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a b s t r a c t

Metallic adhesively bonded joints have a wide range of applications in engineering fields. The damage
and the stress evolution in the bondlines of the joints would occur simultaneously when the joints are
subjected to external loads. In the present research, the influence of the bondline thickness on the
damage and stress evolution of metallic adhesive bonding structures are investigated, with the cohesive
interface model employed to equivalently simulate the bondline with various thicknesses. A prediction
approach is employed to determine the cohesive parameters for the bondline with the thickness varied.
Then a numerical example is presented to explore the bondline thickness-dependence strength and
stress distribution in the bondline, followed by the validation with the existing experimental and
theoretical results. Furthermore, as the main part of this paper, the influences of the bondline thickness
on the damage and stress evolution in the bondline are investigated, involving the situations of the
extremities and the whole bondline. The results show that, no matter in the extremities or in the whole
bondline, the damage and stress evolutions are mutually influential processes, both of which are affected
by the bondline thickness significantly.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modern engineering structures have an increasing demand for
the higher strength/weight ratio, especially in the fields of auto-
mobile, aeronautics and astronautic industries. Thus it is signifi-
cant to use the novel lightweight materials with high strength and
new joining techniques. Adhesive bonding is such an advanced
joining technique with great potential for lightweight construc-
tions. Compared with traditional mechanical assembly technolo-
gies (e.g., bolted, pinned, or riveted methods), it has a lot of
advantages, such as reducing the stress concentration, wide
applicability and lightweight. Thus adhesively bonded joints have
been increasingly used in many engineering fields.

The ultimate failure strength prediction of adhesively bonded
joints is one of the most important issues in this field, since the
failure strength is a key parameter for design and health evaluation
of adhesively bonded structures. Thus some methods are hence
developed in order to predict the failure strength when the material
parameters of adhesives are predefined. The overall failure strength
prediction usually involves two main approaches: the one method to
predict the overall strength is to assess the stress distribution in the

bondline, either by numerical models or by analytical methods [1–4].
Most of the adhesively bonded joints would lose their load bearing
capacity due to the failure of the bondlines, thus the accurate
determination of the stress fields in the bondline is the first step to
the precise prediction of the failure load of an adhesive joint. The
stress corresponding to the critical load when the bondline stress
reaches its admissible value is defined as the overall strength. Some
failure or strength criteria are usually employed in this approach
[5,6], such as the von Mises stress criterion and the principal stress
criterion. Other researchers [7] adopted a twofold criterion involving
stress and energy conditions simultaneously to predict the failure
loads of adhesive joints subjected to diverse loadings. By contrast, the
other method to predict the overall strength is a direct one, which is
to obtain the load–displacement curves by simulating the loading
process of adhesively bonded joints. Then the overall strength or the
failure load can be obtained directly.

The first prediction method needs to assess the local stresses in
some significant positions such as the extremities of the bondline,
instead of the whole bondline, since the stress concentration of
the extremities is much noticeable. On the contrary, the latter
method for the overall mechanical behaviors is a global method
[8], which neglects the stress singularity in the bondline, and it
merely concerns the overall mechanical response of the structures
subjected to external loads. The peak load could not be always
treated as the admissible load because the irreversible damage has
occurred in the bondline before the peak load is reached. Thus the
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overall mechanical behaviors should be obtained considering the
local damage and stress distribution meanwhile.

Among all factors, the bondline thickness is one of most sig-
nificant geometrical parameters affecting the overall strength of
bonding structure. Thus the investigations on the influence of
bondline thickness have been carried out by so many researchers,
including the experimental studies [9,10] and the modeling studies
[11–13]. Most of the experimental results have indicated that the
overall strength of the bonding structures definitely depends on the
bondline thickness. Recently, some modeling prediction methods
have been established to obtain the computational results compared
with the experiments. Moradi et al. [14] presented the influence of
the bondline thickness on the failure load of joints by employing the
stress and energy-based criteria together with a matched asymptotic
procedure. Also the couple stress and energy criterion was employed
by other researchers [5,15] to consider the influence of bondline
thickness. Some failure load models were usually employed in their
investigations. For example, the maximum principal stress criterion
was used in Ref. [5] to determine the failure load of joints. Compared
with the aforementioned researches, cohesive zone model (CZM) can
be regarded as a direct approach, which has been proved to be
successful in this topic. The significant advantage of employing
cohesive zone model is that the overall mechanical behaviors (i.e.,
load–displacement curves) of joints can be directly obtained. And the
effect of bondline thickness on the overall mechanical behaviors can
be clearly presented. Thus the strength (or failure load) of the joints
can be determined directly and easily just as the same way as the
experimental approaches. The other advantage of CZM is that
damage evolution of the interface or bondline could be captured as
well. However, the tough challenge of employing CZM in this topic is
how to assign the values of the cohesive parameters for various
bondline thicknesses. Some good jobs have been done for predicting
the overall mechanical strength of bonding structures with various
bondline thicknesses. However, the understanding to the mechan-
isms of thickness-dependence cohesive properties has been still
local. Besides, the local and overall stress analysis and damage
evolution in the bondline with various thicknesses are lacking
as well.

In the present research, a numerical model utilizing finite
elements method (FEM) is established to describe the mechanical
behavior of the metallic single lap joint subjected to a tensile load. A
cohesive interface model considering the damage evolution is
employed to simulate the bondline, with the cohesive parameters
obtained via the previously proposed thickness-dependence predic-
tion method. The present paper focuses on the mutual influences
between the damage evolution and stress distribution in the bond-
line with various thicknesses. Finally, the effect of the bondline
thickness on the accuracy of the ultimate failure strength assessment
would be discussed based on the cohesive length scale.

2. Cohesive interface model

2.1. Bilinear cohesive zone model

Cohesive zone models (CZMs) based on traction–separation (i.e.,
T–S for short) laws are well suitable to describe the de-cohesion
behavior in composite structures. The CZMs require T–S relations
for characterizing their constitutive laws. So far, considerable
researches have focused on the constitutive laws of CZMs and their
applications [16,17]. It has been established that whilst the peak
value and area of the T–S curve are vital for capturing the interface
separation behavior, its precise shape is of less significance [18].
Consequently, for simplicity, the bilinear T–S law shown in Fig. 1 is
selected for the present study. To distinguish the normal T–S law
from the shear one, the superscript “n” represents the normal

direction and “s” denotes the shear direction, which are omitted in
Fig. 1 for simplicity, δc and δf are the critical and failure separation
displacement, respectively, and T is the traction stress.

Since the maximum value of Tn is σ̂n while that of |Ts| is σ̂s, the
fracture energy in the two directions can be expressed as

Γn ¼
Z δnf

0
Tndδn ¼ 1

2
σ̂nδnf

Γs ¼
Z δsf

0
Tsdδs ¼ 1

2
σ̂sδsf ð1Þ

As the loading is increased beyond a critical value, the cohesive
layer begins to soften, and degrade, namely, the cohesive layer is
now in the damaged (or softening) state. Typically, damage is
initiated when a certain criterion is satisfied. In the present study,
inspired by the bilinear law of Fig. 1, the quadratic nominal stress
criterion is adopted to characterize interfacial damage, described as

oTn4

σ̂n

� �2

þ Ts

σ̂s

� �2

¼ 1 ð2Þ

where o 4 represents the Macaulay bracket defined by ox4 ¼
xþjxjð Þ=2, with the usual interpretation that a pure compressive
deformation or stress state does not initiate damage. The peak
traction stress components σ̂n and σ̂s are termed the normal and
shear separation strengths, respectively.

2.2. Description of damage evolution

Damage variables describing the extent of damage in cohesive
layer have a meaning physically equivalent to that introduced in
the continuum damage mechanics (CDM) for engineering materi-
als. In CDM, D is linearly proportional to the ratio of current
Young's stiffness E of the material to its initial value E0, i.e.,
D¼ 1�E=E0, if the damage is isotropic; for anisotropic damage, a
tensor D is typically used [19].

For the two-dimensional problem employing the cohesive zone
model, if the external loading process is mode-independent, or the
deformation of cohesive layer is pure normal or shear mode, the
damage of cohesive layer would occurs when the traction stress
declines after its peak value is reached, and the damage variable

Fig. 1. Typical bilinear traction–separation law of cohesive zone model (the
superscripts n and s denoting the normal and shear directions respectively, are
omitted).
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can be expressed as,

D¼ δf δ�δc
� �

δ δf �δc
� � δcrδoδf

� � ð3Þ

Note that the superscripts denoting the normal and shear
directions (i.e., n and s) are also omitted for simplicity, followed
by the equations below.

With reference to Fig. 1, the stiffness in the softening state, kd
decreases during damage evolution, which can be linked to the
damage variable by

kd ¼ 1�Dð Þk0 ð4Þ
Here, k0 is the initial stiffness with the following relation with

the separation stress,

k0 ¼
σ̂
δc

ð5Þ

It is well-known that the fracture in the bondline of a single lap
joint is a mixed mode one, which means the failure behaviors in
both normal and shear directions should be taken into account.
Thus the cohesive zone model used here is also a mixed-mode one,
with both shear and normal stress components considered simul-
taneously. It is assumed that damage occurs when Eq. (2) is satisfied
and a single damage variable D based on the total displacement

jump Δ is introduced (i.e., Δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oδn42þ δs

� �2q
) [20,21], as

D¼

0 ΔmrΔc
� �

Δf Δm �Δcð Þ
Δm Δf �Δcð Þ ΔcoΔmoΔf

� �
1 ΔmZΔf

� �

8>>><
>>>:

ð6Þ

where Δc and Δf denote the total displacement at damage initia-
tion and complete failure. The quantity, Δf is determined by Δf ¼
2Γmixed=Teff

c with Teff
c denoting the effective traction at damage

initiation (i.e., Teff
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTn

c Þ2þðTs
cÞ2

q
). In Eq. (6), Δm denotes the

maximum total displacement experienced during the loading
history. The value of D increases monotonically from 0 (correspond-
ing to damage initiation) to 1 (corresponding to complete failure).

Γmixed is the mixed total fracture energy of the adhesive.
Generally, Γmixed depends on the mode-mixity. In other words,
Γmixed varies as a function of the mode-mixity. In the present
investigation, Γmixed is determined by the linear fracture criterion,
which can be expressed as

Gn

Γnþ
Gs

Γs ¼ 1 ð7Þ

where Gn and Gs denote work done by the traction and its
conjugate relative displacement in the normal and shear direc-
tions, respectively. Γn and Γs refer to the total energy required to
cause failure in the pure normal and shear directions, respectively,
as defined in Eq. (1). Consequently, Γmixed can be obtained by,

Γmixed ¼ GnþGs ð8Þ
when Eq. (7) is satisfied.

2.3. Thickness-dependence cohesive parameters

When the cohesive zone model is employed to simulate the
bondline, the progressive failure of the adhesive could be captured
by the aforementioned bilinear traction–separation law, which is
defined by three key cohesive parameters, namely, initial stiffness,
total fracture energy and separation strength. Since the cohesive
modeling is an equivalent method, all of these cohesive parameters
would be influenced by the bondline thickness, although the
intrinsic material properties of the adhesive are unchangeable.
The influences of the bondline thickness on the cohesive properties

have been investigated by some researchers experimentally [10]
and theoretically [12]. And some valuable results have been hence
obtained. Among them, our previously proposed prediction model
[12] has gained a certain success, which accurately predicts the
relation between the bondline thickness and cohesive parameters.
Later, some other researchers also adopted this theoretical model to
address similar issues and obtained good results [11]. In this section,
the prediction model is reviewed briefly as follows.

The initial stiffness of CZ model represents the slope value of the
rising part of the T–S curve shown in Fig. 1. The initial stiffness is
used to describe the ratio between the cohesive stress and separation
displacement before the adhesive damage occurs, which is similar to
the stiffness coefficient of a spring. Obviously, the initial stiffness is
dominated by the elastic properties together with the bondline
thickness t. In the present investigation, following the way in the
previous researches [22], initial stiffness could be expressed as

k0 ¼
E
t

ð9Þ

where E denotes the elastic modulus (involving Young's modulus and
shear modulus components). Linked with the initial stiffness, the
relation between the separation strength σ̂ and critical separation
displacement k0 could be obtained,

δc ¼
σ̂
k0

ð10Þ

Generally, the mixed fracture energy of CZM could be determined
by Eq. (8) when considering the bondline as an equivalent cohesive
layer. In other aspect, the bondline with a certain thickness would
dissipate two types of energies, including the intrinsic cohesive
energy Γo and plastic dissipation energy Γp, which denote the
energy making the bondline separated and the energy dissipated
during the plastic deformation, respectively. Γo could be regarded as
intrinsic work of fracture associated with the embedded cohesive
zone, and Γp could be regarded as the contribution to the bond
toughness arising from the plastic dissipation and stored elastic
energy within the bondline [23,24]. In our previously proposed
model, the total fracture energy Γ can be expressed below:

Γ ¼Γ0þΓp ¼
Γ0þUt ðto2rmax

p Þ
Γ0þ2Urmax

p ðtZ2rmax
p Þ

(
ð11Þ

where rmax
p is maximum value of plastic zone height in front of crack

tip, with the crack plane assumed in the middle of bondline, and U is
the area below the stress–strain curve of the tensile specimen for the
adhesive material, also could be seen as the mean plastic work per
unit adhesive volume [9].

Here, a dimensionless parameter η is introduced based on
intrinsic energy parameters, with the expression of,

η¼ Utc
Γ0

ð12Þ

where tc denotes the minimum bondline thickness for which the
separation strength σ̂ would be identical to the bulk fracture
strength σf . The critical thickness tc is usually determined by the
plastic zone height rmax

p [12,23]. Accordingly, the separation
strength σ̂ could be expressed in the dimensionless form in terms
of the adhesive bulk strength σf , as depicted in Eq. (13).

σ̂
σf

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þη

t
tc

� �

1þηð Þ t
tc

� �
vuuuuut ðtotcÞ

1 ðtZtcÞ

8>>>>>><
>>>>>>:

ð13Þ
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Furthermore, total fracture energy Γ can be further simplified
into dimensionless form,

Γ
Γ0

¼
1þη t

tc

� �
ðtotcÞ

1þη ðtZtcÞ

8<
: ð14Þ

The detailed derivation of the approach for the thickness-
dependence cohesive parameters is omitted here for simplicity, it
could be found in our previous publication [12]. Furthermore, it should
be pointed out the thickness-dependence prediction model is pro-
posed based on the small-scale yield assumption. Thus the joints with
the metallic adherends susceptible to plastic deformation (i.e., too soft
or too thin) are not applicable with the present prediction model.

3. Computational model

3.1. Modeling approach

In this section, a numerical model of the metallic single lap joint
(SLJ) is built with the commercially available FEM code ABAQUS.
Since the width of the adherends used for the joint is far larger than
their thickness, adhesive joints under tension can be simplified as
the elastic–plastic plane strain problems. Among the adhesively
bonded joints, the configuration of single lap joint is one of the
most common joints. Due to the simplicity of the geometry, the
single lap joint is widely used in many industry fields. Nevertheless,
the stress distribution and fracture model in the bondline of SLJ are
so complex. Especially, both cohesive properties in shear and
normal directions contribute to the fracture behavior in bondline,
thus the fracture mode of SLJ is so-called mixed mode. Fig. 2a
depicts the computational model of the single lap joint, which
consists of two same metallic adherends with the thickness of h,
having a typical value of 2 mm. The length of the adherends a, is
assigned the value of 120 mm. The adherends are connected by the
bondline with the length of l, which is also called overlap length,
assigned the value of 25 mm. The adherends are meshed using four-
node quadrilateral plane strain elements, of which the total number
is set as 4450 upon checking the convergence of the numerical
results. Subjected to the uniaxial tensile loading, the joint is taken to
deform under plane strain. In the numerical models, the left side of
the joint is fixed in horizontal direction, and the lower left corner is
also fixed in the vertical direction. The model is loaded by the
means of increasing displacement, and a uniform displacement of u
is applied to the right side of the joint.

The metallic adherends are modeled as elastic–plastic solids,
with their true stress–strain curves fitted using power-law

hardening laws [23], as

σ ¼
Eε εrσY=E

σY ε
σY=E

� �N

ε4σY=E

8><
>: ð15Þ

where E is the Young's modulus, N is the strain hardening exponent,
and σY is the yield strength. For the present model, the metallic
adherends are assumed to be the high strength steel with these
three material properties having the values of 200 GPa, 0.078 and
400 MPa [25].

Built upon the bilinear cohesive zone model (CZM), the bond-
line could be treated as interface between the two metallic
adherends, and is modeled with a single layer of four-node
cohesive interface elements, which shares nodes with the neigh-
boring elements in the upper and lower metallic adherends. In
order to obtain better computational accuracy, the overlap region
is densely meshed while sparse mesh is adopted in other regions
as shown in Fig. 2b. Furthermore, since the SLJ undergo large
displacement and relatively large rotation in the overlap region,
especially for the bondline with high separation strength, the
geometric nonlinearity has been hence considered here.

3.2. Model validation

For the purpose of validating the present theoretical approach for
the thickness-dependence cohesive parameters, the overall mechan-
ical response of the SLJ is calculated, with the computational model
described above. The features of the cohesive elements applied in
modeling the bondline have been presented in Section 2. In this
section, a specific commercial epoxy-base adhesive is modeled for
the bondline (i.e., Hysol EA 9321, Loctite), with the material proper-
ties taken from the previous literature [9] and shown in Table 1.

The calculation is carried out through two steps, which involve the
determination of the cohesive parameters, followed by obtaining the
mechanical response under external loads. For the first step, the three
thickness-dependence important cohesive parameters, namely, the
initial stiffness k0, total fracture energy Γ and separation strength σ̂,
are obtained according to the prediction method mentioned in
Section 2.3. Noting that the high strength steel with high elastic
modulus is selected as the adherend, the prediction method is hence
applicable for the present computational model according to the

Fig. 2. (a) Numerical model of metallic single lap joint (SLJ) and (b) its finite
element mesh.

Table 1
Material parameters for the adhesive [9].

Parameters Hysol EA 9321

Young's modulus E (GPa) 3.87
Poisson's ratio ν 0.36
Yield strength σs (MPa) 21.99
Tensile strength σf (MPa) 45.97
Toughness U (MPa) 1.16
Γn
0 ðNmm�1Þ 0.45

Γs
0ðNmm�1Þ 0.90

Table 2
Thickness-dependence cohesive parameters of the bondline.

Bondline thickness (mm) 0.1 0.5 1.0

kn0 ðMPa mm�1Þ 38,700 7740 3870

ks0 ðMPa mm�1Þ 14,200 2840 1420

Γn ðN mm�1Þ 0.57 1.03 1.61

Γs ðNmm�1Þ 1.02 1.48 2.06
σ̂n ðMPaÞ 86.19 52.00 45.97
σ̂s ðMPaÞ 29.14 15.73 13.12
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condition aforementioned in Section 2.3. The cohesive parameters
with various thicknesses are considered for validation. For concise-
ness, the thickness-dependence cohesive parameters for the selected
three bondline thicknesses (i.e., 0.1, 0.5 and 1.0 mm) are merely
presented in Table 2. The parameters for other thicknesses could be
obtained as well. It should be noted that the cohesive properties in
shear are different from those in normal. It can be observed that the
bondline thickness has a significant influence on the cohesive proper-
ties. With the decreasing bondline thickness, the separation strength
increases gradually, accompanied with the decreasing fracture energy.

By employing the obtained cohesive parameters for the present
model, the overall mechanical behavior of the SLJ could be gained.
Typical load–displacement curves for the SLJ are shown in Fig. A1
included in Appendix A, considering the bondline thickness of 0.1,
0.5 and 1.0 mm. It should be pointed out the obtained load refers to
the load per a unit width of the joint, with the unit of N/mm, since
the plane strain model is adopted. Note that all the loads increase to
peak loads and then decline with the increasing displacement.
Although the peak loads correspond neither to crack initiation nor
to the onset of instability, it has been widely accepted that the
overall strength or the load bearing capacity of SLJ could be assessed
by the peak values of the load–displacement curves, which are
usually called peak loads. Here, the variations of the peak loads for
various bondline thicknesses are therefore concerned.

In order to clearly show the influence of bondline thickness on
the overall strength of the joints, as presented in Fig. 3, the peak
load Fp is plotted as a function of the various thicknesses. It should
be noted that the selected bondline thicknesses are varied within
the range of interval (0.2, 1) mm, for the purpose of comparing
with the corresponding experimental study which considers the
same thickness range [9]. The calculated results depicted in Fig. 3
demonstrate the overall strength of the adhesively bonded struc-
tures decreases with the increasing bondline thickness. For check-
ing the feasibility of the present numerical method, the existing
experimental results [9] with the adoption of the same adhesives
are compared with the present computational predictions. Overall,
the present calculated results agree well with those measured.
Noting that both the measured and the calculated results depicted
in Fig. 3 are original data without any dimensionless processing,
thus it can be judged that the accuracy of the present calculated
model is satisfactory and the present theoretical approach con-
sidering the thickness-dependence cohesive law is convincing.

In order to show the soundness of the present approach to
predict the bondline thickness-dependence cohesive parameters,
the computational results for the other two types of adhesives
mentioned in Ref. [9] are also obtained and compared to the
experimental results, which are shown in Appendix B.

The load bearing capacity of the SLJ could be regarded as an
overall mechanical property of the structure. The aforementioned

text demonstrates that the present prediction method for the
thickness-dependence cohesive parameters is suitable for the overall
mechanical assessment. However, it remains questionable whether
the stress distribution in the bondline with different thicknesses
could be accurately evaluated by the present prediction model.
Therefore, the validation for the stress distribution with various
bondline thicknesses should be implemented as well. The classical
analytical model proposed by Goland and Reissner (i.e., GR model for
short) [26] has been widely accepted as an effective method for
calculating the stress distribution in the bondline of SLJ. The detailed
expressions of the GR model can be found in Appendix C. Here, the
GR model results are employed to compare with the present
computational results. As shown in Fig. 4, under the selected
external load (i.e., 5 N/mm), the present computational results agree
perfectly with the GR model results for the considered bondline
thickness, which indicates that the present model could properly
capture the influence of the thickness on the both normal and shear

0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

Model results
 Experimental resultsF

p (N
/m

m
)

t (mm)

Hysol EA 9321

Fig. 3. Peak load plotted as a function of bondline thickness for Hysol EA 9321:
comparison between the present model prediction and the experimental results [9].
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stress distribution in the bondline. Noting the GR model was come
out based on the linear elastic theory, while the plastic deformation
and damage was not taken into account. In fact, the theoretical
method for stress distribution considering the plasticity integrated
with damage evolution has been still lacking so far. Thus the
validation of the stress distribution is suitable for the elastic situation
and the magnitude of load for validation is relatively low.

4. Results and discussion

4.1. Evolution in the bondline extremities

For adhesively bonded joints, the extremities of the bondline
should be concerned due to stress concentration. The stress compo-
nents near the extremities always present remarkably larger magni-
tude than those in other locations. Accordingly, the damage onset
and crack initiation usually occur in the extremities of the bondline
prior to any other locations. In the present investigation, the stress
and damage evolution in the extremities are firstly discussed.

Three magnitudes of the bondline thickness are considered based
on the calculation with the aforementioned thickness-dependence
cohesive parameters. Since the symmetry of the present structure,
the stress components in the both extremities are nearly identical,
thus only the left extremity of the bondline is considered here. Fig. 5
plots both the stress components and damage variables in the left
extremity as a function of the external displacement. In order to
facilitate comparison, the dimensionless load–displacement curves
(i.e., F=σ̂sl�u) of the bonding structure are exhibited together in
Fig. 5. The definition of the damage variable D is given by Eq. (6),
which describes the damage level of a location point. The damage
variable D increases monotonically from 0 (damage initiation) to 1
(complete failure) after the location point goes beyond the damage
threshold. Certainly, the damage evolution is an irreversible process.
It can be found in Fig. 5 that three cases corresponding to different
bondline thicknesses have a notable discrepancy. For the case with
the bondline thickness of 0.1 mm, as shown in Fig. 5a, the stress
evolution process can be divided into three stages. In stage I, the two
stress components increase linearly with the increasing displace-
ment. It can be understood that the shear component increases faster
than the normal component since the SLJ is a configuration with the
shear deformation dominated. In stage I, the damage variable is
unchanged, maintaining the initial value of 0, which means there is
no damage in stage I. Then in stage II, the situation is different, both
of the two stress components gradually decline to 0, obviously, the
decline rate of the shear component is relatively large. Meanwhile,
the damage variable rise from 0 to 1 in stage II, which suggests it is a
damage evolution stage. In stage III, the two stress components in the
extremity are both equal to 0, while the damage variable D keeps at
the value of 1, which denotes the total failure.

Compared with the case shown in Fig. 5a, the case with the
thicker bondline exhibits different evolution feature. As illustrated
in Fig. 5c denoting the bondline of 1.0 mm, four stages can be found
in the curves. Among them, stage I, II and the final stage are similar
to the situation shown in Fig. 5a. It should be noted that the normal
stress component changes negligibly in stage II while the shear
stress component declines obviously. Furthermore, the other sig-
nificant feature in Fig. 5c is the existence of the second damage
evolution, namely, stage III, in which the both stress components
decline drastically. Consequently, the damage variable rise drasti-
cally. And the change rates of both the stress components and
damage variable are distinctly larger than those in stage II.

For the case with the bondline of 0.5 mm depicted in Fig. 5b, the
curves exhibit the feature between the two aforementioned cases.
The most significant discrepancy comparing with the other cases is
that stage III in Fig. 5b is not notable, though could be observed.

In stage III, the stress components and damage variable change
suddenly. As a result, the range of stage III appears extremely small.

As mentioned in the above text, the extremities of the bondline
are the critical points due to the existence of stress concentration.
Thus some researchers have assessed the overall strength of the
bonding structures by examining the stress state of the extremities
[5,27]. However, it is a conservative method for the safety assessment
of the structures. As shown in Fig. 5(a–c), the maximum magnitudes
of both shear and normal components are reached meanwhile, when
the damage initiation occurs in the extremity. It is just the beginning
of stage II, which is not the time that the external load reaches its
peak value. Actually, at the beginning of stage II, the external loads
for the bondline of 0.1, 0.5 and 1.0 mm are merely 0.25Fp, 0.41Fp and
0.56Fp, respectively, where Fp denotes their respective peak load.
Accordingly, assessment of overall strength by merely checking the
maximum stress in the bondline extremities would result in a
significant underestimate, which is larger as the bondline thickness
is decreased. However, it is quite interesting to observe the peak load
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Fig. 5. Stress components and damage variable evolution in the extremities of the
bondline with the thickness of (a) 0.1 mm; (b) 0.5 mm; (c) 1.0 mm, and the loading
curve is exhibited together for comparison.
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is reached at the end of stage II for the three bondline thickness. As
mentioned in the above text, stage II is the first damage evolution
stage, which is the sole damage evolution stage for relatively thinner
bondline (e.g., 0.1 mm). The second stage of damage evolution would
exist for relatively thicker bondline (e.g., 1.0 mm).

In a word, the load at the end of stage II would be more
appropriate for assessing the overall strength than the beginning
of stage II, based on the consideration of fully exploring the
potential load-bearing capacity of the bonding structures.

4.2. Evolution of stress distribution

In this section, the evolution of stress distributions considering the
influence of damage would be presented. Fig. 6 plots the stress
distribution in the bondline for the various external loads, considering
three magnitudes of the bondline thickness. As same as Section 4.1, Fp
in each figure denotes the respective peak load, which has different
magnitudes due to different bondline thicknesses. In order to facilitate
comparison, a serial of same relative external loads (i.e., F/Fp) are

selected. It can be clearly found the combined effect of both the
bondline thickness and the damage evolution on the stress distribu-
tion. Taking Fig. 6a for example, when the external load is relatively
small (e.g., F¼0.2Fp), the deformation and stress state of the bondline
are still in the linear elastic range, without any damage. The peak
value of the stress component in the bondline still lies in the
extremities. However, when the external load is relatively large (e.g.,
FZ0.4Fp), the situation changes. The location corresponding to the
shear peak stress gradually moves towards the center of the bondline.
Similarly, the cases with the bondline thickness of 0.5 and 1.0 mm
have the same tendency. It should be noted that the shear stress
distribution for the respective peak load exhibits different features.
With the increasing bondline thickness, the shear stress distribution
becomes uniform along the bondline. Particularly for the bondline of
1.0 mm, the shear stress distribution curve for the peak load appears
nearly a straight line except for the region near the extremities.

In contrast with the shear stress component, the situation for the
normal stress component is totally different. Generally, the normal
stress levels corresponding to the three bondline thicknesses are
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Fig. 6. Stress distribution for various external loads with the selected thickness: normal stress component for the bondline with the thickness of (a) 0.1 mm (c) 0.5 mm and
(e) 1.0 mm; shear stress component for the bondline with the thickness of (b) 0.1 mm (d) 0.5 mm and (f) 1.0 mm.
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low, which could be also understood by the SLJ configuration
dominated by shear deformation. Consequently, as the load is
increased, the overall shape of the normal stress curves changes
slightly, with the magnitude of the normal stress increased visibly.

It can be found in Fig. 6 that the peak stress components do not
always locate in the extremities of the bondline, which cannot be
predicted by elastic–plastic theories. With the increasing load, the
stress concentration of the extremities would be weakened gradually
since the damage evolution in the extremities is intensive. Moreover,
the peak of the stress curves, especially involving the shear compo-
nent, would move towards the center of the bondline.

4.3. Evolution of damage distribution

As pointed out by the aforementioned text, the variation of the
stress distribution has a close relationship with the damage evolu-
tion, thus it is necessary to exhibit the evolution of the damage
variable distribution under the increasing external load. In order to

compare with the aforementioned stress distribution evolution
analyses, the same serials of loads are selected in this section.

Fig. 7 plots the damage variable distributions in the bondline
under the increasing load, considering the same three magnitudes of
the bondline thickness. In general, the damage level near the
extremities is high, with the magnitude of damage variables getting
increasingly low towards the center of the bondline. Moreover, it is
obvious to find out the discrepancy between the figures for various
bondline thicknesses. For the relatively thinner bondline (i.e.,
t¼0.1 mm), the range of the damage variable spans from 0 to 1 when
the peak loads (i.e., 1.0Fp) is reached, while the other ranges of
damage variable at other loads are also large except for that at 0.2Fp.
However, the span of damage zone in the bondline is not wide,
which can be demonstrated that the damage variable of the central
area still retain at 0 even at the peak load. The undamaged central
area is approximately 1/3 of the bondline. By contrast, when the
bondline is comparatively thicker, the situation is distinctly different.
As shown in Fig. 7b and c, nearly all the bondline are damaged except
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for the midpoint. And the other significant discrepancy is that the
range of damage variable for the thicker bondline is relatively
narrower. In other words, even for the case under the peak load,
the maximum value of damage variables is getting smaller as the
bondline is increased. For example, the maximum damage variable is
only 0.653 for the case with the bondline of 1.0 mm, while the
maximum damage variable can reach up to 1.0 for that of 0.1 mm.
which can be explained from the view of capacity of plastic
dissipation due to the bondline thickness. As mentioned in Section
2.3, the intrinsic cohesive energy (or fracture energy) Γ0 for various
bondline is same, however, the plastic dissipation energy Γp for the
thicker bondline is larger. As a result, the softened stage of the
bondline with the thicker bondline is comparatively longer and the
damage variable is comparatively smaller under the peak load.

Furthermore, as mentioned above, the damage evolution is
linked closely to the stress distribution. Some visible evidences
should be presented. It would be clearer by showing both the
stress distribution and the damage variable curves together. Fig. 8
illustrates the distribution of the stress components together with
the damage variable under the selected load of 0.9Fp. Although
various bondline thicknesses are taken into account, the overall
shape feature of the curves is so similar among Fig. 8a, b and c. It is
notable to observe the three segments in the curves, namely, two
segments labeled with A and one segment labeled with B, which
denote the damaged and undamaged zones, respectively. It is
explicit to observe that the boundaries between Segment A and B
are exactly the turning points of the shear stress curves, which can
be also observed in the results of the cases under other loads.

In contrast with the curves for the shear stress component, the
shape of the curves for the normal stress component does not
change remarkably in the damaged areas (i.e., Segment A). In order to
clearly present the normal stress distribution in the damaged areas,
the curves for the normal stress are manifested by considering the
bondline within the range of (0�0.2l). Due to the symmetry, only the
situation for the left side in the curves is presented. It can be found a
dashed horizontal line in Fig. 9, with the vertical coordinate of 0,
which separates the regions of the positive and negative normal
stress. The stress curves in the region below the dashed line refers to
compressive stress, while that above the dashed lines refers to tensile
stress. It should be noted that the area in bondline selected in Fig. 9
(i.e., 0�0.2l) is included in the damaged areas in Fig. 8. However,
there is another important postulate should be reminded here,
namely, compressive stress cannot contribute to both the damage
initiation and the damage evolution, as depicted in Eqs. (2) and (6).
Thus the smooth transition could be observed in the normal stress
curves across the boundary between the damaged and undamaged
regions, since the magnitudes of the normal stress curves near the
boundary are both negative. As shown in Fig. 9, the curves exhibit
turning points where they go across the dashed line. The turning

point is more distinct when the bondline thickness is relatively
smaller. As described above, the dashed line is the boundary between
the tensile and compressive normal stresses, in other words, it can be
also regarded as the boundary between the damaged and unda-
maged region for the normal stress. Thus it can be easily understood
the existence of the turning point. Nevertheless, it is worth mention-
ing that the effect of the turning points in normal stress curves in
Fig. 9 is not as significant as those in shear stress curves in Fig. 8. It
can be also comprehended that the damage initiation and evolution
are mainly contributed by the shear deformation and shear stress for
the configuration of SLJ. Compared with the shear stress component,
the overall normal stress level is very low, thus the damage affects
the shear stress component more strongly than the normal compo-
nent. Similarly, since the overall stress levels for the thinner bondline
are larger, including the normal and shear components, the stress
curves for the thinner bondline are more susceptible to the damage.
Thus the changes in the stress curves near the turning points are
more remarkable for the thinner bondline as shown in Figs. 8 and 9.

4.4. Further discussion

In the present investigation, only one specified adhesive (i.e.,
Hysol EA 9321) is taken into account here. It is worth noting that a
dimensionless parameter η, (i.e., toughness ratio) is introduced in
the prediction method regarding the thickness-dependence bond-
line. As described in Section 2.3, η is an intrinsic parameter of
adhesive materials despite of their size and shape. Thus the
magnitude of η in the bondline with various thicknesses is unique
for every specific adhesive. However, obviously, different from the
intrinsic material toughness, the bondline toughness is varied due
to the various thicknesses, which needs to be further explained
reasonably. Recently, the cohesive length scale ζ, with the defini-
tion depicted in Eq. (16), has been introduced and used in the
issues regarding the damage and failure of the bonding structures .

ζ ¼ EΓ

σ̂2 ð16Þ

where E is the Young's modulus of substrate materials adjacent to
the crack plane, Γ and σ̂ are the cohesive parameters with the
same signification in Section 2.1. The virtue of cohesive length
scale ζ is that it brings together the fracture properties of a
bondline in a way of one single parameter which can be used
instead for the description and further classification of the bond-
line. Considering the condition of totc and combining Eq. (9), (13)
and (14), then Eq. (16) can be rewritten as,

ζ ¼ kcΓ0 1þη
� �

t
σ2
f

ðtotcÞ ð17Þ

For the bilinear cohesive zone model employed in this study,
Γ0 could be regarded as the intrinsic work of fracture associated
with the embedded cohesive zone. As depicted in Fig. 1, the
following relations could be easily found,

Γ0 ¼
1
2
σf δc ð18Þ

kc ¼
σf
δc

ð19Þ

Thus, ζ could be further simplified into the following form,

ζ ¼ 1
2

1þη
� �

t ðtotcÞ ð20Þ

Considering the condition of tZtc , ζ degrades to a constant,

ζ ¼ 1
2

1þη
� �

tc ðtZtcÞ ð21Þ
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The previous researches have been indicated that ζ can be used
to judge whether the failure of bondline is brittle or ductile [28,30].
In the present investigation, obviously, the case for the thinner
bondline appears brittle failure while the case for thicker bondline
appears ductile failure although the same type of adhesive is
selected, as shown in Fig. A1, which can be understood by Eq. (20).

It is so explicit that ζ is determined by two parameters, namely,
toughness ratio η and bondline thickness t. Thus the toughness of
the bondline could be increased by either selecting high-toughness
adhesive or increasing the bondline thickness, each of which has
the equivalent effect. However, when the bondline thickness is
larger than the critical value, the value of ζ would not be changed
any more. The value of η for the present selected adhesive (i.e.,
Hysol EA 9321) is 2.8, taken from Ref. [12]. And the present
bondline thickness range (i.e., tr1.0 mm) is smaller than the
critical thickness tc, Thus the ζ is merely the function of bondline
thickness t, namely, ζ ¼ 1:9t.

In other aspect, as mentioned in Section 3.2, numerous literatures
and test standards have regarded the ratio between the peak loads
and overlap area as the assessment for the shear bondline strength.
The previous researches have reported that the ratio increases
approaching to a steady value, with the decreasing overlap length
(i.e., bonding area), which suggests that the strength assessment is
well suitable in short lap joints [29] In the present study, the ratio Fp=l
and shear separation strength σ̂s are plotted together as the function
of bondline thickness t and cohesive length scale ζ. As illustrated in
Fig. 10, the shear strength obtained by Fp=l approaches to the shear
separation strength σ̂s as the bondline thickness t (or, cohesive length
scale ζ) is increased. Anyfantis [29] has claimed that the failure
analysis of bondlines characterized by relatively high cohesive length
scale ζ should be done with stress-based approaches, because the
debonding in such cases is a cohesive strength driven procedure. Since
the strength assessment by the ratio Fp=l is a method with the stress-
based approach, the result depicted in Fig. 10 can be also explained by
the conclusion of Ref. [29]. In a word, the strength assessment method
based on Fp=l is appropriate for the bondline with high cohesive
length scale, which could be obtained by either selecting high-
toughness adhesive or increasing the bondline thickness.

5. Conclusions

In summary, the influence of the thickness on the damage and
stress evolution in the bondlines of metallic single lap joints are
investigated, with the cohesive zone model employed to equivalently
simulate the bondline with various thicknesses. A prediction
approach is employed to determine the cohesive parameters for

the present model when the bondline thickness is varied. And then a
FEM model is built to explore the bondline thickness-dependence
damage and stress distribution evolution in the bondline, involving
the situations of the extremities and the whole bondline. The results
show that the damage and stress evolutions are mutually influential
processes, both of which are affected by the bondline thickness. For
the extremities in the bondline, as the bondline thickness is
increased, the second damage evolution stage with rapid degrada-
tion would exist and develop. Furthermore, the shear peak stress
locations in the stress distribution curves would move towards the
center of the bondline due to the evolution of the damage zone
which initiates from the extremities. The boundaries between the
damaged area and the undamaged area are exactly coincident with
the turning points of the shear stress distribution curve. Moreover,
for the SLJ under the peak load, the shear stress distribution is getting
more uniformwhile the overall damage level is getting smaller as the
bondline thickness is increased. Finally, the effect of the bondline
thickness on the accuracy of the overall strength assessment could be
evaluated by the cohesive length scale.
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Appendix A

In Section 3.2, the peak loads are obtained by the underlying
load–displacement relations of SLJ subjected to tensile loads.
Fig. A1 shows the typical load–displacement curves of SLJ with
the selected thickness.

Appendix B

By the prediction approach of the bondline thickness-dependence
cohesive parameters, the peak loads of the adhesive joints with the
other two types of adhesives (i.e., Hysol EA 9361 and AV138/HV998)
can be also obtained and compared to the experimental results, which
are shown in Fig. A2. Overall, the present model results agree with
those experimental results as well for these two types of adhesives.
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Appendix C

The Goland and Reissner model [26] was proposed to calculate
the stress distribution of bondlines in the configuration of single lap
joints (SLJ) subjected to tensile loads. The expression for adhesive
shear stress is

τ¼ �1
8
F
c

βc
t0

1þ3kð Þcosh βc=t0
� �

x=c
� �� �

sinh βc=t0
� � þ3 1�kð Þ

( )
ð22Þ

where F is the applied tensile load per unit width, c half of the
overlap length (i.e., c¼0.5 l), t0 the adherend thickness, t the bondline
thickness.

β2 ¼ 8
Ga

E
t0

t
ð23Þ

k¼ cosh u2cð Þ
cosh u2cð Þþ2

ffiffiffi
2

p
sinh u2cð Þ

ð24Þ

u2 ¼
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3 1�ν2
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s
1
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ffiffiffiffiffiffi
F
t0E

r
ð25Þ

where Ga is the adhesive shear modulus and E is the Young's
modulus of adherend.

And the expression for the normal stress is

σ ¼ � 1
Ψ

Ft0

c

R2λ
2k
2þλk0 cosh λ

� �
cos ðλÞ

� �
cosh λx

c

� �
cos λx

c

� �þ
R1λ

2k
2þλk0 sinh λ

� �
sin ðλÞ

� �
sinh λx

c

� �
sin λx

c

� �
2
64

3
75

ð26Þ

where

λ¼ γ
c
t0

ð27Þ

γ4 ¼ 6
Ea
E
t0

t
ð28Þ

where Ea is the adhesive Young's modulus,

k0 ¼ kc
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1�ν2
� � F

t0E

r
ð29Þ

R1 ¼ cosh λ
� �

sin λ
� �þ sinh λ

� �
cos λ

� � ð30Þ

R2 ¼ sinh λ
� �

cos λ
� �� cosh λ

� �
sin λ

� � ð31Þ

Ψ ¼ 1
2

sin 2λ
� �þ sinh 2λ

� �� � ð32Þ

It should be noted that the origin of the longitudinal co-
ordinate x is the middle of the overlap for the Goland and
Reissner model.
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Fig. A2. Peak load plotted as a function of bondline thickness for (a) Hysol EA 9361
and (b) AV138/HV998: comparison between the present model prediction and the
experimental results. [9].
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