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ABSTRACT
The rotational motion and orientational distribution of ellipsoidal
particles in turbulent flows are of significance in environmental and
engineering applications. Whereas the translational motion of an
ellipsoidal particle is controlled by the turbulent motions at large
scales, its rotational motion is determined by the fluid velocity gra-
dient tensor at small scales, which raises a challenge when predict-
ing the rotational dispersion of ellipsoidal particles using large eddy
simulation (LES) method due to the lack of subgrid scale (SGS) fluid
motions. We report the effects of the SGS fluid motions on the orien-
tational and rotational statistics, such as the alignment between the
long axis of ellipsoidal particles and the vorticity, themean rotational
energy at various aspect ratios against those obtained with direct
numerical simulation (DNS) and filtered DNS. The performances of
a stochastic differential equation (SDE) model for the SGS velocity
gradient seen by the particles and the approximate deconvolution
method (ADM) for LES are investigated. It is found that the missing
SGS fluid motions in LES flow fields have significant effects on the
rotational statistics of ellipsoidal particles. Alignment between the
particles and the vorticity is weakened; and the rotational energy of
the particles is reduced in LES. The SGS-SDE model leads to a large
error in predicting the alignment between the particles and the vor-
ticity and over-predicts the rotational energy of rod-like particles. The
ADM significantly improves the rotational energy prediction of parti-
cles in LES.

1. Introduction

The dynamics of ellipsoidal particles suspended in turbulence is a central problem inmany
engineering applications and natural environmental flows. For examples, in marine biol-
ogy, the dynamics of small planktonic organisms suspended in the ocean is a fundamental
problem in understanding their feeding and breeding patterns;[1–3] in paper making, the
rotational dispersion of fibres plays an important role. The orientational distribution dom-
inates the mechanical and other properties of the finished paper.[4] When the fibres are
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oriented primarily in one direction, the paper will be strong in that direction, which is suit-
able for newsprint. However, high-quality papers, such as magazine or laser printer papers,
require an isotropic orientational distribution.

Jeffery [5] studied the rotational motion of small ellipsoidal particles in a fluid flow, and
proposed an equation of motion for the direction of the long-axis vector p governed by
the fluid velocity gradient tensor. Bretherton [6] extended Jeffery’s equation with a shape
parameter, the aspect ratioα = l/d, where l is the length of the ellipsoidal particle and d is the
diameter. In this study, ellipsoidal particles are generally referred to as rod- or disk-like par-
ticles, as determined by α; α � 1 corresponds to a flat, disk-like particle, α = 1 corresponds
to a spherical particle, and α � 1 corresponds to an elongated, rod-like particle. Recently,
the dynamics of ellipsoidal particles in turbulent flows have been extensively studied.[7–14]
However, the study on the orientational and rotational dynamics of ellipsoidal particles in
the context of large eddy simulation (LES) is relatively scarce.

In recent years, LES has become a successful tool in the computational fluid dynamics
software [15] in predicting single-phase turbulent flows and particle-laden turbulence,[16–
19] the latter requires that LES is time accurate.[20–22] In conventional LES, the large-scale
turbulent motions are explicitly resolved, whereas the effects of the subgrid scale (SGS)
motions are modelled. Because the mesh resolution employed in LES is much coarser than
that used in direct numerical simulation (DNS), LES is more economical than DNS and
can be applied to turbulent flows at high Reynolds numbers. However, if we replace the real
fluid velocity with the resolved scale velocity to compute the fluid velocity gradient tensor
experienced by small, rigid fibres without considering the effects of the SGS velocity, it will
introduce large errors into the rotational statistics of fibres according to Jeffery’s equation.
In addition, the rotational dispersion coefficient of the ellipsoidal particles is related to the
turbulent energy dissipation rate,[23] which is reduced in LES because of the lack of SGS
fluctuations. Thus, the effect of the SGS motions of fluid velocity on the rotational motion
of ellipsoidal particles is an important and open issue.

To model the effects of the unresolved SGS fluid motions on the dispersion of spherical
inertial particles, two types of models for particles have been developed. The first one is
a Langevin-type model for SGS motions, where the missing fluctuations can be compen-
sated by stochastic information [24,25] based on a stochastic differential equation (SDE).
The second one is based on the approximate deconvolutionmethod (ADM),[26–28] where
the energy spectrum near the cut-off number is recovered to some extent.[29] Michałek
et al. [30] proposed a hybrid stochastic-deconvolutionmodel for particles in LES of particle-
laden turbulence by combining the SDE and the ADM.

The motion of inertialess ellipsoidal particles is much more complicated than that of
spherical particles due to the three additional rotational degrees of freedom. The transla-
tional motion is controlled by large-scale motions, whereas the rotational motion is deter-
mined by the fluid velocity gradient tensor at small scales. Therefore, the LES of the ori-
entational and rotational statistics of the ellipsoidal particles in turbulence encounters new
challenges due to the lack of SGS motions. Therefore, our objectives are to examine the
effects of SGS motions and further to assess the performances of SGS models on the pre-
diction of orientational and rotational statistics of ellipsoidal particles.

This paper is organised as follows. The governing equations for fluid and particle
motions are provided in Section 2. The validation of our simulation results, the alignment
of the rod- and disk-like particles with the vorticity and the Lagrangian fluid stretching
direction, the effects of the missing SGS motions and the performance of SGS models on
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310 J. CHEN ET AL.

the rotational statistics of ellipsoidal particles, are presented in Section 3. Conclusions are
provided in Section 4.

2. Numerical simulations

We consider the motion of rigid, inertialess and ellipsoidal particles smaller than the Kol-
mogorov length scale in isotropic turbulent flows. The particle concentration is very dilute,
so the one-way coupling from fluid to particles is assumed, and collisions between parti-
cles are neglected. In this section, the governing equations for turbulent flows and particle
motions are presented.

2.1. Flow field

... DNSmethod
The DNS of isotropic turbulence is performed using a pseudo-spectral method in a box
of (2π)3, which is discretised into N3 grid points (N = 128 and 512 in this paper). The
Navier–Stokes equations for incompressible isotropic turbulence in spectral space can be
represented as (|k| < kmax)

(
∂

∂t
+ νk2

)
û(k, t ) = P(k)�(u × ω) + f̂ (k, t ), (1)

whereu and û(k, t ) are the fluid velocities in physical and spectral space, respectively. kmax is
the maximum cut-off wavenumber, kmax =N/3. k = (k1, k2, k3) is the wavenumber vector,
with k = |k|,ω = ∇ × u is the vorticity in physical space, and ν is the fluid kinematical vis-
cosity. The projection tensorP jm = δ jm − k jkm/k2( j,m = 1, 2, 3), and ϝ denotes a Fourier
transform. The artificial forcing term f̂ (k, t ) is used to drive and maintain the turbulent
flow using a deterministic forcing scheme.[31,32] The spectral velocity fields are advanced
in time using a second-order Adams–Bashforth method for the non-linear term and an
exact integration for the linear viscous term. In our simulations, the Courant–Friedrichs–
Lewy number is less than 0.5 and kmaxη is larger than 1.1, where η is the Kolmogorov length
scale of turbulent flows.

... Filtered DNS (FDNS) velocity fields
The filtered velocity fields can be computed using a filtering operation on the Fourier coef-
ficients from DNS, where the filter used in this paper is a sharp spectral filter H(kc − |k|)
(H is the Heaviside function),

ũ(x, t ) = F−1
{
û(k, t ) if |k| ∈ [1, kc],
0 if |k| ∈ (kc, kmax],

(2)

where ũ(x, t ) is the filtered velocity in physical space and kc is the cut-off wavenumber, kc
= 0.25kmax in this paper. The SGS velocity field is then

u′(x, t ) = u(x, t ) − ũ(x, t ). (3)
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Because FDNS, regarded as an ideal LES, does not introduce any SGS modelling errors
into the flow fields, it plays an important role in studying the effects of SGS eddies on the
statistics of particle motions.

... LESmethod
The same pseudo-spectral method and forcing scheme as DNS are used in LES. However, it
is performed on a much coarser grid, such that the SGS velocity fields are unresolved. The
governing equations in LES can be written as

{
∂

∂t
+ [ν + νe(k|kc)]k2

}
ˆ̄u(k, t ) = P(k)�(ū × ω̄) + f̂ (k, t ), (4)

where ū and ω̄ are the filtered fluid velocity and vorticity in physical space, respectively, and
ˆ̄u is the filtered fluid velocity in spectral space. νe(k|kc)k2 ˆ̄u(k, t ) denotes the net dissipative
effects of SGS motion on the resolved scale flow. We use the spectral eddy viscosity SGS
model [33,34] to close Equation (4),

νe(k|kc) = ν+
e (k/kc)

√
E(kc)
kc

, (5)

where

ν+
e (k/kc) = C−3/2

K [0.441 + 15.2exp(−3.03kc/k)]. (6)

In our study, the Kolmogorov constant CK is 2.0, and E(kc) is the value of the energy-
spectrum function at the cut-off wavenumber kc.

2.2. Particlemotion

The motions of an ellipsoidal particle can be classified into translational and rotational
motions. The inertialess ellipsoidal particle is solely convected by the flow, so its transla-
tional motion can be described by the fluid velocity at the centre position of an ellipsoidal
particle, xp(t ).

When turbulent flow reaches a statistically steady state at t0, the particles are seeded into
the flow field at x0, and the translational motion of an ellipsoidal particle is described by

ẋp(t; x0, t0) = u(xp, t; x0, t0), (7)

where ˙( ) denotes the Lagrangian time derivative, xp(t; x0, t0) and u(xp, t; x0, t0) are the
position and velocity of particles at time t. The Lagrangian velocity u(xp, t; x0, t0) can be
obtained from the Eulerian velocity field u(x, t ) by a six-point Lagrangian interpolation in
each spatial direction.[35] Then, we can use a fourth-order Adam–Bashforth method [36]
to calculate the displacement of particles.

In this study, the length scalemax(l, d) of the ellipsoidal particles is assumed to be smaller
than the Kolmogorov length scale in DNS, and thus, much smaller than the filter length �
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312 J. CHEN ET AL.

in LES (� = π /kc). Thus, they experience viscous laminar flow at the scales of their length,
and their rotational motion can be described using Jeffery’s equation,[5]

ṗi = 	i j p j + α2 − 1
α2 + 1

(
Si j p j − pipkSkl pl

)
, (8)

where 	ij is the rate-of-rotation tensor and Sij is the rate-of-strain tensor along the trajec-
tory of the ellipsoidal particle,

	i j = 1
2

(
∂ui
∂x j

− ∂uj

∂xi

)
, Si j = 1

2

(
∂ui
∂x j

+ ∂uj

∂xi

)
, (9)

pi is a component of the orientation vector, andα = l/d is the aspect ratio, which determines
the shape factor of an ellipsoidal particle,
= (α2 − 1)/(α2 + 1). The first termon the right-
hand side of Equation (8) denotes the rotation rate caused by the vorticity, and the second
one denotes the rotation rate caused by the shear strain, where the elongation of pdue to the
contribution of Sij is subtracted by the non-linear term pipkSklpl, such that the orientation
vector p is constrained to be a unit vector. For a detailed derivation, please refer to Ref. [37].

3. Results and discussion

3.1. Validation of the codes

To validate our codes for capturing the orientational and rotational statistics of ellipsoidal
particles, we compared our results with those obtained by Pumir and Wilkinson [9] and
Parsa et al.,[10] respectively. First, we consider the alignment of ellipsoidal particles in tur-
bulent flows.

In this study, the alignment of ellipsoidal particles is defined as the cosine of the angle
between the orientation vector of the particles, p, and the direction vectors, ei, where ei
denotes the three orthonormal eigenvectors e1, e2, e3 of the symmetric matrix S and the
unit direction vector eω of the vorticity ω. The eigenvectors of S can be solved from

Sei = λiei, (10)

where λi, ordered by λ1 � λ2 � λ3, are the eigenvalues of S. In addition, the antisymmetric
vorticity tensor � corresponds to a vorticity vector ω by 2	ij = −ϵijkωk, where ϵijk is a
permutation tensor with magnitude ω and the unit direction vector eω,

ω = (ωx, ωy, ωz) = ωeω, � = 1
2

⎛
⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎠ . (11)

It was shown that the statistics characterising the alignment of rod-like particles with
α → � are independent of the Reynolds number in the range 45 � Rλ � 170.[9] We
choose α = 100 to represent a rod-like particle in our case. Since the second-ordermoment
〈(p · ei)2〉 ismore sensitive to the tail of the probability distribution function (PDF) of align-
ment angle |p · ei| than the first moment 〈|p · ei|〉, we provide both 〈|p · ei|〉 and 〈(p · ei)2〉
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τ
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〉
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(a)
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3

2
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ω

(b)

Figure . Alignment of rod-like particles (α = ) in isotropic turbulent flow: evolution alignment of p
with the eigenvalues of strain, ei, and the direction of vorticity, eω , with time. (a) 〈|p · ei|〉, (b) 〈(p · ei)2〉.

versus time and their time-averagemean value at the stationary state in Figure 1 andTable 1.
The results by Pumir and Wilkinson [9] are used to validate our result in Table 1. Figure 1
shows the evolution of the cosine of the angle between the orientation of the rod-like par-
ticles, p, and the direction vectors, ei, of the velocity gradient tensor elements with time in
DNS with Rλ = 65. At short times, the orientation vector p tends to align with the largest
eigendirection of the strain and becomes perpendicular to the smallest eigendirection of
the strain, as expected. However, as it gradually reaches the statistically stationary level, the
alignment of the orientation vector p and the eigenvector ei shows an interesting result:
the alignment between p and e1 is reduced due to the trapping of rod-like particles by the
vortex; thus, there is a much stronger alignment between p and eω. Moreover, the corre-
lation between p and e2 implies that there is a strong alignment between eω and e2, as has
been proven by Ashurst et al. [38]. The constant mean values of the alignment of rod-like
particles are listed in Table 1, with a group of data from Pumir andWilkinson [9] provided
for comparison, and the two sets of results well agree with each other. At the same time, we
plot the PDF of |p · ei| in Figure 2, which clearly demonstrates the preferential alignment
between p and e2, eω. At |p · ei| → 1, the PDFs of |p · e2| and |p · eω| are much large.

Finally, we investigate the mean square rotation rate, or the rotational energy, as a func-
tion of the aspect ratio by performing two sets of simulations with Rλ = 65 and 205. We
can observe from Figure 3 that the variation of the curve of the rotational energy looks
like the letter ‘z′ along the axis of the aspect ratio. When α � 1, the rotational energy of
the disk-like particles is much larger than that of the spheres (α = 1), whereas the rota-
tional energy of the rod-like particles (α � 1) is much smaller than that of the spheres. The
values of rotational energy are slightly dependent on the Reynolds number, and we obtain

Table . Statistics characterising the alignment of rod-like particles (α = ).
X denotes p · ei and data with α → � from Pumir and Wilkinson.[]

p · e1 p · e2 p · e3 p · e
ω

〈|X|〉, α → �, Ref. [] . . . .
〈|X|〉, α =  . . . .
〈(X)〉, α → �, Ref. [] . . . .
〈(X)〉, α =  . . . .
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⋅

⋅
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3

ω

Figure . PDF of alignment between the rod-like particles (α = ) and velocity gradient tensors. ei,
eigenvectors of strain tensor; eω , direction of vorticity; p, a unit vector aligned with the axis of a rod-like
particle.

X X
X

X
X
X
X
X

X X

+ + + +
+ +

#
#

#
# #

#
#
#

#
#

α

λ

λ

λ

λ

λ

λ

λX
+
#

〈
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Figure . Mean square rotation rate against the aspect ratio. DNS-: DNS results from Parsa et al. [];
DNS-: present DNS results; DNS, Gaussian and RFDA: DNS and modelling results from Chevillard and
Meneveau [].

results consistent with those from Parsa et al. [10] and the DNS result from Chevillard and
Meneveau [39]. The results of the two Lagrangian stochastic models, namely, the Gaussian
process and recent fluid deformation approximation (RFDA) for velocity gradient tensor at
full scale are also plotted for comparison. It is observed that all DNS results collapse well,
while the Gaussianmodel is only valid for spherical particles at α = 1, and the RFDAmodel
behaves well for rod-like particles (α � 1). More discussions on the rotational energy ver-
sus aspect ratio are presented in the next subsection.

3.2. Alignment of ellipsoidal particles with the eigenvectors of strain rate tensor
and the vorticity vector

When considering the alignment of particles with different shapes or aspect ratios, we will
find an interesting result in Figure 4. The rod-like particles tend to be parallel to e2 and
eω, while the disk-like particles tend to align with e3 and to be perpendicular to e2 and eω.
Here, we shall explain the different alignment of the rod- and disk-like particles. Because

D
ow

nl
oa

de
d 

by
 [

L
au

re
nt

ia
n 

U
ni

ve
rs

ity
] 

at
 1

2:
58

 2
3 

Fe
br

ua
ry

 2
01

6 



JOURNAL OF TURBULENCE 315

α

〈
⋅

〉
ω

Figure . Alignment of ellipsoidal particles against the aspect ratio. The orientation vectors of disk-like
particles tend to align with the directions perpendicular to the orientation vectors of rod-like particles.

we have known that the non-linear term in Equation (8) does not influence the rotational
dynamics of the particles in Section 2, the solution of Jeffery’s equation can also be obtained
from p(t ) = q(t )/|q(t )|, where q is the unnormalised orientation vectors, its dependence
on	 and S can be written as q̇ = 	q + α2−1

α2+1Sq. In the limiting cases, the equations of q for
rod-like particles (α → �) and disk-like particles (α → 0) become

q̇rod = A(t )qrod, (12)

q̇disk = −AT (t )qdisk, (13)

where A is the velocity gradient tensor, A = S + 	, and AT is the transpose of A. Equa-
tions (12) and (13) imply that the dynamics of the disk- and rod-like particles are deter-
mined by A(t ) and−AT (t ), respectively. Therefore, the eigenvalues of A (or−AT ) directly
influence the behaviours of qrod (or qdisk). There are three possible situations for the align-
ment of a rod-like particle with the eigenvector.[6] If there are three real eigenvalues, then
qrod alignswith the eigenvector corresponding to the largest eigenvalue. If there are one pos-
itive real eigenvalue and two complex conjugate eigenvalues, qrod alignswith the eigenvector
corresponding to the real eigenvalue. Otherwise, if the real eigenvalue is non-positive, qrod
rotates in the plane spanned by the real and imaginary parts of the complex eigenvector.
Because the eigenvalues of −AT and A have opposite signs, the order of eigenvalues from
maximum value to minimum value is opposite, thus, disk-like particles tend to align with
the directions perpendicular to the orientation vectors of rod-like particles, as shown in
Figure 4. The alignment between the rod-like particles and the vorticity has been attributed
to the similarities between the equations of motion (12) and (14) for rod-like particles and
vorticity, and the additional viscous term in Equation (14) will slightly weaken the align-
ment between the rod-like particles and the vorticity,[9] as shown in Figure 1,

ω̇ = A(t )ω + ν�2ω. (14)

As a result, the orientation vector of a rod-like particle tends to align with the vortic-
ity vector, and the preferential alignment with vorticity will weaken the rotation of the
rod-like particle, which leads to a lower rotational energy, whereas the orientation vector
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Figure . The alignment of the orientation vector p of ellipsoidal particles with respect to the eigenvec-
tors eLi (i= ,,) of the left Cauchy–Green strain tensorC(L). (a) Plots the alignment of disk-like particles,
and (b) plots the alignment of rod-like particles. For all subfigures, eL1, eL2, and eL3 represented by the
symbols ‘square’, ‘triangle’and ‘circle’correspond to the largest, intermediate and smallest eigenvalues of
C(L). The solid lines, dashed lines and dash-dotted lines show the results fromDNS, LES and LES plus SDE.

of a disk-like particle tends to be perpendicular to the vorticity vector, and the perpendic-
ular alignment will strengthen the rotation of the disk-like particle, and thus increase the
rotational energy, as shown in Figure 3.

3.3. Alignment of ellipsoidal particles with Lagrangian fluid stretching direction

An alternative method to characterise the orientation of rod-like particles is Lagrangian
fluid stretching, which can be described using the left Cauchy–Green tensorC(L) [40],

C(L) = FFT , (15)

where Fij = (�xp, i/�x0, j) is the deformation gradient tensor at xp with respect to x0. The
evolution equation of F can be obtained by differentiating Equation (7) with respect to x0,

Ḟ = A(t )F, (16)

the initial condition is chosen as Fij(0) = δij.
In this subsection, we shall investigate the alignment of ellipsoidal particles with

Lagrangian stretching direction in DNS, LES and LES plus SDE (details about the SDE
model for the SGS velocity gradient will be given in Section 3.5.1). Figure 5 shows the
alignment of disk- and rod-like particles with the Lagrangian fluid stretching directions.
Since the initial orientations of the ellipsoidal particles are randomly distributed, the align-
ments of the particles with each Lagrangian stretching direction start at approximately 0.5,
and they finally approach different constants. In Figure 5(a), the alignment of the disk-like
particles with eL3 is very strong; while in Figure 5(b), the rod-like particles tend to align
with eL1, which is consistent with the results from Ni et al. [40]. The reason that disk- and
rod-like particles tend to align with the smallest and the largest eigenvalues is due to the
opposite order of eigenvectors in −AT and A in Equations (12) and (13), which has been
given in Section 3.2. It is interesting that the alignments of the ellipsoidal particles with the
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Lagrangian stretching direction are insensitive to the changes of the velocity gradient ten-
sor: For each Lagrangian stretching direction, the corresponding curves among DNS, LES
and LES plus SDE overlap together. This phenomenon is owing to the same form of the
equations of disk- and rod-like particles, Equations (12) and (13), as the equation of defor-
mation gradient tensor, Equation (16). Since the orientation of the ellipsoidal particles and
the deformation gradient tensor are passive vectors determined by the velocity gradient
tensor, the changes of A would not influence the alignment between them. Therefore, the
alignment of the ellipsoidal particles with the Lagrangian stretching would keep the same
for different velocity gradient tensor, and it cannot reflect the effects of SGS motions or
models on the orientational dynamics of the ellipsoidal particles.

3.4. Effects of SGSmotions on orientational and rotational dynamics

In isotropic turbulence, the rotation of ellipsoidal particles is determined by the veloc-
ity gradient along the particle trajectories. Because the vorticity in Equation (14) or the
enstrophy is largely accumulated at small scales, which is much underpredicted in LES, it
raises a challenge to predict the rotational dispersion of ellipsoidal particles using the LES.
In this subsection, we shall examine the alignment and rotation of ellipsoidal particles in
LES.

Figure 6 shows the alignment of the disk- (α = 0.01) and rod-like particles (α = 100)
between the axial vectors p and the elements of the velocity gradient direction from DNS,
FDNS and LES. Because the orientation vectors of disk-like particles tends to align with
the directions perpendicular to the orientation vectors of rod-like particles as shown in
Figure 4, we discuss the rod-like particle cases in Figure 6(e)–6(h) first. We find that the
alignment of the rod-like particles in both FDNS and LES has a large difference from that in
DNS, which is easy to understand because neither FDNS nor LES resolves the SGS velocity
fluctuations. The preferential alignment between pand eω in LES andFDNS ismuchweaker
than that in DNS. This is because the strong vorticity at small scales is filtered out and the
vortex trapping of rod-like particle is thus weakened. In this study, the FDNS method is
considered as an ideal LES method without any SGS model, and the errors mainly come
from the filtering operation. However, the additional viscous dissipation from the eddy vis-
cosity model in LES increases the coherence of the flows. As shown by Pumir and Wilkin-
son [9], the viscous term in Equation (14) influences the correlation between the orien-
tation vector of the rod-like particle and the vorticity vector. Hence, the additional SGS
eddy viscosity in LES will further weaken the alignment between the rod-like particle and
the vorticity. Because the filtering operation is the major factor that affects the alignment
of the particles, the effect of the additional SGS eddy viscosity in LES on the alignment of
the particles is relatively small. For disk-like particles, the filtering operation leads a similar
error to their alignment with the eigenvectors of the fluid velocity gradient tensor, as shown
in Figure 6(a)–6(d), and the effects of the SGS eddy viscosity in LES on the alignment of
disk-like particles are also very small.

Now, we study the mean square rotation rate of the ellipsoidal particles, as shown in
Figure 7. The curves of FDNS and LES are both under the curve of DNS, which indi-
cates that the filtering operation decreases the vorticity of the flow and reduces the rota-
tional energy. Figure 7 also reflects that the curve from LES is lower than that from FDNS.
Although the alignment of the ellipsoidal particles is similar in FDNS and LES, the vorticity
or enstrophy in LES is much smaller than that in FDNS due to the over-dissipation of the
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Figure . Comparison of mean square rotation rate against aspect ratio among DNS, FDNS and LES. Both
FDNS and LES yield smaller rotation rates thanDNS,while LES has the smallest values. The average energy
dissipation rate 〈ε〉 is from DNS.

to account for the effects of SGS motions on rotational dispersion of ellipsoidal particles is
required. Two types of SGSmodels are commonly used in LES of particle-laden turbulence.
One is the SGS stochasticmodel, which can be used to reconstruct the SGS fluctuations.[25]
The other is based on ADM, which can recover the SGS kinetic energy near the cut-off
wavenumbers.[29] In this subsection, we describe the effects of the SGS-SDE model and
the SGS-ADMmodel on the orientational and rotational statistics.

... A stochastic model for the SGS velocity gradient tensor
To compensate for the effect of the SGSmotions on the orientational and rotational statistics
of ellipsoidal particles, the construction of an SGSmodel is essential. However, a stochastic
SGSmodel for fluid velocity will make the velocity field non-differential so that the velocity
gradient tensor required in Equation (8) is unavailable. Therefore, we shall directly build a
stochastic model for the SGS velocity gradient tensor along the trajectories of the particles.

Several Lagrangian stochastic models for the velocity gradient tensor in turbulent
flows have been proposed.[41–43] Chevillard and Meneveau [39] studied the orienta-
tional dynamics by using DNS and several models for velocity gradient tensor, as shown
in Figure 3. The Gaussian model is based on a linear Ornstein–Uhlenbeck process, and
it yields a poor prediction of the rotation rate except for spherical particles. The RFDA
Lagrangian stochastic model proposed by Chevillard and Meneveau [42] yields accurately
predictions of the rotation rate for rod-like particles. Pumir and Wilkinson [9] proposed
a more refined Gaussian processes by considering an Ornstein–Uhlenbeck process for A.
The correlation time scales for the strain rate and the rotation rate are respectively provided
according to the fact that the former is shorter than the latter in isotropic turbulent flows.
Both the RFDAmodel and the refined Gaussian model have been previously applied to the
full velocity gradient tensor.[9,39] In this study, we will construct a Lagrangian stochastic
model for the SGS velocity gradient tensor based on the refined Gaussian process.

The statistics of the SGS velocity gradient tensor A′
i j can be obtained from DNS and

FDNS,

A′
i j = Ai j − Āi j, (17)
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Figure . Correlation functions of the elements of the SGS velocity gradient tensor against normalised
time t/τ K. The decay rate of the strain rate tensor is much larger than that of the rotation rate.

where Aij is the velocity gradient tensor from DNS, and Āi j from FDNS. The auto-
correlation functions of the components of strain and vorticity are shown in Figure 8,
R(τ ) = 〈X(t)X(t + τ )〉/〈X2(t)〉, where X denotes a component of the strain or vorticity.
We can observe two straight lines on the semi-log graph from Figure 8(b), which implies
that the elements of the SGS velocity gradient can be well approximated by exponential
functions. Therefore, we can follow the idea of Pumir and Wilkinson [9] to propose an
SGS-SDE model for the elements of the SGS velocity gradients. It must be noted that the
model built by Pumir andWilkinson [9] is based on the full scales of the flow, whereas our
model is only based on the fluid flow at SGSs.

The components of the SGS vorticity and strain can then be modelled as

d	′
i j = −dt

τv

	′
i j +

√
2Dvξi j(t ), (18)

dS′
i j = −dt

τs
S′
i j +

√
2Doηi j(t ), (19)

dS′
ii = −dt

τs
S′
ii +

√
2Dd

⎡
⎣ηii(t ) − 1

3

3∑
j=1

η j j

⎤
⎦ , (20)

where τ v is the integral time scale of the component of the SGS vorticity, Dv = σ 2
v /τv , the

diffusion coefficients, σ 2
v = 〈	i j(0)	i j(0)〉, τ s is the integral time scale of the component

of strain,Do andDd are the diffusion coefficients of the off-diagonal and diagonal elements
of the strain, respectively (Dv = 5.36, τ v = 3.67 × 10−1, Dd = 2.21, Do = 1.90 and τ s =
7.74×10−2 in this paper), and ξ and η are white-noise signals with 〈ξ (t)〉 = 0, 〈ξ (t)ξ (t′)〉 =
dt and 〈η(t)〉 = 0, 〈η(t)η(t′)〉 = dt.

... Approximate deconvolutionmethods
In LES, only the filtered velocity ˆ̄u is available, so the improved fluid velocity û∗ can be
calculated by applying the deconvolution operator Ĝ−1 to ˆ̄u,

û∗ = Ĝ−1 ˆ̄u, (21)
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Figure . Theone-dimensional Gaussian filter and its approximate inverse against normalisedwavenum-
ber k/kc. The approximate inverse Ĝ′ m√′ -∈.184 l√′ ′ l√f√Q√538.911 48′3
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Figure . Comparison of the mean square rotation rate against the aspect ratio among DNS, FDNS, LES,
LES plus SDE and LES plus ADM. The SDE model over-predicts the rotational energy of the rod-like parti-
cles, and the ADM significantly increases the rotational energy.

the filter width. It is expected that the influences of the twomodels on the orientational and
rotational statistics of the ellipsoidal particles will be different. We consider the alignment
statistics first.

Figure 10 shows the alignment of disk- and rod-like particles among DNS, FDNS, LES,
LES plus SDE and LES plus ADM, where (a)–(d) plot the alignment of disk-like particles,
and (e)–(h) plot the alignment of rod-like particles. We focus on the alignment of rod-like
particles first.We find that the effects of LES plusADMon the alignment of the rod-like par-
ticles are small, with the alignment of the rod-like particles between p and eω being slightly
smaller than that of LES. Equations (12) and (14) show that vorticity influences the align-
ment of rod-like particles. Since the ADM contributes little to the vorticity at small scales,
the effects of the ADM on the alignment of the rod-like particles are small, as expected.
However, the effects of the SGS-SDE model on the alignment are much larger than those
of the ADM: the alignment between p and eω is much smaller than that of LES. The recon-
structed SGS velocity gradient in thismodel is white-noise information, it damages the cor-
relation between q andω. For disk-like particles, Figure 10(a)–10(d) show that the effects of
the two models on these particles are similar to those on rod-like particles in the sense that
the influence of ADM on the alignment is small while the influence of SGS-SDE model
is much large. On the whole, neither of the models improves the alignment of disk- and
rod-like particles.

Finally, we will examine the effects of the SGS motions on the rotation rate against the
aspect ratio in Figure 11.When α � 1, the SGS-SDEmodel improves the rotational energy,
and when α � 1, it over-predicts the rotational energy. The additional rotational energy
comes from the introduction of the SGS fluctuations. Furthermore, the failure of prefer-
ential alignment with vorticity also increases the rotation rate of the rod-like particles. For
ADM, it recovers the fluid enstrophy near the cut-offwavenumber, resulting in an improve-
ment in rotational energy of particles.

4. Conclusions

The rotational dispersion and orientation distribution of ellipsoidal particles in isotropic
turbulence are very important in many environmental and industrial flows. The rotational
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motion of an ellipsoidal particle is determined by the fluid velocity gradient tensor along its
trajectory, which is dominated by the small scales of turbulent flows. Therefore, large errors
in the orientational and rotational statistics can be observed in LES due to the missing of
SGSmotions. We discuss the variation of the alignment of disk- and rod-like particles with
the vorticity against the aspect ratio α. The opposite signs of the eigenvalues of the fluid
velocity gradient tensor in the equations of motion of disk- and rod-like particles (Equa-
tions (12) and (13)) lead to a different alignment with vorticity, which results in the rod-like
particles tending to align with the vorticity and the disk-like particles tending to be perpen-
dicular to the vorticity, and disk-like particles have higher rotational energy than rod-like
particles. The alignment of the disk- and rod-like particles with the Lagrangian stretch-
ing directions is studied. It is found that the alignment between these passive vectors is
insensitive to the changes in velocity gradient tensor obtained by using DNS or LES, thus
the Lagrangian stretching would not be used to examine the effects of the SGS motions
and the Lagrangian stochastic models. We then study the effects of SGS motions on the
alignment and rotation rate of the ellipsoidal particles. It is observed that the missing SGS
motion especially the SGS vorticity or enstrophy in LES weakens the alignment with the
vorticity and reduces the rotational energy. Furthermore, we compare the statistical results
of two SGS models, i.e. the SGS-SDE model and the ADM model, for particles. The SGS-
SDE model fails to produce the proper alignment between the orientation vector of the
ellipsoidal particles and the velocity gradient tensor, and it over-predicts the rotational
energy of the rod-like particles. The ADMmodel improves the rotational energy although
has little effect on the improvement in the alignment. In the further work, we will try to
construct the model for the SGS velocity gradient tensor based on the RFDA Lagrangian
stochastic model to improve the rotational statistics of ellipsoidal particles by using LES
method.
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