
SCIENCE CHINA
Physics, Mechanics & Astronomy

•   Article   • November 2017 Vol. 60 No. 11: 114611
doi: 10.1007/s11433-017-9076-8

The stress-velocity relationship of twinning partial dislocations and
the phonon-based physical interpretation

YuJie Wei1,2*, and ShenYou Peng1,2

1 State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received May 9, 2017; accepted July 4, 2017; published online September 8, 2017

The dependence of dislocationmobility on stress is the fundamental ingredient for the deformation in crystallinematerials. Strength
and ductility, the two most important properties characterizing mechanical behavior of crystalline metals, are in general governed
by dislocation motion. Recording the position of a moving dislocation in a short time window is still challenging, and direct
observations which enable us to deduce the speed-stress relationship of dislocations are still missing. Using large-scale molecular
dynamics simulations, we obtain the motion of an obstacle-free twinning partial dislocation in face centred cubic crystals with
spatial resolution at the angstrom scale and picosecond temporal information. The dislocation exhibits two limiting speeds: the
first is subsonic and occurs when the resolved shear stress is on the order of hundreds of megapascal. While the stress is raised
to gigapascal level, an abrupt jump of dislocation velocity occurs, from subsonic to supersonic regime. The two speed limits are
governed respectively by the local transverse and longitudinal phonons associated with the stressed dislocation, as the two types
of phonons facilitate dislocation gliding at different stress levels.
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1       Introduction

Dislocations are line defects which are the most commonly
seen carriers for plastic deformation in crystalline metals.
The mobility of dislocations directly influences the strength
and ductility of crystalline materials [1-5]; Its significance is
evidently seen in the relation = bvd proposed by Orowan
[3], from which the macroscopic plastic deformation rate in
crystals is directly related to dislocation density d, disloca-
tion velocity v, and the Burgers vector b of a dislocation. The
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exact dependence of dislocation velocity v on resolved shear
stress , while being the fundamental ingredient for defor-
mation map in most crystalline materials [4,5] and associ-
ated with critical phenomena like crack propagation [6,7] and
brittle-ductile transition [8], is however not fully understood.
While recording static dislocations even with sub-angstrom
spatial resolution is practical [9], tracking a moving disloca-
tion with fine spatial and temporal resolution is challenging
[10]. At low stress level , a general empirical relation for
dislocation velocity v, = ( ) ( )v v Q k T/ exp /m

0 0 B , has been
broadly used [5,11,12]. Here v0 is related to the velocity of
a dislocation at the reference resolved shear stress 0, m is
known as a dislocation velocity-stress exponent and Q is the
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activation energy for dislocation motion, kB is the Boltzmann
constant and T is the absolute temperature. Such a relation-
ship resembles or possibly originates from the typical power-
law strain rate sensitivity equation of = ( )/ m

0 0
1/ , for 0 a

reference strain rate at 0. Regardless its common appearance
in textbooks, there lacks critically examination on the validity
of the empirical stress-velocity relationship of an individual
dislocation from either experiments or simulations.
In addition to the concern on the validity of the empiri-

cal stress-velocity relationship of dislocations, another issue
emerges as the resolved shear stress continues to increase:
where is the limit of the dislocation speed v? The empirical
equation does not predict the behavior of dislocations when
the stress is sufficiently high but we know for sure that v is
bound at some level. By arguing that the speeds of dislo-
cations are limited by the inertia of the elastic fields, Frank
[13] and Eshelby [14] concluded that the speeds of the dis-
locations are bound by the shear wave speed. Based on sim-
plified lattice interactions, Earmme and Weiner [15] showed
that there is a breakdown phenomenon in high speed disloca-
tions. Later on fully three-dimensional atomistic simulations,
however, suggested that dislocation velocity may exceed the
shear wave speed in certain conditions [7,16-18]. Theoret-
ical analysis by Rosakis [19] also suggested the possibility
of dislocation speed exceeding the shear wave speed, with
support from recent experiments [20-22]. It is noted, how-
ever, there are remaining doubts on the existence of super-
sonic dislocations [23]. All these confusions reflect the com-
pelling need of knowing the physical origin of dislocation
speed limit. Conclusive evidence has been lacking because
realizing well-defined experimental measurements to capture
spatial and temporal information of moving dislocations is
still not attainable. Technically, existing reports on the veloc-
ity of dislocations were abstracted from post-mortem dislo-
cation patterns [21,24,25]. The velocity was averaged within
the observer’s time window. Hence it was not the transient
velocity of a stressed dislocation but relied heavily on the
time span between recorded dislocation patterns. The most
recent work by Nosenko et al. [20,22] can be regarded as
in-situ. The authors abstracted the distance-time data from di-
rect video observations during dislocation motion in plasma
crystals, where their shear wave speeds are typically on the
order of tens of millimetres per second, orders of magnitude
lower than those of dislocations in metals.

2       Simulation methods

Powered by rapid growth of computational capability, molec-
ular dynamics (MD) simulations supply an alternative tool
to explore novel deformation mechanisms under extreme
conditions [26-31]. We adopt this tool to explore the stress
dependent dislocation mobility. For generality, we consider

a MD sample with twinning partial dislocations in face-cen-
tered cubic (F.C.C.) metals residing in twin planes, as shown
in Figure 1(a). In F.C.C. crystals with pre-existing twin
planes, plasticity by twin growth or detwinning is typically
achieved via passing Shockley partial dislocations with a
a/6(112) burgers vector over every {111} plane above the
twinning plane [32].
The dimensions of the periodic simulation box for a

twinning partial dislocation quadruple are Lx=1825 nm,
Ly=456 nm, and Lz=0.512 nm. Sufficiently large simulation
box is desired in order to eliminate possible size effect
caused by interactions among the periodic arrangement of
dislocations or image stress due to surface effect in finite
samples in vacuum, as illustrated by Bhate et al. [33]. The
large space between dislocations ensures them to reach
their speed limit before collision and annihilation, and also
helps to minimize their mutual interaction. In addition,
it ensures an accurate quantification of the resolved shear
stress applied to dislocations even after the dislocations
travel for a long distance. The x-, y- and z-directions are
respectively parallel to [112], [111], [110] crystallographic
directions in the single crystalline sample with twin planes.
Typical samples contain about 35000000 atoms. To realize
periodic boundary conditions and to minimize long-range
interaction between dislocations and their images, we design
a dislocation quadruple in our MD samples, as illustrated
in Figure 1(b). Dislocations of opposite sign along the x-
and y-axis ensure periodic boundary conditions along both
directions. The pairs along x-axis may glide to each other.
When they encounter, dislocation annihilation occurs. The
positions of the obstacle-free dislocations are recorded as
we continuously apply shear strain to the sample. The ve-
locity-stress relationship is deduced from the position-time
history of the dislocations. Since there are four dislocations,
there should be four values of velocity of dislocation. With
the geometrical symmetry, the speeds of the four dislocations
should be the same. We take the average value of the four as
the final velocity of the dislocations.
MD simulations are performed in large-scale

atomic/molecular massively parallel simulator (LAMMPS)
[34]. Periodic boundary conditions are applied in the x-, y-
and z-directions. Interactions among atoms are captured by
the embedded atom method (EAM) potentials [35]. We use
the potential developed by Mishin et al. [36] for copper;
potential for aluminum was from Zhou et al. [37]; and
potentials for gold, silver, nickel, platinum, and palladium
were developed by Foiles et al. [38]. Before applying
strain-rate controlled shearing to the samples, we relax
the initial structures through controlling both pressure and
temperature (NPT ensemble). After relaxation, we apply
shear deformation to the samples at a constant strain rate. We
adopted a microcanonical ensemble so that the  macroscopic
variables  (N, V, E)   of   the microcanonical  ensemble   are
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Figure 1         (Color online) The simulation model for twinning partial dislocations in face-centered cubic metals. (a) The atomistic structure of a twinning partial
dislocation (red atoms) residing in a twin boundary (green atoms); (b) the designed sample with four dislocations (a dislocation quadruple) in the simulation
box to ensure periodic boundary conditions; (c) the stress field xy induced by a static twinning partial dislocation in Cu from theoretical prediction (left) and
MD simulation (right); (d) to (g) xy introduced by the moving twinning dislocation at different velocity (shearing rate: ×2 10 /s8 ); (d) before reaching its first
speed limit =v 800 m/s; (e) moving at the first speed limit =v 1831 m/s; (f) accelerating to the second limit =v 3000 m/s; (g) moving at the second limit

=v 4463 m/s.

constants, where N is the total number of particles in the sys-
tem, V is the system’s volume, and E is the total energy in the
system. The time step is set to be 0.5 femtosecond. As a re-
sult of the chosen ensemble, there is a slight temperature rise
in the sample subjected to tension.

3       Results and discussions

The dislocations (Figure 1(a)) we simulated are of edge type.
The theoretical stress contour xy induced by an edge dislo-
cation sitting in (0,0) with its Burgers vector parallel to the
x-axis is shown in Figure 1(c) (left), in contrast we show the
result from MD simulation as well. Figure 1(e)-(h) shows
the corresponding shear stress xy resulted from the disloca-
tion moving at different velocity. Here we apply constant
shear strain rate ×2 10 /s8 to the sample shown in Figure 1(b).
The shear stress contour of the twinning partial dislocation
moving at =v 800 m/s (Figure 1(e)) is very similar to that
at rest (Figure 1(c)). When it reaches the first speed limit of

=v 1831m/s, the stress field seems to be compressed within
a narrow region (Figure 1(f)). Further increasing in shear
stress will drive the dislocation moving faster than the shear
wave speed. From Figure 1(g), we see the embark of wave
front at the speed of =v 3000 m/s. A steady shear wave

front is seen when the dislocation reaches its second limit of
=v 4463 m/s (Figure 1(h)). The dynamic shear stress field

at different velocity can be viewed from the movie (see the
supporting information (SI-1)).
To obtain an accurate relationship between the resolved

shear stress and dislocation velocity, we record dislocation
motion within the elastic regime, where the applied shear
stress increases linearly with shear strain, as clearly seen in
Figure 2(a). Figure 2(b)-(d) show the travelled distance-stress
and the corresponding velocity-stress curves of the twinning
partial dislocation, at the strain rates of ×2 10 /s7 , ×2 10 /s8 ,

×2 10 /s9 , respectively. As the applied shear stress increases,
we see two slopes (for both strain rates at ×2 10 /s8 and

×2 10 /s9 ) where the travel distances increase linearly with
stress. The dislocation moves at a constant velocity within
a certain stress regime. From the deduced velocity-stress
curves, we see that the speed of the twinning partial increases
rapidly at low stress level. The stress-velocity relation shown
in Figure 2(b)-(d) indicates that the minimum value of f to
overcome lattice friction and to drive dislocation motion in
a close-packed plane is on the order of 10 MPa. Theoretical

estimate with = G b
h

2
(1 ) exp 2

(1 )f [39,40] gives a

threshold resistance on the order of 160f MPa in Cu with
=G 46 GPa, = 0.34,   =b 0.15 nm,  and =h 0.21 nm.  As
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Figure 2         (Color online) The velocity of twinning dislocations in Cu at different strain rates. (a) The stress-strain curves from molecular dynamics simulations.
Red arrows point to the critical stress levels when the first velocity limit approaches, and black arrows refer to the transitional point for the second velocity
limit; (b)-(d) the travel distance and the velocity of the twinning dislocation at different strain rates: (b) ×2 10 /s7 , (c) ×2 10 /s8 , and (d) ×2 10 /s9 .

Nabarro [40] pointed out, the prediction is so sensitive to
the details of the model that its value is only heuristic. Our
MD results suggest that the stress required to move Shock-
ley twinning partial dislocations lying in twin planes may be
rather small. We also show the theoretically predicted dis-
placement-stress curve at different strain rates, which will be
detailed late.
We show the stress field xx and the horizontal velocity

field induced by the twinning partial dislocation at snap-
shots within different speed region. The applied shear
strain rate is ×2 10 /s8 . Figure 3(a)-(d) shows the snap-
shots of xx induced by the twinning partial moving at

=v 800, 1831, 3000, 4463 m/s, respectively. The shock
wave induced by the supersonic dislocation is clearly seen
as the dislocation speeds up from the first velocity limit
(Figure 3(a) and (b)) to the second speed limit (Figure 3(c)).
When the dislocation moves at the second limiting speed,
it introduces a steady shock wave front moving with the
dislocation (Figure 3(d)). The movie in SI-2 shows the
whole dynamic process. In Figure 3(e)-(h), we also show
the horizontal velocity contours at the dislocation speeds
corresponding to Figure 3(a) and (d), respectively. The same
trend is observed: the dislocation moving at the second speed
limit produces a shock wave in terms of the horizontal speed
of atoms. A shear-wave Mach cone, the distinct signature
resulting from the motion of dislocation at a velocity faster

than the shear wave speed, is clearly seen in Figure 3(d)
and (h). The corresponding movie to show the horizontal
velocity contour is given in SI-3. We also show in SI-4 the
pressure contours.
It is clearly demonstrated in our MD simulations that a

twinning partial dislocation can move faster than the mate-
rial’s shear wave speed at high stress. However, the behind
physical origin governing the motion of dislocations remains
controversial. The previous empirical relationship for dislo-
cation velocity v and stress in the form of v m was essen-
tially proposed to fit the experimental results. Johnston and
Gilman [11] suggested that m ranges from 15 to 25 based on
dislocation-velocity data in lithium fluoride crystals. Green-
man et al. [24] showed experimentally that for Cu =m 0.7.
For Al, Gorman et al. [41] reported a linear dependence of
v on at a low speed region. The measurement by Yasutake
et al. [25] for twinning partial dislocations in silicon suggests
a distinct dependence of dislocation velocity on stress, which
is better captured with =m 2.73. The significant scattering of
m reflects the weakness of the mathematical formula which
lacks correlation with physical mechanisms. In addition, ac-
companied by the rapid increase of velocity in response to
stress increase, the velocity of dislocations saturates within a
wide stress regime. Although different models were proposed
to capture the saturated speed as well, the exact formula is
typically a priori of the known shear speeding limit [42]. All
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Figure 3         (Color online) The stress field xx and the horizontal velocity field induced by the twinning partial dislocation at snapshots with different velocity
(shearing rate: ×2 10 /s8 ). (a)-(d) Stress fields xx, (a) before the first speed limit =v 800 m/s, (b) moving at the first speed limit =v 1831 m/s, (c) before the
second speed limit =v 3000 m/s, (d) moving at the second speed limit =v 4463 m/s, (e)-(h) show in turn the horizontal velocity contours corresponding to
(a)-(d).

these observations call for the development of physically
sound models which could capture the velocity-stress rela-
tionship seen in Figure 2.

4       Theoretical modelling

To find the physical origin of the dislocation velocity-stress
dependence, we examine the energy profile as a dislocation
glides along a lattice. Figure 4(a) presents the lattice energy
profile as proposed by Peierls [39]. With thermal undulation
or stress assistance, both lattice and the dislocation will vi-
brate [43]. When the normal mode perfect lattice vibration
meets dislocation vibration, it may result in drag on disloca-
tion by phonon scattering, or combine with the applied stress
to promote dislocation motion [44]. The lattice vibration for
atoms in the dislocation core can be categorized into longitu-
dinalmode and transversemode. For the former, the displace-
ment of atoms from their equilibrium positions coincides with
the wave propagation direction (Figure 4(c)); in the trans-
verse mode, atoms move perpendicularly to the dislocation
sliding plane (Figure 4(b)). Atoms shifted from their equilib-
rium positions will modify their energy status. As illustrated
in Figure 4(d) and (e), the displacement of the atom in the
dislocation core resulted from transverse and longitudinal vi-
brations lowers the energy barrier for dislocation move, and
the phonon states related to lattice vibrations change accord-
ingly.
Now we consider a phonon mode of frequency . Follow-

ing the same way for phonon modes triggered by thermal
energy, we consider phonon modes of stressed lattice
whose distribution follows the Planck distribution [45]:

=n 1

exp 1
a

. Here n is the average phonon number

with frequency ; the thermal energy term in the partition

function is replaced by the stress energy term at 0 K, for the
Planck constant, the average resolved shear stress applied
to the dislocation, and a the volume of the dislocation core.
We consider stress modified phonon distribution by making
the following analogy: the stress fluctuates all the time as
temperature does but its ensemble approaches to a constant
value. The change in phonon distribution by stress is not
governed by the release of strain energy but by the fluctu-
ation of stress. Hence we choose the work-conjugate term

a and let it a physical equivalence to the thermal energy.
In Appendix A, we give an explanation on the physical
equivalence between stress and temperature on how they
may alter phonon distribution.
For simplicity, we use the Einstein model of the density of

states [46]: all N oscillators within the region of interest have
the same frequency . The phononic density of state function
is then given as =D N( ) ( )0 . The collective energy

of the N oscillators is =e N

exp 1
a

. It is noted that we

would not expect the Planck distribution of phonon modes or
the Einstein model of the density of states fully capture the
real phonon characteristic in our MD systems. Even simple
cubic lattices with nearest neighbor interaction exhibit com-
plicated phonon distribution in defective solids [47-50], and
the models employed by the most represent a first-order ap-
proximation of phonon features. Nevertheless, themodels are
conceptually convenient for one to understand the physical
origin of the proposed velocity-stress relationship of disloca-
tions. Accompanying with the energy-barrier change as the
dislocation glides through a lattice site (Figure 4), phonons
annihilate and regenerate. Such processes result in energy
dissipation. The dissipated energy is comparable to the col-
lective energy of the N oscillators, as the fraction of plastic
work converted to heat is about 80% or even higher during
dislocation dominated plasticity [51,52]. Hence the  energy-
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Figure 4         (Color online) Illustration to show the energy profile modified by transverse and longitudinal phonons modes as a dislocation glides. (a) Location
of the dislocation and the periodic energy profile along the slip line. The original energy barrier G may be modified by transverse and longitudinal phonons;
(b) and (c) the transverse and longitudinal phonons introduce y- and x-axis displacements, respectively, with the former being perpendicular to the Burgers
vector and the latter being parallel to the Burgers vector; (d) and (e) the amount of lowered energy barrier by two types of phonons, where we have uT by the
transverse phonon and uL by longitudinal phonon.

dissipation rate by dislocation gliding approximates to the
variation rate of energy from the N oscillators, which leads
to the equality =bLv e td /dT T , where b is the Burgers vec-
tor of the dislocation, L the dislocation length, and T the
average frictional resistance to dislocation gliding with
assistant from transverse phonons. In that circumstance,

=e N

exp 1
T

T

T

a

, where T is the frequency of transverse

phonons. The velocity of the dislocation is then deduced as:

=v
N
bL

G 
exp

exp 1

.a

T

T

a

2

2

T

a

T

a

(1)

Since dislocation-velocity transition occurs within the
linear elastic regime in the stress-strain curve seen in
Figure 2(a), we have used = G t while obtaining eq. (1),
with G being the shear modulus, the shearing rate and
t the time. The result given in eq. (1) is for the special case
when the macroscopic stress change and microscopic stress
fluctuation coincide and we have =t Gd /d . For more
general cases we would not see td /d , for example the
activation of mechanisms which could dissipate large amount
of work during deformation. In that case, the dependence of
dislocation velocity has to be deduced from =bLv e td /dT T ,
which gives

=v
N
bL t

  
exp

exp 1

d
d

.a

T

T

a

2

2

T

a

T

a

(2)

At constant macroscopic stress, td /d is related to the

stress-fluctuation in the vicinity of the dislocation core and
is non-zero. A one-step gliding of the dislocation would
relax the stress within the activation volume. It takes a
characteristic time t c for the macroscopic constant stress to
restore the stress in the activation volume. Therefore, we
have =t td

d / c. For a T , eq. (2) is simplified to

=v
N
bL t

  .a

T c

(3)

The above equation predicts a linear dependence of velocity
on stress when a T . In contrast to the one-step load-
ing (continuously increasing strain) in previous simulations,
we evaluate eq. (3) by looking at the motion of dislocations
subjected to a two-step loading: we first increase the strain at
a constant strain rate; after the stress in the sample reaches a
target value, we then keep it constant. In Figure 5(a) and (b),
we show the distance-time and also the velocity-time curves
of a dislocation at several stresses. The two figures corre-
spond to two strain rates before reaching the target stress,

= ×2 10 /s9 and ×2 10 /s7 , respectively. After a transient
region, the velocity of the dislocation dwelling on a constant
stress level is also a constant. It is consistent with eq. (3).
However, when the stress level is so high and the dislocation
moves at its limit speeds, the variation in dislocation veloc-
ity is very small even the stress difference is large, as shown
in Figure 5(c). It is also interesting to see that the transient
region at high strain rate is significant but it disappears at
the strain rate of = ×2 10 /s7 , as seen in Figure 5(a) and
(b). The discrepancy between velocities from the one-step
and the two-step loading at different strain rates is clearly
demonstrated in Figure 5(d). The final stable velocity dur-
ing two-step loading overlaps with the velocity from one-step
loading at a constant stress. Therefore, in order to examine
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the validity of eq. (3), a strain rate around = ×2 10 /s7 or
even lower is required.
From eq. (1), we see that the dislocation will reach its first

speed limit as increases continuously. That speed could
be obtained from extrapolating to a sufficiently large value

c so that /T ac is small. The first speed limit is given as

=v b G
Tm T

a

T

with =
N
b LT

T

T
2 . Here we have made an

assumption that at the stress level < c, transverse phonons
are the primary assistance to dislocation gliding. Hence T is
a dimensionless coefficient pertinent with dislocation motion

assisted by transverse phonons. Integrating eq. (1) with re-
spect to time, we obtain the travelling distance uT of the dis-
location as the shear stress increases linearly from 0 to :

=u
b

exp 1
.T

T

T

a

(4)

The velocity and the travel distance as a function of stress
from MD simulations could be well captured by eqs. (1) and
(4), as seen in Figure 2(b)-(d). Material parameters used to
fit the curves at different strain rates are supplied in Table 1.

Figure 5         (Color online) Dislocation motion at a constant stress. (a) and (b) The displacement-time and corresponding velocity-time curves of a dislocation
subjected to a constant stress at = ×2 10 /s9 and = ×2 10 /s7 , respectively; (c) velocities in the saturated region at the strain rate of = ×2 10 /s8 . The dashed
line comes from one-step loading and circles are dislocation velocities at constant stresses with two-step loading; (d) velocities in the accelerating region at
three different strain rates, ×2 10 /s9 in red, ×2 10 /s8 in green, and ×2 10 /s7 in blue, respectively. Circles of the same color are the respective stable velocity
under constant stresses.

Table 1       Material parameters for Cu to fit the dislocation travel distance and dislocation velocity as a function of stress. Here = =v G / 2280 m/ss and
= + =v B G( 4 /3)/ 4627 m/sl are the theoretical velocities of the transverse sound (shear wave) and the longitudinal sound, respectively. The numbers are

obtained by using the shear modulus =G 46 GPa, the Poisson’s ratio = 0.34 and the density of = ×8.9 10 /m3 3, andΩa=11.46 Å3 for isotropic polycrystalline
Cu. It is noted that as the sample we used in MD simulation is a single crystal. The comparison between theoretical limits vs and v l against their counterparts
from MD simulations vs

md and v l
md is for reference

(1/s) T or T (1/s) T L vs
md (m/s) v v/s

md
s v l

md (m/s) v v/l
md

l

2×107 1.36×1012 162 – 1696 0.75 – –

2×108 3.5×1012 45 56.5 1831 0.8 4463 0.91

2×109 1.0×1013 13.3 26.5 1894 0.83 5667 1.23
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Before the second speed transition, the first speed limit
could sustain for a wide stress span when the stress increases
from c. Geometrically, the transverse phonon helps the atom
at the dislocation core to circumvent its neighbours (mov-
ing perpendicular to the gliding plane, Figure 4(b)) and real-
ize a successful jump, in contrast to the longitudinal phonon
which helps the atom to push its neighbour aside and real-
izes an equivalent jump (Figure 4(c)). In the latter scenario,
much high stress is required. At that high stress level, both
the transverse mode and the longitudinal mode of disloca-
tion motion are activated. This synergistic effect leads to an
abrupt increase in the speed (Figure 2(c) and (d)). Note that
even at low stress, transverse mode and longitudinal mode
phonons may present concurrently. We neglect the longitudi-
nal phonons below the first limiting velocity for the consider-
ation that the majority of longitudinal phonons are triggered
at a higher stress level. In the Einstein model, the transverse
phonons and the longitudinal phonons are distributed at two
separate points. In that sense, the two constant phonon fre-
quencies may represent the collective effects of the exact dis-
tribution of phonons of each type. Such a treatment certainly
deviates from the real case but the physical meaning remains.
Now following the same analytical method and adding the
contribution from longitudinal phonons assisted dislocation

motion, with =e M

exp 1
L

L

L

a

, for M the number of lon-

gitudinal phonons of frequency L, it is straightforward to de-
duce the stress dependent velocity when > c:

= +v v
M
bL

G 
exp

exp 1
Tm

a

L

L

a

2

2

L

a

L

a

(5)

with = ,c where L is the average frictional resistance to
dislocation gliding with assistant from longitudinal phonons.
The stress c is related to the critical condition when the ma-
jority of longitudinal phonon modes will be activated. It im-
plies that the dislocation should be pushed at a high stress
level to achieve the velocity jump. We expect that the role
played by the applied force dominates over that by transverse
phonons at the transition. Hence we should have >a Tc .
That is consistent with our simulation result that /a Tc is
on the order of 2 to 5. The second speeding limit, by extrap-

olating to , is obtained as = +v G b
Lm

a T

T

L

L

, with

=
M
b LL

L

L
2 . It is seen that vLm depends on both the longi-

tudinal and the transverse phonon properties of the material,
while the first one vTm only depends on the shear properties.
Both of them, however, are independent on the applied re-
solved shear stress. Integrating eq. (5) with time, we obtain

the displacement-stress relationship as:

= + +u u b
b( )

exp ( ) 1
,L T T

a

T

L
0

c

L

ac

(6)

when ,c where =u
b

exp 1
T 0

a

T

T

c

. The second term

at the right hand side of uL is contributed by the first limiting
speed vTm. With eqs. (5) and (6), we are able to capture the
displacement-stress curves and the velocity-stress curves for
twinning partial dislocations from MD simulations, as given
in Figure 2.
The two limiting speeds and the stress-velocity depen-

dence captured by the phonon theory are not only seen in
Cu. We further investigate the velocity of twinning partials
at 0 K for several other F.C.C. metals including Al, Au, Ni,
Ag, Pd, Pt and Cu. Figure 6 shows the kinetics of twinning
partial dislocations at the strain rate of ×2 10 /s9 . Despite
the significant difference in elastic properties and stacking
fault energies among those materials, their twinning partial
dislocations move in a similar way in response to applied
shear stress. The travel distance as a function of linearly
increasing stress shows two distinct stages (Figure 6(a)),
resulted from the abrupt velocity jump at high stress level.
The theoretical prediction from eq. (6) is also shown in
Figure 6(a). In Figure 6(b), we present the stress-dependent
velocity of twinning dislocations. As the theoretical pre-
diction from eq. (5) and the results from MD simulations
match so well, we only show the curve from theoretical pre-
diction. It is convenient to identify the two speeding limits
at different stress regimes from Figure 6(b). In addition to
abstract the speed limit from the velocity-stress curves, we
also calculate the two speed limits from the Mach cones.
Figure 6(c) and (d) shows the Mach cones in the horizontal
velocity field vx for Cu and Ni, respectively. The correlation
of the moving velocity with the shear wave and longitudinal
wave speeds is demonstrated. In Table 2, we summarize our
simulation results on the limiting velocity of twinning partial
dislocations in several metals of different density and elastic
properties, as well as the material parameters used to capture
the stress-velocity curves from MD simulations. For conve-
nience, we also show in Figure 6(e) the normalized subsonic
and supersonic dislocation speeds for different F.C.C. metals.
The denominators are the respective shear wave speed and
longitudinal wave speed of the specific metal. At the strain
rate of ×2 10 /s9 and 0 K, the first limiting speed of twinning
partial dislocations is slower than the shear wave speed in the
F.C.C. metals investigated here. The second limiting speed
is slightly greater than the speed of the longitudinal wave.
It may be due to the fact that our simulations are done in a
single crystal with twin boundaries. The bulk modulus of
single crystals  should  be  higher  than  their  polycrystalline
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Figure 6         (Color online) The motion of twinning dislocations in different F.C.C. metals at the strain rate of ×2 10 /s9 . (a) Travel distance as a function of linearly
increased stress. Both results from MD simulations (solid line) and theoretical prediction (dotted line) are shown; (b) the velocity of twinning dislocations as a
function of stress. As the data from MD simulations and theoretical predictions are highly repeatable, we only show the curves from theoretical prediction; (c)
and (d) horizontal velocity field vx when dislocations moving at the second speed limit for Cu and Ni, respectively, the longitudinal and shear wave speed can
be calculated from the geometry of the Mach cone; (e) the normalized subsonic and supersonic speed of dislocations, and (f) the normalized transitional stress
when velocity jump occurs.

counterparts, and the data we obtained from the literature are
for latter case. In particular, disordered atoms in the grain
boundaries of polycrystalline metals would enhance the com-
pressibility of metals. Figure 6(f) shows the normalized shear
stress (by the shear modulus of the metal) when the speed gap
occurs. The typical critical stress for the transition is about

G/c 5%-7%.
The solutions of linear elasticity theory predict no

stable dislocation motion in the velocity regime vs and
v2 s [14,19,44]. Here we also observe the velocity gap

from subsonic to supersonic motion of twinning partial dis-

locations in F.C.C. metals, in accordance with previous MD
calculations [7,16-18,33] and constitutive theories [53]. The
ratio between the supersonic/subsonic speed limits, however,
may be not exactly equal to 2 . In our theory, the gap is
resulted from the shift from transverse phonon assisted to
longitudinal phonon assisted dislocation gliding. Hence the
ratio of the supersonic limiting over the shear wave speed
limit is determined by the ratio of the longitudinal wave
speed v l and the shear wave speed vs here. It is written as

=
v
v

2(1 )
1 2

l

s

for being the Poisson’s ratio. We see  that
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Table 2       Material properties of several typical F.C.C. metals at 0 K and their respective limiting velocities of a twinning partial dislocation (at the strain rate
of ×2 10 /s9 ). Note that the two limiting speeds of each metal were calculated from the Mach cone of a dislocation moving except the longitudinal wave speeds
of Al, Au, Pd, Pt. Their Mach cones are not sharp enough for precisely determination for the longitudinal wave speed. We used their theoretical calculations
with = +v B G( 4 /3)/l

md md md , where B md and G md are obtained from MD simulations at zero-strain. Since G md from the simulation varies slightly at large
elastic strain, we supplied its range within the applied strain between 0 and 6%. The two speed limits vs, v l come directly from MD simulations

Parameter G md
a b vs v l

T or
T T L vs

md v v/s
md

s v l
md v v/l

md
l c G/c

Units GPa – Å3 Å kg/m3 m/s m/s /s – – m/s – m/s – MPa –

Cu 36.5-41.0 0.34 11.46 1.46 8933 2360 4610 0.35 13.3 26.5 1894 0.8 5667 1.23 2300 0.05

Al 22.4-27.2 0.35 16.56 1.65 2740 3170 6000 0.46 9.3 14.2 2636 0.83 6660 1.11 1500 0.068

Au 19.5-23.0 0.42 16.79 1.66 19265 1180 2460 1 8.5 15.3 992 0.84 2778 1.13 1050 0.05

Ni 59.2-68.8 0.31 10.71 1.43 8876 2860 4990 1.43 14.9 24.1 2345 0.82 6137 1.23 3950 0.059

Pd 29.4-32.8 0.39 14.37 1.58 12010 1900 3700 0.42 6.9 12.6 1480 0.78 4202 1.34 1500 0.05

Ag 27.1-31.6 0.37 16.97 1.67 10474 1770 3390 0.6 7.7 15.3 1486 0.84 4146 1.22 1750 0.056

Pt 30.0-32.4 0.38 14.97 1.6 21517 1410 2690 0.65 7.3 12.8 1140 0.81 3240 1.2 1530 0.05

even for isotropicmaterials, the ratio of supersonic speed over
shear wave speed depends on the Poisson’s ratio. For = 0,
it approaches to the theoretical analysis of =v v/ 2l s . For

= 1/3, =v v/ 2l s .

5       Conclusion and discussion

In this paper, we employ large-scale molecular dynamics sim-
ulations to explore the velocity-stress relationship in a twin-
ning partial dislocation in face centred cubic crystals. The
choice for a twinning partial dislocation is two folds: (1) a
complete dislocation in F.C.Cmetals inMD systems will split
into two partials with stacking fault in between. We demon-
strate in Figure 7(a) the atomic structure of a complete dis-
location at equilibrium in Cu. The corresponding stress field

xy is shown in Figure 7(b). During their motion, the disso-
ciated dislocations will have to drag a stacking fault along
with them. Such a scenario would make it is difficult for the-
oretical analysis as we aim to obtain the velocity-stress re-
lationship of a simple dislocation on which intensively the-
ories have been developed. In contrast, a twinning partial
dislocation is pure edge type, as seen in Figure 1. (2) Since
the collective nucleation and propagation of twinning par-

tial dislocations are generally considered to fulfil twin defor-
mation, the limiting velocity of twinning partial dislocations
could also be applied to understand the kinetics of deforma-
tion twinning in crystalline materials [54-56].
We demonstrate that a twinning partial dislocation exhibits

two limiting speeds: the first is subsonic and occurs when the
resolved shear stress is on the order of hundreds of megapas-
cal. While the stress is raised to gigapascal level, an abrupt
jump of dislocation velocity occurs. The first and second
limiting speeds of the obstacle-free twinning partial disloca-
tions are still subsonic in nature if compared to the transverse
and longitudinal  sound  waves,   respectively.  If  we  adopt
 the definition proposed by Weertman [57], the second speed
limit is supersonic. The speed of the twinning partial dis-
location reach a saturated supersonic value which is about
20% above its longitudinal sound wave. Further increase in
stress would lead to homogeneous nucleation of dislocations.
The resolved shear stress to a particular dislocation is hence
bounded as the single crystal yields. By adopting the Einstein
model for the density of states and also the Planck distribu-
tion for the average number of phonons, we build the linkage
of the two limiting speeds with phonon vibration assisted dis-
location motion. The model not only captures the stress-de-
pendent dislocation velocity, but also  explains  the  physical

Figure 7         (Color online) The dissociation of a complete dislocation in F.C.C. Cu at equilibrium. (a) The atomic structure of the split complete dislocation; (b)
the stress field introduced by the dissociated dislocations.
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origins of the two limiting speeds.
There could be remaining concerns about how well the

empirical potentials may describe the interaction of atoms
and the high strain rate employed here. Indeed, the em-
bedded atom method (EAM) potentials used here are more
powerful in capturing elastic-plastic coupled deformation
like the motion of dislocation than class elastic theories:
MD simulations with those potentials not only fully predict
the anisotropic nature of crystals but also captures energy
terms related to dislocation activities, like the stacking fault
energies and the interfacial energies; existing isotropic elastic
theories for dislocation motion are incapable of including
those factors. For the concerns of high strain rates, we
examined the motion of dislocations resulted from deforma-
tion rate. It is noted that at the strain rate of = ×2 10 /s9 ,
the artificial dislocation velocity imposed by the straining
may reach = = × × =v h 2 10 /s 456 nm/2 456 m/s9 . For

= ×2 10 /s8 , it drops to 45.6 m/s, the speeds of dislocations
are at least one order of magnitude faster. In particular, since
we track the relative motion of oppositely moving disloca-
tions in the sample seen in Figure 1(b), the straining induced
velocity is automatically excluded. Our simulations for Cu
at different strain rates demonstrate that the speed transition
is robustly seen, regardless the slight variation in the exact
number of the speeds. The difficulty in observing the second
speed limit at the strain rate of ×2 10 /s7 is due to the limited
sample size: before reaching the second speed limit, the two
dislocations traveled a displacement greater than their initial
distance, even we have used a cutting-on-edge simulation
sample size of 1.8 m in width.
In summary, the dislocation kineticsmodel proposed here is

the first kind to shed light on the microscopic mechanisms of
the limiting factors for dislocation velocities. It could be di-
rectly applied to dislocation dynamics simulations [58-60] as
physically faithful mobility laws. As the two speed limits oc-
cur at high stress level ( G/c 5%-7%), it may be commonly
seen in fast deformation like metals under shock loads or dur-
ing cracking. For example, the anomalous strain-rate sensi-
tivity at high strain rates (103/s and above) could be related to
the transition in dislocation velocities during fast deformation
[61,62]. We further note that the results reported here are for
pure edge type twinning partial dislocations. It would be of
great interest to see the dynamics of a screw partials or dislo-
cation of mixing feature. As moving screw dislocation does
not emit longitudinal waves, there exists no sound barrier be-
tween the subsonicmotion and supersonicmotion except for a
single transonic state [44]. In addition, dislocations of mixed
character are more complex because the contributions to core
radiation from the edge component and the screw component
are strongly coupled [7,16,63]. We leave this part in the fu-
ture work.
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Appendix

Here, we build the connection between stress and temperature
on how they may alter phonon distribution. It has been well
known that the anharmonic terms accounts for the thermal
properties of materials [64]. For simplicity but without loss
of generality, we consider a pair potential with a minimum
energy of u 0. Its harmonic approximation, which represents
the materials at very small elastic deformation quite well, will
deviate from the real energy profile perceivably. Such asym-
metrical potential gives rise to transportation of phonons, and
results in the flux of heat. Such a concept is well known and is
documented in commonly seen textbooks. By expanding the
potential function near the equilibrium position (δ =r − rm),

and include higher order terms than the harmonic approxima-
tion owes, we have

= + + + +u r u K O( )
2 6 24

 ( ) .0

2 3 4
4 (a1)

In the above equation, we have defined =K u r
r

d ( )
d

2
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r

d ( )
d

3

3 , and =
u r

r
d ( )
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4

4 at =r rm, and used the factor

=
u r

r
d ( )

d 0 at the equilibrium position. Terms from the third
one on the right hand side of eq. (a1) are related to the
anharmonic nature of the interaction, from which thermal ex-
pansion originates. Specifically, the coefficient weights the
asymmetry of the mutual repulsion of the atoms and repre-
sents the softening of the vibration at large amplitudes [64].
Following the Boltzmann distribution, the linear expansion
of lattice at thermal equilibrium will lead to an elongation of
lattice size by an amount of , which is determined as:

=

+
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where kB is the Boltzmann constant; T is the absolute temper-
ature.
At the same time, when we exert a force to pull the atomic

bond apart, the lattice will expand as well. The force-dis-

placement relationship is given by =f r u r
r( ) d ( )

d . Using the

expanded expression for u r( ), we have

= + +f K( )
2 6

.
2 3

(a3)

Let Sa the planar footprint of the atom with surface normal
parallel to the loading direction. We may obtain the stress
as a function of lattice extension :

= = + +
f
S S

K
( ) 1

2 6
.

a a

2 3

(a4)

Now can be expressed in terms of the applied stress . If
we take the linear term for vs. , then

=
S
K

.a (a5)

Inputting eq. (a5) into eq. (a2) and recognizing the equiv-
alence of and , we have

=
S
K K

k T1
2

.a
2 B

From which we obtain the following relationship between
and T :

=
S K

k T1
2 a

B (a6)
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Note that lattice “expansion” by uniaxial stress occurs
along one direction but thermal expansion is typically
three-dimensional. As the motion of dislocations is mostly
sensitive to the distance of the gliding planes in comparison
with the other two directions, the relationship proposed in
eq. (a6) seems to be reasonable.
Nowwe consider the commonly seen pair potential in phys-

ical community to express eq. (a6) in parameters we are fa-
miliar with. Let’s consider a Lennard-Jones interaction

=u r u
r
r

r
r

( ) 4 ,0
0

12
0

6

(a7)

where u 0 is the cohesive energy. Its Taylor expansion at the
equilibrium point =r r2m 0

6 in the form of eq. (a1) leads to
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Hence we have =K u r72 / m0
2, = u r1512 / m0

3, and

= u r26712 / m0
4. With eq. (a6), we have =

k T
S r

21
a m

B , where

S ra m is approximate to the atomic volume.
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