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H I G H L I G H T S

• Critical examination on the validity of Stoney equation in film electrodes.

• Effects of concentration dependent elasticity to in-situ stress measurements.

• Effects of finite deformation to in-situ stress measurements.

• A robust electrochemical-mechanical coupling FE procedure.
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A B S T R A C T

During the lithiation and delithiation of a thin film electrode, stress in the electrode is deduced from the cur-
vature change of the film using the Stoney equation. The accuracy of such a measurement is conditioned on the
assumptions that (a) the mechanical properties of the electrode remain unchanged during lithiation and (b)
small deformation holds. Here, we demonstrate that the change in elastic properties can influence the mea-
surement of the stress in thin film electrodes. We consider the coupling between diffusion and deformation
during lithiation and delithiation of thin film electrodes and implement the constitutive behavior in a finite-
deformation finite element procedure. We demonstrate that both the variation in elastic properties in thin film
electrodes and finite-deformation during lithiation and delithiation would challenge the applicability of the
Stoney-equation for in-situ stress measurements of thin film electrodes.

1. Introduction

Battery performance is largely compromised by the stress in active
cathode and anode particles because of large volume change associated
with the diffusion of lithium–ions during battery charge/discharge cy-
cles [1–3]. Understanding battery degradation has stimulated a
growing interest in studying the electrochemical-mechanical coupled
fields and the subsequent stress variation during lithiation and de-
lithiation. Many researchers are focusing on Si-based and Sn-based
anodes because of their high charge capacities and relatively low
density. However, high capacities usually are associated with huge
volume expansion and high stress, causing poor cycle life. A robust
numerical implementation of diffusion-finite deformation in strongly
coupled phenomena is, therefore, necessary for simulating large strain
(∼300%) in silicon- or tin-based electrodes for lithium ion battery
applications.

It is generally agreed that the lithiation and delithiation in batteries
involve electrochemical-mechanical coupling. Taking Si as an example,
the electrochemical lithiation of crystalline Si exhibits complicated
structural changes [4], such as phase transition and volume changes
[5]. As a result, significant stress change occurs, which has been related
to the performance of the battery. Given the experimental difficulties in
quantifying the coupling effects, intensive endeavors have been made in
developing numerical methods in the past decade to capture the elec-
trochemical-mechanical processes in batteries [6–12]. Anand et al.
(2012) [13] has used a Cahn–Hilliard–type theory for species diffusion
coupled with large elastic–plastic deformations.

When applying the Stoney equation for stress measurements
[14,15], the accuracy is contingent upon the assumption that the elastic
and plastic properties of the electrode remain unchanged during li-
thiation. However, there are obvious changes in the mechanical prop-
erties in the process of lithiation and delithiation of electrodes [16–18].
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In this paper, we demonstrate via finite element method based com-
putations how the variation of elastic properties could influence the
stress measurement and the stress-capacity relationship in thin film
battery electrodes. We first present in Sec. 2 the numerical im-
plementation of diffusion-finite deformation strongly coupled pro-
blems. We report the curvature response as a function of lithium con-
centration-dependent elastic modulus and discuss the limitation of the
Stoney equation for stress measurements in thin film electrodes in Sec.
3. We conclude in Sec. 4 with final remarks.

2. The finite element formula

Here we introduce the diffusion-induced finite deformation coupled
equations for modeling the electrode's finite deformation in the process
of charge or discharge. Previously, many researchers have demon-
strated that there exists a stress–capacity hysteresis in electrode mate-
rials, and the irreversible deformation is greater than the elastic de-
formation [17–20]. We introduce, therefore, a large inelastic
deformation theory to our diffusion-finite deformation fully coupled
theory, which, we believe, can be applied to many electrode materials.
We discuss, in the following, diffusion process and finite deformation
process separately.

2.1. Diffusion process for the finite deformation

At any given time t, the lithium ion concentration xϕ t( , ) at a ma-
terial point x in the electrode structure (v) is governed by the diffusion
equation [21].

∂
∂
+ ∇⋅ =J

ϕ
t

in v0( ), (1a)

where∇ = ∂
∂xi

is the gradient relative to current position xi [22]. Hence
the initial configuration X coincides with the current one x at =t 0,
i.e., = =X x t( 0)i i , and the subscript i runs from x to z in the Cartesian
coordinate system. The boundary condition is given as

= ⋅ = = −J nϕ ϕ on Γ J n J on Γ, ( ) and ( )͠ i i
s

1 2 (1b)

Here Js is the component of surface flux, n is the surface normal,
and Γ1 and Γ2 represent the surface of the volume v. Here, the galva-
nostatic current boundary condition Js is related to the current density
is via =Js i

F

s
[23], and F is the Faraday constant.

There are several models for the effect of stress on lithium ion flow.
The commonly used one expresses the flux, J , a function of the gradient
of a stress-dependent chemical potential μ (e.g. [13,22,24–27])

= − ∇J
x

x
D ϕ

RT
μ ϕ σ t

( , )
( , , , )h (1c)

where xD ϕ( , ) is the diffusivity depending on concentrations and cur-
rent positions, R is the gas constant and T is the absolute temperature.
Note that different groups may use slightly different formula of μ al-
though the same factors were taken into account (e.g. [13,22,27]). Eqn.
(1c) reflects the influence of stress on concentration and vice versa. As
the exact dependence of μ on σ remains debatable, we adopt a simple
form (e.g. [24–27])

= + −xμ ϕ σ t μ RTln
ϕ

ϕ
Ωσ( , , , )h

max
h0 (1d)

where is the referential potential, ϕmax is the maximum lithium con-
centration, Ω is the lithium ions partial molar volume and σh is the
hydrostatic stress, i.e., + +σ σ σ( )/3xx yy zz . The second term represents
an entropic contribution to the free-energy, while the third term is the
work done by the applied stress. Combining Eqns. (1c) and (1d), the
flux equation can be rewritten as

= − ∇ + ∇J
x

x
xD ϕ

ϕ
ϕ t

D ϕ
RT

σ
( , )

( , )
( , )Ω

h
(2)

We consider a linear dependence of diffusivity on concentration and
consider isotropic diffusion =xD ϕ D ϕ( , ) 0 .

In general, the concentration ϕ is associated with compound phase
A Bψ in the electrode where A and B indicate the lithium and the anode
electrode material respectively, and the subscript ψ indicates the li-
thium fraction ranging from 0 to ψmax. Its connection with ϕ is defined
by

=ϕ
ψ

V N
,

ψ a (3)

whereVψ is the volume of the compound A Bψ and is a function of ψ, and
Na is Avogadro's number. Taking lithium-silicon battery system as an
example, the volume of the compound Li Siψ is [28,29].

⎜ ⎟= ⎛
⎝
+ ⎞

⎠
× −V

ψ
ψ

1 3.2 10 m ,ψ
max

28 3

(4)

and the maximum lithium fraction is =ψ 4.4max (Li Si4.4 [30]). For nu-
merical convenience, we consider ψ as a continuous variable. We write
the diffusion equation in terms of ψ, and Eqn. (1a) is given as

− ′ ∂
∂
+ ∇⋅ =J

V ψV
V N

ψ
t

in v0 ( )ψ ψ

ψ a
2

(5a)

where ′ = ∂
∂Vψ
V
ψ
ψ , and the boundary conditions are

= = −∼ψ ψ on and J n J on, ( Γ) ( Γ )i i
s

1 2 (5b)

for prescribed concentration and ion flux, respectively. The flux equa-
tion (Eqn. (2)) is then written as
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According to eqn. (5a) and eqn. (5b), the variational form δWd of the
above diffusion equation is given as
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− ′ ∂

∂
− − =δW δψ
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V N

ψ
t
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v
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ψ a v
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s

s
2 ,

(6)

where v and s are the volume and the surface of the deformed body,
respectively. The differentiation of δWd is

∫ ∫

∫
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where = =∂
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0 . The first

three terms on the RHS of eqn. (7) are associated with diffusion, and the
last one is the finite deformation-induced stiffness matrixes.

2.2. The finite deformation problems for electrodes

Since large volume changes occur in the negative electrode in high
capacity batteries, and the Cauchy stress is affected by rigid-body ro-
tation (not frame invariant), an objective stress rate with respect to the
logarithm strain rate is desired. The objective stress rate can be ac-
quired by the Jaumann rate [31] as

= + −σ σ σ W W σ˙ ˙ij
J

ij ik kj ik kj (8)
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where σ̇ij
J is the Jaumann stress rate; σ̇ij is the time rate of Cauchy

stress, = −W L L( )/2ij ij ji is the spin tensor, = =∂
∂

−L FF˙ij
v
x

1i
j

is the velo-

city gradient, and = ∂
∂Fij

x
X

i
j
is the deformation gradient tensor. The

Jaumann stress rate can then be used to objectively describe the stress
and strain rate (ε̇kl) relation, =σ C ε˙ ˙ij

J
ijkl kl with Cijkl the fourth-order

elastic modulus tensor. The rate-independent elastic-plastic constitutive
relationship (coupled with diffusion) in incremental form is then given
as

= − +
∂
∂

dσ C dε dε
σ
ε

dε( )ij
J

ijkl kl
m

kl
pl ij

kl
d kl

d

(9)

where dεkl
m and dεkl

d come from the decomposition of the total strain
increment = +dε dε dεij kl

m
kl
d , referring to the mechanical induced strain

increment and the diffusion-induced one, respectively. The mechanical
deformation increment is composed of an elastic part dεkl

e and a plastic
part dεkl

pl, = +dε dε dεkl
m

kl
e

kl
pl, and ∂

∂

σ

ε
ij

kl
d is the diffusion-induced modulus

tensor which arises due to the nonlinear relationship between the
Cauchy stress and the lithium ions' concentration. Such formula has
also been adopted by others [7,13,22]. In order to update the stress
state during the standard interval +t t[ , ]n n 1 , we update the total loga-
rithmic strain measure +ε[ ]n 1 at time +n 1 by

= ++ε ε εΔ[ ] [ ] [ ]n n1 (10)

which introduces the rotation-neutralized strain increment Δε[ ] from
time tn to +tn 1. Unless stated otherwise, letters with a top bar are defined
in the rotated coordinate. Hughes (1984) used the approximate 2nd
order calculation for Δε[ ] [32], which is given as

= + +ε R D RΔΔ[ ] [ ] [ ][ ]n
T

n1/2 1/2 (11)

where = ∂
∂ +( )DΔ sym u

x
Δ

n 1/2
is the rotation-neutralized stretch increment

tensor relative to the neutralized positions = ++ +x x x( )n n1/2
1
2 n 1 , and

+R[ ]n 1/2 comes from the deformation gradient decomposition

=F R Uij ik kj (12)

where Rij is the rotation tensor ( =R R δji ij ij), and Uij is the right stretch
tensor. The updated objective stress defined in the rotated coordinate is
given as = ++σ σ σΔ[ ] [ ] [ ]n n1 , and the rotated stress increment follows

= −σ C ε εΔ Δ Δ[ ] [ ]([ ] [ ] )p , where C[ ] is the isotropic elastic matrix and
εΔ[ ]p is the plastic strain increment. The simple yet powerful method

for large inelastic deformation could eliminate the influence of the rigid
body rotation on the Cauchy stress, and leads to the same type of
elastic-plastic formula for both small deformation and finite deforma-
tion cases. The explicit expression of Rij in terms of quaternion para-
meters is also available [33,34]. One is refereed to Hughes (1984) [32]
for detailed algorithm. For force balance, we have

∂
∂
+ =

σ
x

f 0ij

j
i
B

(13)

where σij is the Cauchy stresses, and fi
B is the i-th component of the

body force. The principle of virtual work for mechanical deformation
δWm is

∫ ∫ ∫= − − =δW σ δD dv f δu dv f δu ds 0m
v

ij ij
v

i
B

i
s

i
s

i
(14)

where fi
s is the i-th component of the surface traction. According to eqn.

(9) and eqn. (14), the differentiation of δWm is [31].
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The detailed numerical procedure of the above theory is given in

Appendix B, and it has implemented in the commercial finite-element
procedure (Abaqus [40]) as a user-element subroutine, which is sup-
plied in the supplementary material. In sec. 3, we apply our theoretical
analysis to the charge/discharge process in film-based batteries, and
discuss the influence of silicon electrode material with large expansion
deformation on the response of film-substrate structure, which is
broadly used for in-situ stress measurements.

3. Stress evolution in the film–substrate structure

We consider the film-substrate structure shown in Fig. 1, in which
an elastic electrode film is adhered to an elastic substrate, which is a
typical structure used to reveal the electrode's stress evolution in the
charge/discharge process by monitoring the substrate's curvature evo-
lution. The biaxial stress σm is deduced from curvature using the Stoney
equation

=
−

σ
E h

ν h
κ

6(1 )m
s s

s f

2

(16)

where Es is the elastic modulus of the substrate, hs is the thickness of the
substrate, νs is the poisson's ratio of the substrate, and hf is the thickness
of the film.

We examine the case when the modulus of electrode materials
varies with lithium concentration. Sethuraman et al. (2010) and
Hertzberg et al. (2011) reported biaxial moduli of Si thin-film electrode
changing with lithium concentration by in-situ measurements and ex-
situ measurements [16,17]. Shenoy et al. (2010) studied the elastic
properties of Li-Si alloys using first–principles calculations for both
amorphous and crystalline and found that the modulus linearly de-
creases with lithium concentration [18], a similar trend was reported in
Li-Si alloys [35]. In contrast, the modulus increases with Li con-
centration for Li-graphite system [36]. Deshpande et al. (2010) showed
that the concentration-dependent Young's modulus has a significant
effect on stress evolution in the electrodes [9]. It also has a significant
effect on in-situ stress measurements. In our simulations, we assume, as
did Shenoy et al. (2010) [18], that the elastic modulus, Ef , varies lin-
early with the lithium fraction

= +
+

E E
ψ t

ψ t
mE

( )
1 ( )f 0 0

(17)

where E0 is the modulus of pure silicon and m is a coefficient.
In mimicking typical battery cells, we consider a film with a radius
=R μm5.0f and a height =h μm0.002f . Its initial elastic modulus and

Poisson's ratio are =E GPa800 and =ν 0.22, respectively [37]. The dif-
fusivity coefficient is taken as = × − −D m s1.0 100

16 2 1 [38], and the li-
thium ions partial molar volume = × − −Ω m mol3.497 10 6 3 1 [11]. For the
substrate, its height is =h μm1.0s , and the elastic modulus and Poisson's
ratio are = =E GPa162 ,  ν 0.26s , respectively [39]. The top surface of
the electrode is in contact with a lithium reservoir.

Fig. 1. Illustration of a thin film electrode on top of a substrate for curvature
measurement. (a) Ions come from the top during the charge/discharge cycle.
(b) Deformed structure for stress measurement.
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3.1. Elastic response in the electrode materials: concentration independent
elasticity

We first examine the case when the electrode layer deforms elasti-
cally and the film's elastic modulus Ef is independent of concentration,
i.e., =m 0 in eqn. (17). Because the non-dimensional factors σ0 and κ0
are linearly increase with the film elastic modulus Ef , which can
eliminate the influence of the elastic modulus on the curvature and the
Cauchy stress (show in Fig. 2d), so we multiply κ κ/ 0 and σ σ/m 0 by E E/f s

in Fig. 2 and discuss the influence of film's elastic modulus on the
curvature and the Cauchy stress. We show in Fig. 2a the curvature
variation as a function of the Li fraction. A linear relationship between
the curvature and the concentration is seen when the small deformation
algorithm is adopted (solid lines) in our FEM calculations. When finite
deformation is considered, the obtained curvature-ψ relationship be-
comes nonlinear even when the material properties are constant during
the charge/discharge cycle. The extracted biaxial stress σm-ψ relation-
ship for small deformation from FEM calculations and the Stoney (eqn.
(16)) is presented in Fig. 2b. The FEM results are obtained by averaging
the bending stress in elements in the electrode layer along the thickness
direction, and the Stoney prediction is obtained by knowing the cur-
vature at each ψ from Fig. 2a and substituting it in eqn. (16). For finite
deformation, the extracted biaxial stress σm-ψ relationship from FEM

calculations deviates significantly from that obtained by the Stoney
equation (Fig. 2c). From Fig. 2d, we can see that the non-dimensional
quantity σ σ/m 0 is independent of the film's elastic modulus Ef . And the
Stoney prediction will break down when the biaxial Cauchy stress is
greater than σ20% 0. Of course, that occurs when the electrode material
deforms elastically; in real battery systems, plastic deformation starts
when the stress reaches GPa level.

3.2. Elastic response in the electrode materials: concentration dependent
elasticity

In this section, we discuss how the concentration dependent mod-
ulus affect the stress measurement by FEM calculations based on finite
deformation. Fig. 3a presents the curvature-concentration curves for
concentration-dependent. We consider the case that higher concentra-
tion leads to lower modulus, i.e., <m 0 in eqn. (17). A weakening in
modulus can lower the stress level significantly. Following the same
strategy used in Fig. 2, we could extract the biaxial stress σ σ/m 0- ψ
curves from both FEM calculations and by using the Stoney equation.
As seen from Fig. 3b, the Stoney equation significantly overestimates
the stress level in the electrode film, and the Stoney equation can be
applied when the biaxial Cauchy stress is lower than σ20% 0.

Fig. 2. The curvatures κ and biaxial stresses evolution σm in a charge/discharge cycle for small and finite deformation algorithms and constant Ef ( =m 0 in eqn.

(17)). The Cauchy stresses are non-dimensionalized by =
⎜ ⎟
⎛
⎝
− ⎞
⎠

σ
Ef

νf

ε
0

3 1

v
3 (eqn. (28)), where = −ε Vmax V

Vmaxv
0 is the actual volumetric strain, with = =V V ψ ψ( )max ψ max , and

= =V V ψ ψ( )ψ0 0 (eqn. (4)). The curvatures are non-dimensionalized by =
−

κ σ
νs hf

Eshs
0

6(1 )
2 0 according to the Stoney equation (eqn. (16)). (a) Curvature as a function of

concentration ψ with different Ef from FEM calculations: The solid lines are for small deformation and symbols are for finite deformation. (b) The extracted stress
σ E σ E( )/( )m f s0 -ψ relationship for small deformation from FEM calculations and the Stoney prediction (eqn. (16)). (c) The extracted biaxial stress σ E σ E( )/( )m f s0 -ψ
relationship for finite deformation. (d) The extracted biaxial stress σ σ/m 0-ψ relationship for finite deformation.
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3.3. Geometrical effects

While the Stoney equation is applicable when the film is thin re-
lative to the substrate, its applicability vs. film thickness has not been
firmly established, especially in the context of thin film lithium ion
battery electrodes which is the focus of this section.

In Fig. 4a, as in Fig. 2a, we multiply κ κ/ 0 by h h/f 0 to eliminate the
influence of κ0, which linearly increases with film's thickness hf . We
vary the film thickness from =h μm0.002f to μm0.2 . Fig. 4a shows the
curvature- ψ curves for different h h/f s. Corresponding σ σ/m 0-ψ curves
are presented in Fig. 4b. The difference between the FEM calculations
and the Stoney equation prediction is apparent when > 0.02

h
h

f

s
, and the

stress predicted by the latter is greater than the FEM results. We con-
structed the stress error map for Stoney equation predictions as a
function of the thickness ratio h h/f s and presented it in Fig. 4c. We see
that the Young's modulus of the electrode material may also influence
the prediction but its influence is weaker than the thickness ratio.

3.4. Rigid plastic electrode

We now explore more complicated electrode material constitutive
behavior by taking plasticity into consideration. We show in Fig. 5a the
stress-strain curves of the electrode material with different constitutive
behavior. Both equivalent stress σe and equivalent strain εe are used,

with = − −( )( )σ σ σ δ σ σ δe ij ij ij ij ij
3
2

1
3 ij

1
3 and =εe − −( )( )ε ε δ ε ε δij ij ij ij ij

2
3

1
3 ij

1
3 ,

the Kronecker delta =δ 1ij if =i j, otherwise =δ 0ij . We consider the
material to be elastic-perfectly plasticity. For case I, the Young's mod-
ulus Ef is a constant, i.e., =m 0 in eqn. (17); and for case II, Ef de-
creases with increasing lithium concentration. We use = −m 0.79 as
recommended by Shenoy et al. (2010) [18]. From calculated material
response shown in Fig. 5a, we see that the concentration-dependent
Young's modulus would result in an apparent difference in the elastic
deformation stage when charge induced strain is large (high con-
centration). Modulus value from the unloading curve for case II is
smaller than that of case I. In Fig. 5b, we present the curvature evo-
lution within a full lithiation/delithiation cycle from our FEM simula-
tion. Lithiation induced elasticity softening leads to smaller curvature
during the delithiation stage, in contrast to electrode with constant
modulus. In Fig. 5c, we show the extracted biaxial stress vs. ψ from FEM
calculations and that based on Stoney prediction (eqn. (16)). The blue
and red curves, for the respective case I and II, are predicted by FEM
calculations. They showed the Cauchy stress evolution during lithia-
tion/delithiation. Corresponding predictions by the Stoney equation
(based on eqn. (16) and the curvature curve in Fig. 5b) are shown in
green and black. Stoney equation cannot accurately predict the biaxial
stress in the plastic deformation stage. For case I, the error originates
from the fact that Stoney equation was derived for small deformation
while the electrode material experiences large deformation; the addi-
tional concentration-dependent elasticity in case II complicates the si-
tuation which further challenges the applicability of Stoney equation.

4. Discussions and conclusions

For better understanding the stress evolution in electrodes during
lithiation and delithiation, there is a compelling need for more robust
numerical methods to solve the electrochemical-mechanical coupled
problems. In this paper, we presented a diffusion-mechanics coupling
constitutive model and developed a robust numerical method to solve
the coupled fields during finite deformation. The numerical method is
also presented in detail in the supplementary material. We characterize
the influences of finite-deformation, concentration-dependent Young's
modulus, as well as film-substrate thickness ratio on the beam stress in
electrode materials. These effects are normally neglected in stress-
measurement using the Stoney equation. We conclude that a com-
plementary fully coupled numerical simulation should be used, in
combination with experimental measurements, to extract the actual
mechanical response and critical material parameters by in-situ curva-
ture measurements.

Fig. 3. The influence of electrode materials for the substrate in a charge/dis-
charge cycle, here the electrode materials' elastic modulus varies linearly with
the Li fraction (eqn. (17)). (a) The curvature of the substrate from FEM calcu-
lations with different m. (b) The extracted biaxial stress of the film σ σ/m 0 from
both FEM calculations (symbols) and prediction by the Stoney equation (eqn.
(16)).

Fig. 4. Effects of the ratio of film to substrate thickness in a charge/discharge
cycle. (a) The curvature of the substrate for several thickness ratios, where hf is
the film thickness, and hs is the substrate thickness. (b) The biaxial stress
evolution of the film where dashed lines are finite deformation FEM analysis
results and solid lines are calculated by the Stoney equation and curvature
results. (c) The error between the film stress and that acquired from the sub-
strate curvature using the Stoney equation for several h h/f s values, i.e.,

= −Error σm stoney σm FEM
σm stoney

, ,
,

.
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Appendix A. Stress-curvature relation in films with linear-elastic response during charge-discharge

Now we examine the case when the modulus of the electrode layer is concentration dependent with linear-elastic response. We aim to give the
corresponding simplified curvature-stress (or concentration) relationship. The biaxial stress of the electrode film σm induced by the mismatch strain
εm is given for linear elastic electrode materials as

=
−

σ E
ν

ε
1m

f
m

(18)

where E and νf are elastic modulus and Poisson's radio, and the mismatch strain εm is related to the concentration c t( ) by

= −ε α c t c( ( ) )m 0 (19)

where c0 is the initial concentration in the electrode materials. The film's capacity is

=Ca it
ρ hf f (20)

where i is the current density on the electrode film, t is time, ρf is the density of the electrode material, hf is the thickness of the electrode. And the
slope of the stress-capacity curve is

=K dσ
dCasc

m
(21)

Thus, the slope of the stress-capacity curve eqn. (21) is given according to eqn. (18)–(20) as

=
−

∂ −
∂ −

K
ρ h

i
α

ν
E c t c

c t c
dc t

dt1
( ( ( ) ))

( ( ) )
( )

sc
f f

f

0

0 (22)

Because the height of the electrode film is small, ≫R hf . We may assume one dimensional diffusion along the thickness direction [21],

∂
∂
= ∂
∂

c
t

D c
h

2

2 (23)

with boundary conditions and initial conditions given below [23].

∂
∂

=
=

c
t

0
h 0 (24a)

∂
∂

=
=

D c
h

i
Fh hf (24b)

=c h c( , 0) 0 (24c)

Hence the concentration as a function of time and thickness is given as

Fig. 5. The influence of the constitutive behavior of the electrode material on stress measurement. Here the electrode is assumed to be elastic-perfectly plastic. (a)
Different constitutive behavior of the material. (b) The curvature of the substrate from FEM calculations with different m in eqn. (17). (c) The extracted biaxial stress
vs. ψ from FEM calculations and that based on Stoney equation prediction (eqn. (16)).
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(25)

The average concentration in the film is

∫
= =c

c h t dh
h

it
Fh

( , )
av

h

f f

0
f

(26)

According to eqn. (22) and eqn. (26), the slope of the film due to lithiation is

=
−

∂ −
∂ −

K
αρ

ν F
E c t c

c t c(1 )
( ( ( ) ))

( ( ) )sc
f

f

0

0 (27)

According to eqn. (27), when the elastic modulus is independent of ion concentration, = −Ksc
E αρ

ν F(1 )
f

f

0
is a constant. Otherwise, according to eqn.

(27), the biaxial stress is given as

∫= − = −
−

−σ σ K dCa σ α
ν

E c t c
(1 )

( ( ) )m

Ca t

sc
f

0
0

( )

0 0
(28)

where σ0 is the initial residual stress in the electrode film. It is noted that the accuracy of eqn. (28) is restricted to films subjected to small
deformation.

Appendix B. Numerical procedure

In this appendix, we provide the detailed numerical procedures to implement the electrochemical-mechanical coupling differential equations.
The variation of Eqn. (5a) is given as

∫ ∫ ∫=
∂
∂

− − =δW δψH ψ
ψ
t

dv δψ J dv J δψds( ) 0d
v v

i i
s

s
,

(29)

where δψ is the admissible virtual normalized concentration. The weak form of the force balance equation in eqn. (13) is then written as

∫ ∫ ∫= − − =δW δD σ dv δu f dv δu f ds 0m
v

ij ij
v

i i
B

s
i i

s

(30)

where δDij denotes the virtual strain. In order to solve the integral form of Eqn. (29) and Eqn. (30), we discretize the concentration field and the
displacement field. For a typical element with M nodes, we denote the i-th coordinate of the a-th node xi

a, where the superscript a ranges from 1 to
M . The normalized concentration ψ x( )i and the displacement u x( )i i are interpolated as

∑ ∑= =
= =

ψ x N x ψ u x N x u( ) ( ) , ( ) ( )i
a

M
a

i
a

i i
a

M
a

i i
a

1 1 (31)

where N x( )a
i are the shape functions. Time integration in transient problems utilizes the backward Euler method: =∂

∂
−+ψ

t
ψ ψ

Δt
t Δt t . Then the coupled

equations are solved using a Newton-Raphson iteration procedure by defining the following element-level residuals for the normalized concentration
and the displacement,

∫ ∫ ∫= −∂
∂

= −
−

+ ∂
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+ =+R δW
δψ

N
ϕ ϕ

Δt
dv N

x
J dv N J ds 0ψ

a d
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a s

(32a)

∫ ∫ ∫⎜ ⎟= −∂
∂

= − ⎛
⎝

∂
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⎠
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(32b)

Taking the two dimensional problem as an example, the overall elemental residuals in matrix form are given by

⎡⎣ ⎤⎦= ⋯R R R R R R R R R Ru u ψ u u ψ u
M

u
M

ψ
M

T
1 1 1 2 2 2
1 2 1 2 1 2 (33)

In addition to the residuals, the following Jacobian matrix is also required for the iterative Newton-Raphson method, which is defined as

∫ ∫ ∫= −
∂
∂
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− ∂
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(34a)

and
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(34b)
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For brevity, we assemble the Jacobian matrix of two dimensions elements as
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The residuals (eqn. (32)) and the Jacobian matrix (eqn. (34)) are implemented in the commercial FEM package (Abaqus [40]) by developing a
user-element subroutine, which is supplied in the supplementary material.

Appendix C. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jpowsour.2018.03.052
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