tempera-
ture difference between the cold-side and hot-side.
3. Results and discussion

Many transition routes in our experiments could be observed,
as with the experimental findings of Gollub and Benson [3].
Tangent bifurcation is a peculiar form of bifurcations in our
experiments, which rarely appears in previous experiments. In
principle, tangent bifurcations will appear accompanied with other
types of bifurcations, and it may be correlated with various types of
intermittency [12].

3.1. Transition routes

The first transition route is the tangent bifurcation sequence
only. When Pr = 25 and C = 17.3, thermocapillary convection of a
rectangular liquid layer follows the tangent bifurcation transition
route. The evolution process could be observed distinctly from
time-frequency spectrum in Fig. 4. Through time-frequency spec-
trum of the temperature oscillation series, the transition process
of thermocapillary convection could be divided into different
phases: the periodic bifurcation, the period-tripling bifurcation,
and the period-sextupling bifurcation. At the beginning, there is
VIEW software platform.



Table 1
Physical properties of silicone oil.

Silicone oil (cSt) m (m2�s�1) q (kg�m�3) b (�C�1) j (m2�s�1) r (N�m�1) @r/@T (N�m�1��C�1) Pr

1 1e�6 818 1.29e�3 6.19e�8 1.69e�2 �7.55e�5 16
1.5 1.5e�6 852 1.27e�3 5.95e�8 1.77e�2 �7.35e�5 25

Fig. 4. Time-frequency spectrum of a temperature oscillation series when Pr = 25 and C = 17.3.
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only one frequency in time-frequency spectrum. When the time is
approximately 5000 s, three frequencies will appear distinctly. And
when time to 9000 s, six frequencies will come into being, which
will last for a period. Besides, the fundamental frequency increases
over time because the Marangoni number is increasing gradually.
And the variation of Ma has also been displayed in Fig. 4. In this
experimental process, Ma range from 4266 to 4517 corresponds
to a period of time from 0 to 5000 s. Then Ma range from 4517
to 4768 corresponds to time from 5000 to 9000 s. Finally Ma range
from 4517 to 4768 corresponds to the period of time beyond
9000 s. Therefore, Ma has been selected the control parameter in
the following experiment and analysis.

A series of power spectrum analyses on single-point tempera-
ture oscillations in liquid layers are performed, shown in Fig. 5.
Actually, the determination of the fundamental frequency is of
key importance in the power spectrum. The fundamental fre-
quency is the one when the regular oscillation in convection
appears for the first time. And then the fundamental frequency
changes little once it has been determined in every experimental
period. Hence, the fundamental frequency is not always the one
with the maximal amplitude of frequency peak, because the power
Fig. 5. Time histories of temperature oscillation and corresponding power spectra at diff
Ma = 4768.
of other frequencies may also be beyond the power of the funda-
mental frequency with the enhancement of convection. As is
shown in Fig. 5(a), when Ma = 4266, thermocapillary flow first
destabilizes to oscillate periodically, f1 is the fundamental fre-
quency in the power spectrum. When Ma = 4517, shown in Fig. 5
(b), sub-harmonics of one-third and two-thirds of the fundamental
frequency (1/3 f1 and 2/3 f1) will appear in the power spectrum. As
the Marangoni number increases to 4768, sub-harmonics of from
1/6 f1 to 5/6 f1 can be identified, as shown in Fig. 4(c). The relation-
ship between the fundamental frequency and other sub-harmonics
has been listed in Table 2. However, the tangent bifurcation is
instable, and it will degenerate to the periodic oscillation over
time. This is the process of tangent bifurcation.

Another transition route is the tangent bifurcation cascade
along with the quasi-periodic bifurcation. We can identify the tran-
sition route in the experimental condition of Pr = 16 and C = 14.9
from Fig. 6. The transition process is composed of two different
types of bifurcations in a long experimental run. As is shown in
power spectra, thermocapillary flow starts oscillating periodically
with the fundamental frequency of f1 in Fig. 6(a). Then the second
fundamental frequency f2 appears in Fig. 6(b), and all the other fre-
erent Marangoni number for Pr = 25 and C = 17.3: (a) Ma = 4266; (b) Ma = 4517; (c)



Table 2
The relationship between the fundamental frequency and other sub-harmonics at different Marangoni number in the experimental condition of Pr = 25 and C = 17.3.

The periodic bifurcation The period-tripling bifurcation The period-sextupling bifurcation

Ma 4266 4517 4768
The fundamental frequency 0.290 (f1) 0.298 (f1) 0.308 (f1)
Other sub-harmonics 0.580 (2f1), 0.870 (3f1), . . . 0.105 (1/3f1), 0.193 (2/3f1), 0.405 (4/3f1),

0.490 (5/3f1), 0.598 (2f1), . . .
0.048 (1/6f1), 0.103 (2/6f1), 0.160 (3/6f1),
0.205 (4/6f1), 0.255 (5/6f1), . . .

Fig. 6. Time histories of temperature oscillation and corresponding power spectra at different Marangoni number for Pr = 16 and C = 14.9: (a) Ma = 6498; (b) Ma = 6850; (c)
Ma = 7025; (d) Ma = 7728; (e) Ma = 9133; (f) Ma = 10,538.
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quencies can be expressed by the linear combination of the two
fundamental frequencies f1 and f2. This bifurcation is known as
the quasi-periodic bifurcation, which is the similar experimental
finding of Zhu et al. [10]. With the increase of Marangoni number,
thermocapillary convection reverse to periodic motion in Fig. 6(c).
Following a further increase in the Marangoni number, a period-
tripling bifurcation and a period-sextupling bifurcation will appear
in order in Fig. 6(d) and (e). Finally, the convection transits to ape-
riodic motion in Fig. 6(f).

In addition, there is another type tangent bifurcation accompa-
nied with the quasi-periodic bifurcation. As is shown in Fig. 7, a
bifurcation cascade can be acquired in the experimental condition
of Pr = 25 and C = 20.8. When Ma = 3601, thermocapillary convec-
tion presents a state of periodic oscillation in Fig. 7(a). When
Ma = 4008, the quasi-periodic bifurcation of two frequencies will
appear in the convection in Fig. 7(b). When Ma = 4415, shown in
Fig. 7(c), we can acquire the period-quintupling bifurcation, which
is different from the period-tripling bifurcation.

Actually, the tangent bifurcation is associated with the inter-
mittency [12,13]. In the experimental run, we also observed the
transient intermittency while Pr = 25 andC = 20.8. Periodic motion
will be interrupted by short irregular bursts. As is shown in Fig. 8,
two points in liquid at different distance away from cold-side and
hot-side were chosen to measure temperature oscillations. The
occurrence of intermittency in the two measured-points are basi-
cally consistent on the time scale, but there are some differences
in amplitude. The time interval of intermittency will increase in
the experimental period, shown in Fig. 9. In the present experi-
ment, it is difficult to observe the intermittency for a certain exper-
imental condition, so we only focused on the tangent bifurcation
transition process in most experiments.

In addition, the tangent bifurcation is an unstable type of bifur-
cations, and it has a certain randomness for the appearance of tan-
gent bifurcation in each experiment. Therefore, this bifurcation
may appear in various parameters (Pr and C).

3.2. Chaotic characteristic analyses of bifurcations

The method of phase-space reconstruction [14,15] is well-
developed method of chaotic structure research, and it could be
applied to analyze the chaotic characteristic of tangent bifurca-
tions. Takens [16] has proved the state of many dynamic systems



Fig. 7. Time histories of temperature oscillation and corresponding power spectra at different Marangoni number for Pr = 25 and C = 20.8: (a) Ma = 3601; (b) Ma = 4008; (c)
Ma = 4415.

Fig. 8. Time histories of temperature oscillation at Ma = 2928 when Pr = 25 and C = 20.8: (a) measured-pointⅠ; (b) measured-pointⅡ.

Fig. 9. The time interval of intermittency in an experimental period at Ma = 2928
when Pr = 25 and C = 20.8.
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can be accurately reconstructed by a finite window of the time ser-
ies. This window is called a time delay. Consider a temperature
time series {T(t)}, and denote the phase-space vectors v(t):

vðtÞ ¼ fTðtÞ; Tðt þ sÞ; . . . ; Tðt þ ðm� 1ÞsÞg;

where s is the time delay, m is the embedding dimension. We can
achieve the phase-space reconstruction by selecting appropriate
parameters of s and m.
For one-dimensional temperature data in our experiment, a
three-dimensional phase-space based on the time-delay has been
reconstructed, and then we could analyze successively the chaotic
characteristic in the different bifurcation phase. It is shown in
Fig. 10 that the trajectory of temperature oscillation series in the
reconstructed phase-space where the axes correspond to T(t),
T(t + s) and T(t + 2s). The embedding dimension is m = 3, and the
time delay could be s = 3. Then one-dimensional time series data
can be extended to a three-dimensional space. The experimental
data at Pr = 25 and C = 17.3 (Fig. 5) could be chosen to analyze
the chaotic characteristic of bifurcations in the reconstructed
phase-space. The periodic motion is a limit cycle in the phase-
space in Fig. 10(a). Three trajectories appear in the motion of
period-tripling bifurcation in Fig. 10(b). And when the convection
transitions to the phase of period-sextupling bifurcation, there
appear six distinct trajectories in the phase-space in Fig. 10(c).

Furthermore, the Lyapunov exponent of a dynamical system is
introduced to characterize the rate of separation of infinitesimally
close trajectories [17,18].

For a continuous dynamical system in a n-dimensional phase
space, we monitor the long-term evolution of an infinitesimal n-
sphere of initial conditions; the sphere will become a n-ellipsoid
due to the locally deforming nature of the flow. The ith one-
dimensional Lyapunov exponent is then defined in terms of the
length of the ellipsoidal principal axis pi(t):

ki ¼ limt!1
1
t
log2

piðtÞ
pið0Þ

ði ¼ 1;2; . . .Þ;

where the ki are ordered from largest to smallest: k1 � k2 � � � � � kn.
The largest Lyapunov exponent k1 are related to the expanding nat-



Fig. 10. Three-dimensional time-delay representation of the temperature for Pr = 25 and C = 17.3: (a) Ma = 4266; (b) Ma = 4517; (c) Ma = 4768.
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ure of different directions in phase space. When k1 > 0, it signify that
close trajectories separate and flow begins to transit to chaos. Wolf
method [18] was chosen to calculate the maximum Lyapunov expo-
nent on temperature data in the phase-space. Through this method,
the largest Lyapunov exponents in periodic, period-tripling and
period-sextupling bifurcation phases, as shown in Table 3, could
be calculated successively. They are in turn: 0.079, 0.193 and
0.227. The maximum Lyapunov exponent increases with the Mar-
angoni number increasing, and phase trajectories separate at a fas-
ter rate.

By the same token, the permutation entropy method [19,20] is
introduced to evaluate the chaotic characteristic of bifurcations.
Reconsider the temperature time series {T(ti), i = 1, 2, . . . , n} and
the phase-space vectors v(ti):

vðtiÞ ¼ ðTðtiÞ; Tðti þ sÞ; . . . ; Tðti þ ðm� 1ÞsÞÞ; tiði ¼ 1;2; . . . ; nÞ

where s is the time delay, m is the embedding dimension, and n is
the number of data. For the sequence, we indexed all the possible
m! permutations of order m � 2 defined as p. For all the vectors v
(ti), we count the number of permutations, denoted by q(p), and
then calculate the relative frequency p(p):

pðpÞ ¼ qðpÞ
n� ðm� 1Þsf ;

where f is the sampling rate. The permutation entropy H(m) is
defined as

HðmÞ ¼ �
X

p
pðpÞlog2pðpÞ:

Then it can be normalized as follow:

hp ¼ HðmÞ
log2m!

:

Therefore, hp is in the range of 0–1. This is the finally permutation
entropy of the temperature time series. The size of hp indicates
the degree of randomness of the time series. The lower hp equates
to more regular time series; whereas the higher hp signifies that
the time series is more close to stochastic state. The permutation
entropy of three types of bifurcations in Fig. 10 can also be calcu-
lated. The hp in Table 3 is in turn: 0.578, 0.587 and 0.668, which also
signifies the time series become more and more irregular.
Table 3
The permutation entropy hp in different Marangoni number.

Ma k1 hp

4266 0.079 0.578
4517 0.193 0.587
4768 0.227 0.668
4. Conclusion

In the present paper, transition routes of tangent bifurcations in
thermocapillary convection are investigated in particular. There
are different types of tangent bifurcations, including period-
tripling bifurcation, period-quintupling bifurcation and the
period-tripling bifurcation along with the quasi-periodic bifurca-
tion, et al. In addition, transient intermittency could be observed
in an experimental run.

The phase-space reconstruction is introduced to qualitatively
analyze the chaotic characteristic of tangent bifurcations, and tra-
jectories differ in different bifurcation phases. Moreover, analytical
methods of maximum Lyapunov exponent and permutation
entropy are applied to quantificationally analyze the chaotic char-
acteristic of bifurcations to a certain extent.
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