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The lab ageing tests of AH-90 asphalt (the 25°C penetration is about 80–100, 0.1 mm) have
been done by the rotating thin film oven test and the ordinary convection oven under 163°C
from 5 to 120 h, and the macro-performance has been measured such as the penetration under
15°C, 25°C, 30°C and the ductility under 10°C. Based on the back propagation neural network
by MATLAB, the paper has trained the data of the asphalt penetration (25°C) in the different
service time of the asphalt pavement from the different zones in China, and predicted the
25°C penetration of the asphalt pavement ageing in the field at the different service time in
cold zone. On the basis of it, the paper has established the relationships between the asphalt
ageing simulated in the lab and the ageing in the field. The research conclusions have been put
forward and suggested to apply in the recycled asphalt pavement.
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1. Introduction
The asphalt ageing is mainly classified into two stages, that is, the first stage for the short-term
ageing (several hours), the second stage for the long-term ageing (several years). The asphalt age-
ing changes the asphalt macro-performance. The asphalt short-term ageing can be more easily
determined in lab simulation, but asphalt long-term ageing will need several years. Its perfor-
mance indexes cannot be determined timely. Therefore, the study of the relationship between the
short-term ageing and the long-term ageing is of great significance.

The temperature of the asphalt short-term ageing simulated in the lab is about 163°C, and
the temperature of the asphalt long-term (actual) ageing of the asphalt pavement in the field is
the asphalt pavement temperature less than 100°C; therefore, there are different chemical reac-
tions happening under different ageing temperatures. However, the chemical reactions during
asphalt ageing mainly are oxidising reactions, and only the level or rate of the oxidising reac-
tions is influenced by the different temperatures. According to the above point of view, the
research is to discuss the asphalt ageing by using the methods of the macro-test and macro-
performance and therefore, the oxidising reactions under different ageing temperatures will be
reflected through the data of the macro-mechanical performance of ageing asphalt. It means that
the differences between the different oxidising reactions can be evaluated through the data of
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494 H. Zhang et al.

the macro-mechanical performance. In fact, the asphalt ageing is influenced compositely by the
multi-factors, such as temperature, air and pressure, and so on, and the related micro-research
about the oxidising reactions of asphalt ageing will be researched at the next stage.

The macro-performance indexes of the asphalt short-term ageing can be evaluated by rotating
thin film oven test (RTFOT) and the ordinary convection oven in the lab, but the data observa-
tion of the asphalt pavement ageing in different service time will take a long time to accumulate.
Although Superpave has developed the PAV test to simulate the asphalt long-term ageing of
about 5–10 years of the asphalt pavement, the predicting time of this method is limited (only 5–
10 years) and indefinite, and the accuracy of the test data also needs to be further demonstrated.
Therefore, the objective of the research is to develop a new method for predicting the asphalt
long-term (actual) ageing by using the asphalt short-term lab ageing test data. This research
project has established the relationships between the asphalt short-term ageing and the asphalt
long-term (actual) ageing based on the back propagation (BP) neural network technology (Aus-
troads, 1997; FHWA, 2001; Juristyarinia, Davisonb, & Glover, 2011; Li, Zofkaa, Marasteanua,
& Clyne, 2006; Shenoy, 2002; Shoenberger & DeMoss, 2005; Thomas, 2002; Xiao, Putmana, &
Amirkhanian, 2011; Zeiada, Kaloush, Underwood, & Mamlouk, 2014).

2. The tests of the asphalt ageing simulated in the lab
2.1. The tests of the asphalt ageing
The AH-90 asphalt (the 25°C penetration is about 80–100, 0.1 mm) is applied as the specimens.
The tests of the asphalt ageing have been done by using the RTFOT and the ordinary convection
oven at 163°C and under ventilation condition, the ageing test time is 5, 12, 24, 48, 72, 120 h.
The short-term ageing test is that the asphalt specimens are placed in RTFOT for 5 h at 163°C,
and the long-term ageing test is that the short-term ageing asphalt specimens after RTFOT are
continuously placed in the convection oven for 120 h at 163°C. The asphalt specimens in RTFOT
are placed in the bottles, and the asphalt specimens in convection oven are placed in the pans.

The temperature range of RTFOT is 0–200°C and the temperature control is 163 ± 0.5°C,
the airflow is 4000 ± 200 ml/min, the ageing time is 5 ± 0.25 h. The temperature range of the
oven is 0–300°C and the temperature control is 163 ± 1°C, the airflow is 4000 ± 200 ml/min,
the ageing time is 120 ± 0.5 h.

Through the asphalt ageing tests, the macro-performance indexes of the ageing asphalt have
been tested including the penetration (15°C, 25°C, 30°C) and the ductility (10°C), etc.

2.2. The penetration and ductility of the ageing asphalt
The test temperature of the penetration is 15°C, 25°C, 30°C, and the test temperature of the
ductility is 10°C. The test results are shown in Table 1 and Figure 1.

The data results have indicated that the penetration of the ageing asphalt decreases with
the ageing time increasing under the same temperature. The penetration decreases largely at

Table 1. The penetration and ductility results of the asphalt ageing.

Time (h) 0 5 12 24 48 72 120

Penetration (0.1 mm) 15°C 32 25 15 14 12 11 10
25°C 78 61 53 41 31 17 11
30°C 144 100 83 69 56 28 18

Ductility (cm) 10°C 46 40 25.5 12.9 11.6 1.1 0.8
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Road Materials and Pavement Design 495

Figure 1. The penetration and ductility curve of the asphalt ageing.

the beginning and gradually decreases slowly, and the indexes of the penetration in different
temperature have approached gradually with the ageing time increases. From the test data, the
ductility of the ageing asphalt also decreases with the ageing time increasing, and the change is
from fast to slow. The ageing asphalt is very crisp and not of the elasticity after 72 h (Ministry
of Communication, 2004, 2006, 2008, 2011).

3. The data investigation and prediction of the asphalt pavement ageing
3.1. The data investigation and process of the asphalt pavement ageing
It will take a long time to accumulate the data of the asphalt pavement ageing in the field. The
research has surveyed and collected the data of the asphalt pavement ageing of different service
times at different zones in China.

After the data process, the data of the asphalt pavement ageing in the field at the different
service time in different zones are shown in Table 2.

3.2. The data prediction of the asphalt pavement ageing (Parvini, 2002; Shi, 2010; Yuan,
1999)

3.2.1. The principles of the BP neural network
The BP neural network is a mathematics model to imitate the bio-neural network behaviour
features for the information processing. It is composed by the large neural elements through
their mutual connection, the general structure includes the input layer, the implied layer and
the output layer. Each neural element is a special function called “activation function”, and the
connection value between two neural elements characterises the mutual strength called “right
value”. The network output depends on the connecting way of the neural elements, the incentive
function and the corresponding right value.

The BP neural network is a multilayer feed-forward neural network, and can be applied in the
nonlinear systems instead of the mathematics modelling. It includes two parts, that is, the input
and output data system and the predicting system; it can express the unknown function by the
training network using input and output data, and the network predicting system can be output.
Its structure is shown in Figure 2, where X 1, X 2 . . . X n is the input value of the neural network,
Y1, Y2 . . . Ym is the output value (predicting value), ωij and ωjk are the right values, the neural
elements of the input layer, the hidden layer and the output layer are n, l, m, that is, the network
structure is n-l-m.
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496 H. Zhang et al.

Table 2. The penetration and ratio of remaining penetration of the asphalt pavement ageing.

Zones

Service time (y) 1 2 3 4 5 1 2 3 4 5

Penetration (25°C, 0.1 mm) Ratio of remaining penetration (25°C)

0 91 68 128 80 86 1 1 1 1 1
2 54 41 82 57 59 0.593 0.603 0.641 0.713 0.686
3 48 0.527
6 35 0.385
7 29 30 85 53 53 0.319 0.441 0.664 0.663 0.616
8 41 0.513
9 23 55 30 0.338 0.430 0.349
10 32 54 48 0.352 0.422 0.600
11 24 0.279
12 20 41 20 0.294 0.513 0.233
13 57 0.445
14 30 19 56 40 22 0.330 0.279 0.437 0.500 0.256

Figure 2. The structure of the BP neural network by MATLAB.

The calculation procedure of the BP neural network is shown in Figure 3. The training process
of the BP neural network by MATLAB is as follows:

(1) The network initial
The input and the output data (X, Y) determine the network input layer node number n, the

hidden layer node number is l, the output layer node number is m. Through the neural element
incentive function, the initials of the right value are ωij and ωjk, the initials of the implied layer
and the output layer valve are a and b.

(2) The hidden layer output H is calculated as

Hj = f

(
n∑

i=1

ωij xi − aj

)
, j = 1, 2, . . . , l,

where f is The hidden layer activation function, n is the input node number, and l is the hidden
layer node number.
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Figure 3. The calculation procedure of the BP neural network.

(3) The output layer output H is calculated as

Ok =
l∑

j =1

Hj ωjk − bk, k = 1, 2, . . . , m,

where m is the output node number.
(4) The network predicting error e is calculated as

ek = Yk − Ok, k = 1, 2, . . . , m,

where Y is the expected output and O is the predicting output.
(5) The update of the right value ωij and ωjk in the network connection

ωij = ωij + ηHj (1 − Hj )x(i)

m∑
k=1

ωjkek, i = 1, 2, . . . , n, j = 1, 2, . . . , l,

ωjk = ωjk + ηHj ek, j = 1, 2, . . . , l, k = 1, 2, . . . , m,

where η is learn rate.
(6) The update of the a, b

aj = aj + ηHj (1 − Hj )

m∑
k=1

ωjkek, j = 1, 2, . . . , l,

bk = bk + ek, k = 1, 2, . . . , m.

(7) The algorithm iteration decision
If no end, back to (2).
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498 H. Zhang et al.

Table 3. The climatic data at different zones in China (1960–2000).

Temperature (°C)

Zones Max. Min. Freezing Index (°C/d) Precipitation (mm/y)

1 36 − 11 46 613.8
2 35 3 0 1701.3
3 31 − 27 882 683.8
4 34 − 27 1082 326.9
5 35 − 10 15 1153.7
Harbin 31 − 34 1623 494.7

Note: The data of the temperature in column 2 are the average of the data from 1960 to 2000.

3.2.2. The data training and establishment of the BP neural network by MATLAB
The MATLAB software takes the matrix as the basic unit of the data processing. The MATLAB
neural network toolbox based on the neural network theory constructs several parts together
by using MATLAB language; these parts include a variety of the neural network, the typical
activation function and the learning rules out. The BP neural network in this paper is realised
based on the MATLAB neural network toolbox.

3.2.2.1. The data training. (1) The data input: The data of the asphalt pavement actual ageing
were collected from five different zones in China (Table 2), and the data of the asphalt pavement
actual ageing in Harbin have been predicted by using BP neural network. The influencing factors
to the asphalt ageing mainly include the temperature, light, air, and so on. The input data include
the road service time, the highest temperature, the lowest temperature, the annual freezing index
and the precipitation. The related climatic data have been collected and shown in Table 3.

(2) The data output: The output data are the ratio of 25°C remaining penetration of the asphalt
pavement ageing.

(3) The data normalisation: For the network predicting errors, the data of the input and output
have been transferred into [0,1], that is, data normalisation. The function of the MATLAB data
normalisation is determined as xk = (xk − xmin ./xmax . − xmin .) by using the max.-min. method,
xmax. and xmin. are the maximum value and the minimum value in the sequence.

3.2.2.2. The establishment of the BP neural network by MATLAB. Through the input and
output data, the input and output layer node numbers of the neural network are respectively
determined as 5 and 1. The hidden layer number and node number are determined by the train-
ing effects. The transferring function of the hidden layer and output layer node is respectively
determined as the tangent S type function “tansig” and the linear function “purelin”. The training
function is “trainlm” and the network learning function is “learngdm”.

In network training, the number of iterations is 100, the learning rate is 0.1, the target of the
training error is 0.00004, and these data are stored in the file of data.mat. The input is for the
training input data, and the output is for the training output data, the inputpre is for the predicting
input data. The training group of the input and output data is 18.

For the training effects, the mean square error (MSE) and mean relative error (MRE) are
applied in the network training; the related functions are as follows:

MSE =
∑n

i=1 (yi − y ′
i)

2

n
, MRE =

∑n
i=1 |yi − y ′

i|/yi

n
,
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Table 4. The training data results.

Input training data Output training data

Temperature (°C)

Service time (y) Max. Min.
Freezing

Index (°C/d)
Precipitation

(mm/y)
Ratio of remaining
penetration (25°C)

2 57.5 − 11 46 613.8 0.593
3 57.5 − 11 46 613.8 0.527
6 57.5 − 11 46 613.8 0.385
10 57.5 − 11 46 613.8 0.352
14 57.5 − 11 46 613.8 0.330
9 57.8 3 0 1701.3 0.338
12 57.8 3 0 1701.3 0.294
2 50.9 − 27 882 683.8 0.641
9 50.9 − 27 882 683.8 0.430
10 50.9 − 27 882 683.8 0.422
2 53.2 − 27 1082 326.9 0.713
7 53.2 − 27 1082 326.9 0.663
10 53.2 − 27 1082 326.9 0.600
12 53.2 − 27 1082 326.9 0.513
7 56.9 − 10 15 1153.7 0.616
9 56.9 − 10 15 1153.7 0.349
11 56.9 − 10 15 1153.7 0.279
12 56.9 − 10 15 1153.7 0.233

Note: The temperature in column 2 is the pavement surface temperature calculated by climatic temperature.

where n is the number of the training data, y is the expected output data, and y ′ is the predicting
output data.

According to the actual training effects and comparisons, the two hidden layer and eight nodes
are determined. Therefore, the structure of the BP neural network by MATLAB is 5-8 and 8-1.

3.2.3. The results of the training and predicting data
3.2.3.1. The training data results. The input training data include the service time, the highest
and lowest temperature, the freezing index and the precipitation, the output training data are the
ratio of remaining penetration of the asphalt pavement ageing. The training data results are shown
in Table 4.

3.2.3.2. The predicting input data results. The predicting input data include the road service
time and four climatic data in Harbin, the meaning of four climatic data is the same as Table 4.
The four climatic data in different service time have not changed because these climatic data are
obtained by the investigation from 1960 to 2000. The predicting input data results are shown in
Table 5.

3.2.3.3. The predicting output data results. In the different predicting output data results,
according to the MSE and MRE with the actual data, the research has selected the data of r1
and r2 as the predicting results of the asphalt pavement actual ageing in Harbin, r1 is fit to the
prediction for the short service time and r2 is fit to the prediction for the long service time. The
training effects are shown in Figure 4.
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500 H. Zhang et al.

Table 5. The predicting input data results.

Predicting input data

Temperature (°C)

Service time (y) Max. Min. Freezing Index (°C/d) Precipitation (mm/y)

1 49.7 − 34 1623 494.7
2 49.7 − 34 1623 494.7
3 49.7 − 34 1623 494.7
4 49.7 − 34 1623 494.7
5 49.7 − 34 1623 494.7
6 49.7 − 34 1623 494.7
7 49.7 − 34 1623 494.7
8 49.7 − 34 1623 494.7
9 49.7 − 34 1623 494.7
10 49.7 − 34 1623 494.7
11 49.7 − 34 1623 494.7
12 49.7 − 34 1623 494.7
13 49.7 − 34 1623 494.7
14 49.7 − 34 1623 494.7
15 49.7 − 34 1623 494.7

Note: The temperature in column 2 is the pavement surface temperature calculated by the climatic
temperature in Harbin.

Figure 4. The network predicting and expected output (r1 and r2).

It can be seen from Figure 4, the predicting output data is very close to the expected output
data; therefore, the predicting output data in Figure 4 can be used as the actual predicting data for
the asphalt pavement ageing in Harbin. The predicting output data results are shown in Table 6.

4. The relationships between the asphalt ageing simulated in the lab and in the field
4.1. The ageing time relationships (Gandhia, Akisettya, & Amirkhanian, 2009; Hajja,

Sebaalya, & Shrestha, 2009; Hong, Guo, & Zhou, 2014)
Through the analysis on the data of the asphalt ageing in the lab and in field, the time relationships
between the asphalt ageing simulated in the lab and in the field based on the penetration are
shown in Table 7 and Figure 5.

Table 7 and Figure 5 have indicated that the time relationship between lab and field for r1 is
fit to the early service time of asphalt pavement ageing in Harbin and r2 is fit to the later service
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Table 6. The predicting output data results (r1 and r2).

r1 r2 r1 r2

Service
Time (y)

Ratio of
remaining
penetration

(25°C)
Penetration

(25°C, 0.1 mm)

Ratio of
remaining
penetration

(25°C)
Penetration

(25°C, 0.1 mm)
Service

Time (y)

Ratio of
remaining
penetration

(25°C)
Penetration

(25°C, 0.1 mm)

Ratio of
remaining
penetration

(25°C)
Penetration

(25°C, 0.1 mm)

0 1 78 1 78 8 0.57 44.12 0.32 24.90
1 0.69 53.57 0.54 42.47 9 0.55 42.62 0.31 23.96
2 0.68 53.04 0.48 37.72 10 0.53 41.50 0.30 23.15
3 0.67 52.04 0.44 33.98 11 0.52 40.77 0.29 22.47
4 0.65 50.60 0.40 31.15 12 0.52 40.31 0.28 21.94
5 0.63 48.94 0.37 29.01 13 0.51 40.01 0.28 21.60
6 0.61 47.33 0.35 27.35 14 0.51 39.78 0.28 21.49
7 0.59 45.76 0.33 26.02 15 0.51 39.55 0.28 21.63

Note: r1: MSE = 0.0298, MRE = 0.0797; r2: MSE = 0.1740, MRE = 0.1169.
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502 H. Zhang et al.

Table 7. The time of the asphalt ageing simulated in the lab and in the field (r1 and r2).

r1 r2 r1 r2

Penetration
(25°C, 0.1

mm)

Lab
time
(h)

Field
time
(y)

Lab time
(h)

Field
time (y)

Penetration
(25°C, 0.1

mm)
Lab time

(h)
Field

time (y)
Lab time

(h)
Field

time (y)

78 0 0 0 0 45 19 7.5
75 0.9 0.1 43 22 1
70 2 0.2 2 0.1 42 22.5 9.5
65 3.3 0.5 41 23 10
60 5.2 0.7 5.2 0.5 40 25.8 13 25.5 1.3
55 9.8 0.9 34 41 3
53 12 2 31 48 4
52 13 3 29 52 5
51 14.5 4 26 56 7
50 14.5 0.9 24 60 9
49 15.5 5 22 64 12

Figure 5. The time relationship between the asphalt ageing simulated in the lab and in the field (r1 and
r2).

Table 8. The calculation results of the rate of the asphalt ageing simulated in the lab.

Time (h) Lab rate (0.1 mm/10 h) Time (h) Lab rate (0.1 mm/10 h)

10 2.4 70 0.5
20 1.0 80 0.3
30 0.6 90 0.2
40 0.4 100 0.1
50 0.4 110 0.1
60 0.5 120 0.1

time of asphalt pavement ageing. This result has been proved through the comparisons between
the test data and actual data.

4.2. The ageing rate relationships
The ageing rate is defined as the change in value of the asphalt penetration before and after the
ageing per unit of time (10 h for lab time, 1 year for the field time). The calculation results of the
average rate are shown in Tables 8 and 9 and Figure 6.
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Table 9. The calculation results of the rate of the asphalt ageing in the field.

Field rate (0.1 mm/y) Field rate (0.1 mm/y)

Time (y) r1 r2 Time (y) r1 r2

1 24.43 35.53 8 1.63 1.11
2 0.53 4.75 9 1.50 0.95
3 1.00 3.74 10 1.12 0.81
4 1.44 2.83 11 0.73 0.68
5 1.66 2.14 12 0.45 0.53
6 1.61 1.66 13 0.30 0.34
7 1.57 1.34 14 0.23 0.11

Figure 6. The rate curve of the asphalt ageing.

5. Conclusions
(1) The time relationships between the asphalt ageing simulated in the lab and in the field

based on the penetration are:

yr1 = −0.00009x3 + 0.024x2 − 0.0607x,

yr2 = 0.0001x3 − 0.0068x2 + 0.1444x.

In the formula, yr1 is fit to the relationship prediction for the early service time of the
asphalt pavement ageing in Harbin and yr2 is fit to the relationship prediction for the
later service time of asphalt pavement ageing.

(2) In the earlier period, the asphalt ageing simulated in the lab is the same with the ageing
in the field, but the ageing in the lab becomes faster than the ageing in the field later.

(3) The asphalt ageing rate is the maximum during the first year and becomes slow later.
The asphalt pavement ageing will not further happen after 10 years of the service time,
which means that the asphalt in the pavement has reached the limit of ageing state. The
rate after 2 years is much smaller than the overall average rate. It shows that the asphalt
pavement ageing has mainly focused on the earlier period of the service time.

(4) The research has realised the conversion from the asphalt ageing time in the lab to the
asphalt ageing time in the field; therefore, it is possible that the data of the asphalt
pavement ageing can be obtained rapidly in the lab.

(5) The research has successfully used the BP neural network for the prediction of the asphalt
pavement ageing through the ageing data in the lab. The results have proved the feasibil-
ity of the programme and can be applied in the recycled asphalt pavement. It has explored
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the way to build the relationships between the asphalt ageing simulated in the lab and in
the field.
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