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Size effects of lamellar twins on 
the strength and deformation 
mechanisms of nanocrystalline hcp 
cobalt
Wen Wang1,2, Fuping Yuan1,2, Ping Jiang   1 & Xiaolei Wu1,2

Twins play an important role in the deformation of nanocrystalline (NC) metals. The size effects of {1012} 
tensile/{1011} compressive lamellar twins on the tensile strength and deformation mechanisms of NC 
hcp cobalt have been investigated by a series of large-scale molecular dynamics simulations. Unlike the 
size effects of twins on the strength for polycrystalline fcc metals, the strength of NC hcp cobalt with 
lamellar tensile/compressive twins monotonically increases with decreasing twin boundary spacing 
(TBS) and no softening stage is observed, which is due to the consistent deformation mechanisms no 
matter TBS is large or small. These consistent deformation mechanisms can be categorized into four 
types of strengthening mechanisms: (i) Partial basal dislocations nucleated from grain boundaries (GBs) 
or twin boundaries (TBs) intersecting with TBs/GBs; (ii) Phase transformation from hcp to fcc; (iii) 
<c + a> partial edge dislocations nucleated from TBs intersecting with basal partial dislocations; (iv) 
Growth of the newly formed secondary tensile twins inside the primary compressive/tensile twins. The 
observed multiple twinning in MD simulations has also been confirmed by TEM after tensile testing in 
NC cobalt processed by severe plastic deformation.

Stronger and tougher metals and alloys have been the pursuit of scientists for structural applications for centuries 
although strength and ductility are in general mutually exclusive1–11. For example, ultrafine-grained (UFG) and 
nanocrystalline (NC) metals usually have much higher yield strength than that of coarse-grain (CG) counterpart, 
while show reduced strain hardening and limited uniform tensile elongation2–6. Recently, twinning at the nanos-
cale have been regarded as an efficient method to obtain both high strength and substantial ductility12–14.

Previous research have indicated deformation twins are more difficult to form with decreasing grain size for 
fcc metals in the CG size range15. However, twinning becomes easier with decreasing grain size when the grain 
size is below 100 nm although twinning might become difficult again once the grain size is too small (below 
20 nm)16–18. In contrast, twinning is an important mechanism for plastic deformation of CG hcp metals in addi-
tion to dislocation slip due to their relatively limited slip systems when compared to fcc metals19. Theoretically, at 
least seven twinning modes involving different twinning planes can be existing in hcp metals, such as {1012}, 
{1011}, {1013}, {1121}, {1122}, {1123}, {1124} twins20, 21. Among them, {1012} and {1011} twins (usually referred to 
tensile twins and compressive twins) are the most common twinning modes in hcp metals and alloys22, 23, which 
can be easily observed in the [1120] zone axis under TEM.

However, twinning becomes more difficult to form with decreasing grain size in hcp metals, especially defor-
mation twins are rarely observed in NC hcp metals and alloys19. It is scientifically important to activate deforma-
tion twins in NC hcp metals since twinning can stimulate both high strength and good ductility22–25. Pure cobalt, 
with an hcp crystal structure at room temperature, has been experimentally observed to deform by twinning 
during the plastic deformation (especially at low temperatures and high strain rates)26–31, even in the nanoscale 
grain size range30, 31, due to its very low stacking faults energy (SFE, 27 ± 4 mJ/m2) compared to the other hcp pure 
metals, such as magnesium (50–80 mJ/m2), titanium (>300 mJ/m2) and zirconium (80 mJ/m2)31. Annealing twins 
have also been observed in pure cobalt during the electroplated process or the annealing process24, 25. Recently, 
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multiple twinning has been found to play a key role in the plastic deformation and the grain refinement of hcp 
metals and alloys21, 32.

Molecular Dynamics (MD) simulations have proven to be powerful tools for studying the grain size effect on 
the strength and the atomistic deformation mechanisms of NC fcc33, 34, bcc35 and hcp36–38 metals, with carefully 
designed modeling cells in which the real-time responses of the microstructures can be examined. Experiments 
and MD simulations have also shown a transition in deformation mechanisms at the critical twin boundary spac-
ing (TBS), i.e., from the classical Hall-Petch type strengthening due to the interaction between the dislocation and 
the twin boundary (TB) to a dislocation-nucleation-controlled softening mechanism with detwinning for fcc 
metals14, 39. It is technically important to investigate the TBS effect on the flow behaviors of NC hcp metals with 
nano-twins since twinning can stimulate excellent mechanical properties. However, the micro-structural defor-
mation mechanisms of NC hcp metals with nano-twins still remain vague. In this regard, a series of large-scale 
MD simulations have been performed in the present study to investigate the size effect of twins on the strength 
and the related atomic-level deformation mechanisms of NC hcp cobalt, which will help to provide insights for 
achieving better mechanical properties in hcp metals and alloys with low SFE. Thus, [1120]-textured simulation 
cells with hexagonal columnar grains (Similar to the configuration used by Kim et al.36) were considered in the 
present study, as shown in Fig. S1. The typical configurations for nanocrystalline cobalt (d = 60 nm) with lamellar 
{1012} tensile twins (TBS = 8.32 nm) and with lamellar {1011} compressive twins (TBS = 8.45 nm) are shown in 
Fig. S1a,c, respectively. The corresponding close-up views for the rectangular areas in Fig. S1a,c showing the 
details for the lamellar {1012} tensile twins and the lamellar {1011} compressive twins are displayed in Fig. S1b,d, 
respectively. Six samples with TBS = 0.89, 2.38, 4.75, 8.32, 14.85, 23.76 nm for tensile twins and six samples with 
TBS = 0.77, 2.31, 4.61, 8.45, 15.37, 24.59 nm for compressive twins were simulated in order to investigate the TBS 
effect on the strength and the atomistic deformation mechanisms of NC cobalt. The same Voronoi grain structure 
and the same crystallographic orientations of all grains are retained as TBS changes. The other simulation details 
are described in Methods section.

Results
Stress-strain curves and TBS effect on the flow behaviors.  In the NC hcp cobalt with nanotwins, 
there exist two characteristic microstructrual length scales (the grain size d and the TBS). In order to study the 
size effects of twins, the TBS is varied while the grain size is fixed at d = 60 nm in the present study. Figure 1a and b  
display the simulated stress-strain curves for various NC hcp Co samples with lamellar {1012} tensile twins or 
lamellar {1011} compressive twins, respectively. It should be noted that stress strain curves show different behav-
iors for NC hcp Co samples with lamellar {1012} tensile twins and lamellar {1011} compressive twins. In Fig. 1a, 
tensile stresses are observed to increase with strain linearly first to a peak value (onset of plastic deformation), 
then tensile stresses stay at a steady state with small fluctuations. While, in Fig. 1b, tensile stresses are also 
observed to increase linearly first in the elastic stage, then increase nonlinearly up to a steady-state value, showing 
strong strain hardening in the plastic stage before the final plateau. It is typically more meaningful to take the 
average value for the flow stress over a certain plastic strain interval33–38 in order to investigate the size effect of 
lamellar twins on the strength of NC hcp Co. In this regard, the average flow stress at strains between 4% and 10% 
is plotted against TBS in Fig. 1c. With the same grain size, it should be noted that the average flow stress mono-
tonically increases with decreasing TBS for NC cobalt with both lamellar {1012} tensile twins and lamellar {1011} 
compressive twins, and there is no observed softening stage when the TBS is small. The TBS effect on the flow 
behavior of NC hcp cobalt is totally different from that of fcc metals14, 39, and the corresponding atomistic defor-
mation mechanisms will be discussed in the following sections. As indicated in previous research14, the effects of 
both twin lamellar thickness and grain size on the strength of fcc metals are coupled, thus more studies should be 
conducted in the future work to illustrate the coupling effects of both twin lamellar thickness and grain size on the 
strength of NC hcp metals.

Atomistic deformation mechanisms for NC hcp cobalt with tensile twins.  In MD simulations, 
snapshots of microstructure evolution at various strains can be easily obtained. In this prospective, the deformed 
atomistic configurations are provided in order to understand the TBS effect on the flow behaviors of NC hcp 
cobalt. For NC hcp cobalt either with lamellar {1012} tensile twins or lamellar {1011} compressive twins, the sim-
ulated deformation patterns for both large TBS (TBS = 23.76 nm or 24.59 nm) and small TBS (TBS = 2.38 nm or 
2.31 nm) are provided and compared. As shown in Fig. 2, when TBS of the lamellar {1012} tensile twins is large 
(TBS = 23.76 nm), the deformation mechanisms can be categorized into four types: (i) The interactions between 
partial basal dislocations emitted from grain boundaries (GBs)/TBs and other TBs/GBs; (ii) Phase transformation 
from hcp to fcc by basal stacking faults (SFs) at adjacent planes; (iii) The interactions between <c + a> partial 
edge dislocations and basal partial dislocations nucleated from TBs/GBs; (iv) The nucleation and growth of newly 
formed tensile twins inside one half of the lamellar tensile twins. The details of these deformation mechanisms 
will be shown in Figs 3–5 by close-up views.

The corresponding close-up views for Fig. 2 showing the nucleation and growth of newly formed tensile twins 
inside one half of the lamellar tensile twins are displayed in Fig. 3. The newly formed tensile twins are deformation 
twins by tensile deformation, which are nucleated at GBs and formed by separation and propagation of multiple 
twinning dislocations from GBs36. The previous paper also indicated that the deformation tensile {1012} twins 
could be formed by simultaneous glide of a zonal dislocation consisting of partial dislocation and multiple twin-
ning dislocations20. As observed, the newly twinned region can sustain the basal slip more easily and more basal 
SFs are observed compared to the un-twinned region due to a change of crystallographic orientation from a lower 
Schmid factor to a higher Schmid factor during the deformation twinning, which should contribute to the 
strengthening. It should also be interesting to note that the TB for the newly deformation twinning is incoherent. 
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The TB deviates from the {1012} twinning plane although the misorientation angle for the newly deformation 
twinning is close to the theoretical value of 85.8°36, 40, 41. These non-classical twinning behaviors could be due to a 
homogeneous shear plus atomic shuffling, and have also been observed experimentally in dynamically deformed 
cobalt41. These experimental observations, combined with the current results, indicate that the invariant plane 
strain condition required for the hcp twinning theories breaks down for the tensile deformation twins in cobalt 
during the plastic deformation. When the newly formed twinned region propagates to the next original TB 
(Fig. 3d), the two parts of the original tensile twins reconcile into one part with almost zero degree of misorienta-
tion angle, left with dislocation arrays at the location of the original TB.

The corresponding close-up views for Fig. 2 showing two following deformation mechanisms are displayed in 
Fig. 4: (i) Partial basal dislocations nucleated from GBs/TBs interacting with other TBs/GBs and formation of 
basal SFs; (ii) Phase transformation from hcp phase to fcc phase by basal SFs at adjacent planes. SFs can be formed 
when partial dislocations are nucleated and slip along the close-packed planes in crystalline metals. SFs generally 
have an equilibrium width, determined by the balance between the SFE and the repulsive force of the partial 
dislocations, when a trailing partial dislocation is also nucleated behind SFs. Unlike SFs in fcc metals, SFs in hcp 
metals are much more complex due to the low symmetry and three slip systems associated with SFs in hcp metals 
have been confirmed so far by MD simulations40. Among them, SFs on basal planes are most likely to be observed 
due to the relative low SFE for the basal planes. Previous research have indicated that three kinds of basal SFs may 
occur in hcp metals: two intrinsic SFs (I1 and I2) and one extrinsic SF (E)31, 36. In Fig. 4, the leading basal partial 
dislocations are found to have an Burgers vector of 2/3[1100] and the corresponding SFs are intrinsic (I2 type)36. 
The density of basal SFs increases with increasing strain, and these deformation-induced basal SFs span through 
the entire grain with leading/trailing partial dislocations residing in GBs/TBs. As observed, the propagating basal 
partial dislocations are blocked by TBs/GBs for strain hardening and strengthening, pretty much similar to the 
corresponding mechanism in fcc metals42. Cobalt is a special pure metal, displaying a transformation between fcc 
and hcp phases with temperature change or plastic deformation31. Phase transformation from hcp phase to fcc 
phase are observed by basal SFs at adjacent planes during the tensile plastic deformation, as shown in Fig. 4d. It is 

Figure 1.  Simulated mechanical properties for NC hcp cobalt with lamellar twins. (a,b) Simulated stress-strain 
curves for NC hcp cobalt with lamellar {1012} tensile twins and lamellar {1011} compressive twins, respectively; 
(c) The average flow stress (strain between 4% and 10%) vs. TBS for NC hcp cobalt with lamellar twins.
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well known that the interfaces between difference phases can lead to a high strength and enhanced strain harden-
ing in nanoscale metallic multilayer systems43, thus the formed phase boundaries for fcc/hcp interfaces after 
phase transformation may provide strengthening due to the possible interactions between glide dislocations and 
interfaces.

The corresponding close-up views for Fig. 2 showing the nucleation of <c + a> partial edge dislocations from 
TBs and their interactions with basal partial dislocations are displayed in Fig. 5. The <c + a> dislocations have 
received much attention and are significant during the homogeneous/uniform plastic deformation in hcp metals 
because they have been considered as the key factor for the enhanced strain hardening and the improved ductil-
ity22–25, 31, 36. It is energetically costly for the nucleation of <c + a> slip due to its large Burgers vector, thus higher 
critical resolved shear stress is required and <c + a> dislocation may occur at positions with high local stresses. 
As shown in Fig. 5a, an non-basal dislocation is nucleated from the TB and its Burgers circuit is displayed in 
Fig. 5b. The non-basal dislocation is identified as <c + a> partial edge dislocation with Burgers vector of 
1/6[2203]. An extra half plane of atoms is produced (as labeled layer B with red dash line in Fig. 5b) by the 
<c + a> partial edge dislocation. Since this <c + a> dislocation is edge type, its dislocation line is parallel to the 
z axis of [1120], thus a non-basal SF is generated during the propagation of the <c + a> partial edge dislocation. 
As shown in Fig. 5d, strong interaction between the basal SF and the non-basal SF is observed, and the propaga-
tion of the basal SF is blocked by the non-basal SF, resulting in strain hardening behaviors44. The propagation of 
the <c + a> partial edge dislocation is also observed to be blocked by GBs, resulting in additional strain 
hardening.

When TBS of the lamellar {1012} tensile twins is small (TBS = 2.38 nm), the deformation mechanisms are 
identical and consistent compared to those for large TBS, and the following four deformation mechanisms are 
also observed (Fig. S2): (i) Partial basal dislocation activities; (ii) Phase transformation; (iii) <c + a> partial edge 
dislocation activities; (iv) Newly formed tensile twins. As discussed earlier, those four deformation mechanisms 
should contribute to the strengthening when TBS decreases.

Atomistic deformation mechanisms for NC hcp cobalt with compressive twins.  The deformation 
patterns for the NC hcp cobalt with lamellar {1011} compressive twins (TBS = 24.59 nm) are shown in Fig. S3. 
When TBS of lamellar {1011} compressive twins is large, the deformation mechanisms can also be categorized into 

Figure 2.  Simulated deformation patterns for NC hcp cobalt with lamellar {1012} tensile twins (TBS = 23.76 nm). 
The snapshots were taken at strains of (a) 0%; (b) 3%; (c) 5%; (d) 7%.
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four types: (i) Partial basal dislocation activities; (ii) Phase transformation; (iii) <c + a> partial edge dislocation 
activities; (iv) Formation of secondary tensile twins inside primary compressive twins. The details of the first three 
deformation mechanisms are similar to those in the NC hcp cobalt with lamellar {1012} tensile twins, and are 
shown in Figs S4, S5 by close-up views.

The corresponding close-up views for Fig. S3 showing the nucleation and growth of secondary tensile twins 
inside original primary compressive twins are displayed in Fig. 6. Again, the twinned region for the newly formed 
secondary tensile twins is observed to sustain the basal slip more easily compared to the un-twinned region, and 
the TB for the newly formed secondary tensile twins is incoherent. The formation of such multiple twinning from 
the virgin grain is schematically illustrated in Fig. 6c. First, the primary compressive twins could be preset (like in 
our simulations) or could be formed inside the virgin grain when the material is subjected to compressive defor-
mation, such as rolling, shot peening, and a compressive TB could be formed (named as TBI with blue marked 
line). This compressive twinning process changes the orientation of the right part of TBI with a angle of 123.44° to 
the left matrix. Further tensile deformation leads to the formation of the secondary tensile twins (with TBII, pur-
ple marked line) inside the right part of the primary compressive twins, thus the lower part should be re-oriented 
again due to the secondary tensile twinning. Finally, the green marked boundary is newly formed during multiple 
twinning and becomes the special GB with a misorientation angle of 142.38° at both sides. Previous research also 
mentioned the all possible angles for the newly formed special GB produced by two or three twinning events in 
Mg alloy21, the angle of the special GB for the two twinning (TBI + TBII) is very similar to the present case.

The multiple twinning processes have also been observed by experiments in NC hcp cobalt. The NC hcp 
cobalt tensile specimens have been obtained from the surfaces of the samples processed by surface mechanical 
attrition treatment (SMAT). After the quasic-static tensile testing, the samples were examined by transmission 
electron microscope. The other experimental details can be found in the Methods section. Several multiple twin-
ning modes (TBI + TBI; TBI + TBI + TBI; TBI + TBII) were identified in the tensile tested samples. The last mul-
tiple twinning mode (TBI + TBII) is shown in Fig. 6d, which is similar to the observation from MD simulations 
(Fig. 6b). As we know, TBI is a compressive twinning mode since it typically forms under compressive stress, 
while TBII is a tensile twinning mode since it typically forms under tensile loading. SMAT is compressive loading 
with severe plastic deformation, while the subsequent tensile tests provide tensile stress state. Thus, the first two 
multiple twinning modes (TBI + TBI; TBI + TBI + TBI) most likely were formed during the SMAT process, while 
the last multiple twinning mode (TBI + TBII) should be generated during the subsequent tensile testing. When 

Figure 3.  The nucleation and growth of newly formed tensile twins inside one half of the original lamellar 
tensile twins. The deformation patterns are collected at strains of (a) 0%; (b) 3%; (c) 4%; (d) 7%.
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TBS of the lamellar {1011} compressive twins is small (TBS = 2.31 nm), the deformation mechanisms are identical 
and consistent compared to those for large TBS, and the aforementioned four deformation mechanisms (Figs S4–S6)  
are also observed (Fig. S6). As discussed earlier, those four deformation mechanisms should also contribute to the 
strengthening when TBS decreases.

Discussions
As mentioned earlier14, 39, the strength of NT fcc metals first increases with decreasing TBS, achieving a maximum 
value at the critical TBS, and then drops when the TBS further decreases. This is due to a transition in deforma-
tion mechanism at the critical TBS for fcc metals14, 39, from the interactions between dislocations and TBs with an 
inclined angle at large TBS to the detwinning with dislocations nucleated parallel to TBs at small TBS. However, 
there is no transition for deformation mechanisms in NC hcp cobalt with nanotwins when the TBS decreases, 
thus the strength monotonically increases with decreasing TBS due to the consistent strengthening deformation 
mechanisms no matter TBS is large or small for lamellar {1012} tensile twins or {1011} compressive twins.

Lamellar {1012} tensile twins or {1011} compressive twins could be generated by deformation twins using 
severe plastic deformation (SPD) or by growth twins using electroplated process. These pre-existing twins will 
play very important roles in the following tensile deformation, contributing to the strengthening all way to very 
small TBS and to strain hardening by interactions between dislocations and TBs and phase transformation. More 
importantly, multiple twinning could be formed during subsequent tensile deformation, which plays a key role 
for strengthening and strain hardening in the plastic deformation for hcp metals with low SFE21, 32. Overall, four 
different deformation mechanisms are observed in the NC cobalt with lamellar compressive/tensile twins, and 
these consistent mechanisms with decreasing TBS will contribute to the strengthening and the strain hardening 
in such a way as discussed in following: (i) Additional TBs for pre-existing lamellar twins should pose extra 
energy barriers for the basal partial dislocations to overcome, which is very similar to the TB strengthening in fcc 
metals. High density of dislocations thus are stored between preexisting TBs, resulting in also dislocation accu-
mulation for strain hardening. (ii) Phase transformation will create numerous phase boundaries, and these phase 
interfaces should also pose strong energy barriers for gliding dislocations in other slip systems to overcome. The 
blocking of dislocations by phase interfaces will on one hand hinder the slip of dislocations for strengthening, and 

Figure 4.  Partial basal dislocations nucleated from GBs/TBs are blocked by other TBs/GBs and phase 
transformation. The deformation patterns are collected at strains of (a) 0%; (b) 3%; (c) 4%; (d) 7%.
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on the other hand will accumulate dislocations between interfaces for strain hardening (iii) Lots of <c + a> par-
tial edge dislocations are observed to nucleate, and these non-basal dislocations not only impede the motion of 
the basal partial dislocations for strengthening, but also strongly interact with preexisting TBs/GBs for strain 
hardening. (iv) Formation of secondary twins inside preexisting primary twins should change the crystallo-
graphic orientation from a lower Schmid factor to a higher Schmid factor for the corresponding region, thus 
promoting more dislocations in this region for strain hardening. So, lamellar {1012} tensile twins or {1011} com-
pressive twins with TBS to very small values could be generated in NC hcp metals with low SFE to achieve both 
high strength by aforementioned strengthening mechanisms and high ductility by enhancing strain hardening 
rate through the four mechanisms mentioned above. While aforementioned four deformation mechanisms all 
operate in the NC hcp metals with lamellar {1012} tensile twins or {1011} compressive twins, their contributions 
to the overall strength should be different and may vary with the size of the lamellar twins and the grain size. 
Although it is difficult to quantify their contributions, more studies should be conducted in future work to iden-
tify the major source of strengthening by varying both grain size and lamellar twin thickness.

In summary, a series of large-scale MD simulations have been performed to investigate the TBS effects of {1012}  
tensile/{1011} compressive twins on the tensile strength and the corresponding atomistic deformation mecha-
nisms of NC hcp cobalt, the main finding are summarized as follows. The strength monotonically increases with 
decreasing TBS and no softening stage is observed for NC hcp cobalt with both lamellar {1012} tensile twins and 
lamellar {1011} compressive twins, totally different from that for fcc metals. No transition for deformation mech-
anisms is found in NC hcp cobalt when the TBS decreases, thus the TBS effect on the strength is due to the con-
sistent four types of deformation mechanisms. One of four types of deformation mechanisms, multiple twinning, 
has also been observed by TEM after tensile testing in NC hcp cobalt obtained by severe plastic deformation, and 
the formation mechanisms and sequences are found to be consistent with MD simulations. The observed four 
deformation mechanisms by nanoscale twins should contribute to the strengthening and the strain hardening 
when TBS decreases. The finding in the present results should acquire a better understanding for the strengthen-
ing of lamellar twins and provide insights to design the microstructures for reinforcing the mechanical properties 
in the hcp metals with low SFE.

Figure 5.  Interaction between <c + a> partial edge dislocation nucleated from TBs and basal partial 
dislocations. The deformation patterns are collected at strains of (a) 3%; (c) 4%; (d) 5%. (b) The Burgers circuit 
and the Burgers vector for the <c + a> partial edge dislocation 1/6[2203].
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Methods
Procedures for MD simulations.  The MD simulations have been performed by the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS) and a Co EAM potential developed by Pun and Mishin45. 
This potential is calibrated according to the experimental results and the ab initio calculations for many basic 
properties, including the lattice constants, elastic constants, stacking faults energies, vacancy formation and 
migration energies, surface energies, cohesive energies. In order to explore the plastic deformation mechanisms 
of nanocrystalline cobalt with lamellar twins, it is necessary to consider simulation cells with grains larger than 
those possible in fully 3-dimensional simulations. In this perspective, [1120]-textured simulation cells with hex-
agonal columnar grains (Similar to the configuration used by Kim et al.36) were considered in the present study. 
The crystallographic orientation of the columnar axis was carefully selected to be [1120] in order to allow various 
dislocation processes36, such as basal slip, non-basal slip (including <c + a> dislocations) and various deforma-
tion twins. The thickness of the simulation cells is 5.0a0 (a0 = 0.2519 nm), containing 10 atomic planes (z direc-
tion). The grains are separated from each other by high-angle tilt GBs with rotation angles about the columnar 
axis. The dimensions of the simulation cells are 240 × 240 ×1.26 nm3, which contain approximately 7,160,000 
atoms. Lamellar {1012} tensile twins and lamelalr {1011} compressive twins are generated inside nano-grains by 
mirror symmetry about the {1012} plane and the {1011} plane, respectively. It should be noted that the two half 
parts of the tensile twins and the compressive twins satisfy 85.8° <1012> and 123.4° <1011> orientation relation-
ship, respectively. The atoms are colored based on common neighbor analysis (CNA) values in the present study. 
Gray color stands for perfect hcp atoms, blue color stands for fcc atoms and red color is for other atoms which 
belong to grain boundaries (GBs), free surfaces or other defects. Periodic boundary conditions were imposed for 
all directions. Before tensile loading, the as-constructed simulation cells were first subjected to energy minimiza-
tion by the conjugate gradient method, and then heated up to the desired temperature (10 K) and finally relaxed 
by the Nose/Hoover isobaric-isothermal ensemble (NPT) under both the pressure 0 bar and the temperature 10 K 
for 100 ps. After relaxation, the simulation cell was stretched along x-axis with a constant strain rate of 5 × 108 s−1 

Figure 6.  Formation of the secondary tensile twins inside the primary compressive twins. The deformation 
patterns are collected at strains of (a) 3%; (b) 4%. (c) Schematic of formation sequences of the secondary tensile 
twins inside the primary compressive twins. (d) Experimental TEM observation for the secondary tensile twins 
generated inside the primary compressive twins.
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for a strain of 10%. The uniaxial loading condition was kept during the tensile loading by setting the pressures in 
the y and z directions to be zero.

NC cobalt preparation, tensile tests and TEM observations.  In the present paper, CG cobalt plates 
with high purity (wt% 99.99) were first produced by electro-deposition, and have a thickness of 5 mm and an 
average grain size of ~30 μm with pure hcp crystal structure. Then a microstructure with grain size gradient in 
cobalt was produced by the surface mechanical attrition treatment (SMAT) technique. The details of this tech-
nique have been described elsewhere31. Dogbone-shaped tensile specimens with NG structure (thin specimens 
with a thickness of 50 μm from the top surfaces of SMATed samples) were prepared by mechanically ground and 
electro-polished to a mirror finish. The dimensions of the gauge sectional area for the designed tensile samples 
are 8 mm long × 2.5 mm wide. Tensile tests were performed at a strain rate of 4 × 10−4 s−1, and the samples were 
examined in a transmission electron microscope (TEM) after tensile testing. TEM specimens for ex-situ obser-
vations were cut from the gauge section of the tensile sample, and prepared by conventional twin-jet polishing 
technique.
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