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Key Points: 

 The exponent of power-law singularities ranges from −1/2 to −1. 

 A reduced power-law exponent monotonically decreases to its lower limit. 

 Catastrophic rupture can be predicted with the changeable power-law exponent. 
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Abstract   

The acceleration precursor of catastrophic rupture in rock-like materials is usually 

characterized by a power-law relationship, but the exponent exhibits a considerable scatter in 

practice. In this paper, based on experiments of granites and marbles under quasi-static 

uniaxial and unconfined compression, it is shown that the power-law exponent varies 

between −1 and −1/2. Such a changeable power-law singularity can be justified by the energy 

criterion and a power function approximation. As the power-law exponent is close to the 

lowest value of −1, rocks are prone to a perfect catastrophic rupture. Furthermore, it is found 

that the fitted reduced power-law exponent decreases monotonically in the vicinity of a 

rupture point and converges to its lower limit. Therefore, the upper bound of catastrophic 

rupture time is constrained by the lowest value of the exponents and can be estimated in 

real-time. This implies that, with the increase of real-time sampling data, the predicted upper 

bound of catastrophic rupture time can be unceasingly improved. 
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1. Introduction 

The accelerating behavior of some response quantities (e.g., deformation and seismic 

events) is widely observed before natural disasters such as volcanic eruptions [Voight, 1988; 

Kilburn and Voight, 1998; Kilburn, 2003; Bell et al., 2011; Bell et al., 2013; Boué et al., 2015; 

Hao et al., 2016], landslides [Helmstetter et al., 2004], and earthquakes, as well as in rupture 

experiments [Nechad et al., 2005a; Heap et al., 2009; Hao et al., 2013; Hao et al., 2014]. 

This has been analyzed as a critical phenomenon [Bak and Tang, 1989; Toussaint and Pride, 

2002a, 2002b, 2002c; Rundle et al., 2003; Toussaint and Pride, 2005; Girard et al., 2010; 

Abaimov and Cusumano, 2014] with a power-law divergence of macroscopically observable 

quantities [Guarino et al., 1998; Rundle et al., 2000; Guarino et al., 2002; Weiss et al., 2014] 

at failure. Such an accelerating behavior is usually accepted as a precursor for prediction of 

time-to-failure [Voight, 1988; 1989; Kilburn and Voight, 1998; Main, 1999; Kilburn, 2003; 

2012; Hao et al., 2016]. For example, to quantitatively describe an acceleration process 

during the evolution to failure, Voight [1988; 1989] suggested an empirical relationship, that 

is 

 A  , (1) 

where   is a response quantity (e.g., deformation, cumulative energy release, acoustic 

emission etc.), α is an exponent measuring the degree of non-linearity [Main, 1999], and A is 

a constant. The dot represents the first and second derivatives of the response with respect to 

time. Quantities that might be represented by   include deformation or strain of rocks, 
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conventional geodetic observations (e.g., fault slip, strain, length or angular change), seismic 

quantities such as Benioff strain, which is defined as the square root of cumulative energy 

release [Voight, 1988]. 

Voight‟s relation (equation (1)) has been justified by comparison with equations for 

quasi-static, subcritical crack growth [Kilburn and Voight, 1998]. Voight‟s relation in 

predicting failure time is known as the failure forecast method [Kilburn and Voight, 1998; 

Kilburn, 2003; Bell et al., 2011; Bell et al., 2013], which has been widely validated by the 

retrospective prediction of volcanic eruptions [Voight, 1988; Kilburn and Voight, 1998; 

Kilburn, 2003], earthquake [Bufe and Varnes, 1993; Bowman et al., 1998; Main, 1999], and 

laboratory data [Lavallée et al., 2008; Smith et al., 2009]. In these applications, a power-law 

relationship of the response rate can be derived as 

  
r

fK t t   , (2) 

where tf is the failure time, K = [A(α − 1)]1/(1−α ), and r = −1/(α − 1) [Voight, 1988], which was 

verified in creep [Nechad et al., 2005b; Heap et al., 2009] and creep-relaxation experiments 

of rocks [Hao et al., 2014]. To extend these analyses to deformation under increasing stress, 

Kilburn [2012] suggested an alternative expression of Voight‟s relationship to describe 

precursory time series. Then, based on uniaxial compressive experiments of granites and 

marbles as illustrated in Figure 1, Hao et al. [2013] introduced a response function R = du/dU, 

defined as the change of sample‟s deformation u with respect to the crosshead displacement 

U of a testing machine. Their experimental results showed that, approaching to catastrophic 
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rupture, the response function increases as a power-law function 

   F

F F1R B U U


  , (3) 

where BF is a constant, βF is an exponent, subscript F represents the value at a failure point, 

and U is a displacement combination of the sample and load apparatus (Figure 1). 

  When the exponent r (or βF) is equal to −1 (i.e., α = 2 in Voight‟s relation), the reciprocal 

of R has a linear relationship with the controlling displacement U. Then, as illustrated in 

Figure 2, by linearly extrapolating the inverse rate to zero [Kilburn and Voight, 1998; Kilburn, 

2003; Lavallée et al., 2008; Smith et al., 2009], failure time can be determined as the 

intersection point with the abscissa axis [Voight, 1988; 1989; Voight and Cornelius, 1991; 

Cornelius and Scott, 1993; Cornelius and Voight, 1994; Sornette and Sammis, 1995; Kilburn 

and Voight, 1998; Kilburn, 2003; Helmstetter et al., 2004; Smith and Kilburn, 2010; Bell et 

al., 2013; Hao et al., 2016]. This method works well in retrospective analysis of landslides 

and volcanic eruptions [Voight, 1988; Cornelius and Voight, 1994; Kilburn and Voight, 1998]. 

It is worth noting that, however, the power-law exponent r (or βF) is not always equal to −1, 

and according to a number of experiments, there is a large dispersion in its value [Voight and 

Cornelius, 1991; Kilburn, 2003; 2012; Boué et al., 2015]. In the case of creep damage, 

Cornelius and Scott [1993] reported that the exponent α in Voight‟s relation is between 1.47 

and 2.12. Voight [1989] found out that 1.74 < α < 2.01 for metals and 1.9 < α < 2.1 for soil. 

Rundle et al. [2000] derived an exponent of 1/4 based on the first-order phase transition. In 

addition, observations indicate that the exponent is about 0.3 for large earthquakes [Bufe et al., 
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1994; Main, 1999; Ben-Zion and Lyakhovsky, 2002]. Hao et al. [2013] showed that the 

average value of power exponents is −0.51. Thus, it is pivotal to have a better understanding 

on the variation of power-law exponents. 

A system consisting of the load apparatus (represented by a linear spring in Figure 1) and a 

slipper or damageable sample in series [Brace and Byerlee, 1966; Salamon, 1970; Hudson et 

al., 1972; Jaeger and Cook, 1979; Li and Rice, 1983; Hao et al., 2012] is usually used to 

simulate the process of elastic energy release inducing catastrophic rupture in rocks. Similar 

models [Lyakhovsky et al., 2011; Lyakhovsky and Ben-Zion, 2014] have been developed to 

describe the transition from the quasi-static evolution to dynamic slip events. Energy release 

from surroundings driving catastrophic rupture of a damage zone is a significant mechanism 

of natural disasters such as earthquakes [Brace and Byerlee, 1966; Li and Rice, 1983; Scholz, 

1998, Carpenter et al., 2011], pillar failure [Salamon, 1970], and displacement in 

underground structures. 

In this paper, quasi-static uniaxial and unconfined compression experiments are carried out 

to simulate the energy release inducing catastrophic rupture and investigate the power-law 

acceleration of the response function R (equation (3)) in the vicinity of catastrophic rupture. 

Rock samples are tested by monotonically and quasi-statically moving the crosshead of a 

testing machine. Then, power-law exponents are determined by experimental results and an 

analytic reasoning with a power function approximation. In particular, the variation of βF is 

discussed in terms of an energy criterion. Finally, the real-time evolution of a reduced 
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power-law exponent approaching to βF is adopted to develop a method to estimate the 

constraint on warning of catastrophic rupture. 

 

2. Samples and experimental method 

Two kinds of granites and marbles were cut into prismatic blocks with 40 mm in height 

(see Table 1 for their sizes in cross-section). The aspect ratio of a sample was not less than 2. 

The same kind of rock samples was taken from a complete, generally uniform rock with the 

same sampling direction. All the samples were intact (see Figure S1 in Supporting 

Information), but with inevitable and randomly distributed micro-defects. Then, the surface 

of each sample was polished and smoothed to ensure that the end face of a sample was flat 

and perpendicular to its height axis with the verticality of < 0.001 rad. To avoid the influence 

of moisture content of a sample on its uniaxial compressive strength and catastrophic rupture, 

all the cleaned samples were placed in an electric oven and dried at 105 ± 3 °C for 24 hours. 

After rock samples were cooled, they were quickly transferred to a dryer for storage, ensuring 

that all samples were in an almost absolute dry initial state prior to experiments. These 

samples were tested at temperatures ranging from 10 to 30 °C. The average relative room 

humidity was ~62%. The total number, size, initial stiffness and density of each kind of 

samples are listed in Table 1, and Figure 3 shows their optical microscope images and 

corresponding internal micro-structures. 
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In experiments, unconfined rock samples were uniaxially compressed along the height axis 

by using an MTS 810 material testing system (Figures 4a and 4b) with a stiffness of 210 

kN/mm. The experimental procedure is illustrated in Figure 4c. It is seen that the controlling 

displacement on the crosshead, U, was input into the testing system by a computer and was 

successively calibrated by a servo controller according to feedback signals during loading 

(see Figure 4c). The displacement U was applied upward monotonically at a speed less than 1 

mm/min (see Figures 4b and 4c), which was continuously measured by a linear variable 

differential transformer (LVDT) with a resolution of 1 μm, and the beam of the testing 

machine was fixed (see Figures 4a and 4c). The deformation u of a sample was tested by 

using a 1 μm resolution extensometer located on its side (see Figures 4b and 4c). The load 

was monitored by a force sensor with an offset load of 1 kN. Figure 4d shows the input signal 

U and the output curves. Here, it is worth noting that the deformation, u, of a sample 

increases rapidly in the vicinity of catastrophic rupture, which is associated with a jump of 

stress.  

In the present tests, we take advantage of the plane surface of prismatic samples to monitor 

the evolution of a strain field. In order to reduce the stress concentration that may occur at the 

corners of a rock sample, the interface between the sample and the steel platen of the MTS 

testing machine was carefully treated to ensure uniaxial loading. It is shown that rupture 

modes are usually shearing under compression (see Figure 5). 
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In laboratory tests, the loading system consists of a load apparatus and a deformed sample. 

The displacement U of the crosshead of the testing machine includes the deformation of both 

load apparatus and rock sample. The load apparatus is always modeled by an analogous 

“elastic spring” as illustrated in Figure 1. Consequently, the load apparatus accumulates 

substantial elastic energy that, during strain softening after the peak stress, may trigger 

catastrophic rupture of a rock sample. 

As shown in Figure 6, there are two typical rupture modes: catastrophic and gradual 

rupture observed in experiments. At the catastrophic point, the slope of the tangent line of the 

F−u curve is −k (the stiffness of load apparatus, see Figure 6a) [Cook, 1965] and a sudden 

jump appears. If k is larger than the negative value of the minimum slope of the tangent line, 

there is no catastrophic rupture during the loading process, i.e. failure is gradual and the F−u 

curve is continuous without jump (Figure 6b). Therefore, a stiffer or an infinitely rigid test 

apparatus is needed to obtain the complete stress-strain curve of a rock-like material 

[Salamon, 1970; Hudson et al., 1972; Jaeger and Cook, 1979; Hao et al., 2013]. In this paper, 

however, we take advantage of elasticity of the testing machine to represent the surrounding 

and compliant elastic environments, and observe precursors of the response quantity 

(deformation) in the vicinity of a catastrophic point. 
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  Here, the condition of catastrophic rupture in experiments is controlled by two main factors: 

the stiffness ratio between the load apparatus and damage evolution of a specific sample. As 

is known, the lower the stiffness ratio between the testing machine and sample, the more 

catastrophic rupture happens [Cook, 1965; Salamon, 1970; Hao et al., 2007; Hao et al., 2013]. 

Black granite has the largest initial stiffness of 681 kN/mm, which is almost 3 times of the 

testing machine. The initial stiffness (283 kN/mm) of white marble is the lowest one that is 

close to the testing machine. Catastrophic rupture occurs on all granites because of their high 

stiffness. In contrast, only ~10% (14/146) experiments on white marbles lead to catastrophic 

rupture. In the case of yellow marbles, whose stiffness is between white marbles and granites, 

3 in the 26 samples show gradual but not catastrophic rupture. The detailed experimental 

results are provided in Supporting Information. 

 

3. Power-law singularity with changeable exponent 

The rapid increase of the response function R = du/dU ahead of the catastrophic point (see 

Figure 6c) illustrates an acceleration process of deformation. However, R is not divergent in 

gradual failure because of continuous variation of the curve of u versus U. 

To clearly observe the accelerating response of deformation u in the vicinity of a 

catastrophic rupture point, Figure 7 plots the curve of the normalized response function 

R/Rmax versus the normalized residual life (1−U/UF) in a double logarithmic graph for two 

typical samples, where catastrophic rupture occurred. The final linear portion in the double 
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logarithmic curve (see Figure 7) indicates that the acceleration behavior can be well 

described by the power-law relationship (equation (3)). In these two cases, the critical 

power-law exponent βF is equal to −0.63 ± 0.02 for black granite and βF = −0.60 ± 0.01 for 

white marble, respectively. The linear least-squares fitting method is used to fit the value of 

βF. During fitting, the data set is selected according to the best linear correlation and with as 

many data points as possible. Moreover, as shown in Figure 8, the power-law exponent βF 

ranges between −1 and −1/2.  

As a matter of fact, the curve of R/Rmax versus (1−U/UF) in a double logarithmic graph is a 

convex curve nearby the rupture point as shown in Figure 7. In order to examine this 

characteristic, the slope of log10(R/Rmax) versus log10(1−U/UF) is calculated in terms of a 

moving fitting window with a fixed number of data points as determined in fitting βF (see 

Figure 9a) for individual sample. A series values of the slope can be obtained as the window 

approaching to the rupture point. It is seen from Figure 9b that the fitted slope goes across 

−1/2 and decreases monotonically to its lower limit βF when approaching to catastrophic 

rupture. Clearly, this monotonically decreasing trend of the slope shows the convexity of the 

double logarithmic curve and provides us a hint to look for an approach to forecast 

catastrophic rupture. 
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4. Prediction of catastrophic rupture 

4.1 Variation of reduced exponent 

It should be mentioned that the exponent βF in equation (3) is unknown before catastrophic 

rupture. The fitted process and results described in Section 3 are a retrospective analysis 

based on the known value of the rupture point UF. In practice, however, to predict UF 

beforehand by using an available data set of R(U) is really what we need. For the sake of 

prediction, we rewrite the response function R(U) by substituting the unknown real UF with 

the real-time sampling endpoint Ut in equation (3) as the available data set of R(U) from a 

certain moment, that is 

    1 t

t tR U B U U


  , (4) 

where Bt and reduced exponent βt are parameters corresponding to the displacement Ut at 

time t. In the actual sampling process, only the data up to t is captured and beyond which they 

are unavailable. Based on equation (4), the reduced exponent βt can be fitted by the data in 

the vicinity of individual Ut. Then, as Ut approaching to UF, we can get a series values of βt. It 

is worth noting that, however, βt is different from the evolving slope in Figure 9, which is 

fitted with moving windows based on equation (3). Here, it is obvious that βt = βF when Ut = 

UF. It is found that the reduced exponent βt decreases to βF as Ut approaching to UF (Figure 

10). Moreover, it goes across −1/2 before rupture. This variation of the reduced exponent βt 

with the real-time extended endpoint Ut, together with the lowest value of power-law 

exponent (i.e., βF = −1), gives us a guide to estimate the upper bound of UF based on the 
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real-time available data set before catastrophic rupture. 

 

4.2 The upper bound of rupture point 

To illustrate how to make a practical prediction of catastrophic rupture, let us rewrite 

equation (4) as 

    1 t

tR U C U U


  , (5) 

where 
1 t

t tC B U


  is a constant. It indicates that the function  1 tR U


 should present a 

linear relationship with U and 1
0tR


  when U = Ut. 

Since βt decreases monotonically to βF and the lowest value of βF is −1, the upper bound of 

UF (denoted as FU ) can be obtained, based on the same data set ended at Ut by substituting βt 

with −1 in  1 tR U


. As what we did for the case with βt, the function  1R U
 is calculated 

based on the same data set used in fitting βt and then the linear fitted result of  1R U
 can be 

obtained. Furthermore, FU  is determined by extrapolating the linear fitting of  1R U
 to 

zero. Therefore, the real rupture point UF is constrained in the range of F,tU U 
  . 

To demonstrate the process and results, three successive stages with three data sets ended 

at different Ut for a white marble sample are illustrated in Figure 11. It is shown that 1 tR
  

does vary linearly with U but R−1 varies a bit concavely, where βt is the fitted exponent by 

equation (4) and the data up to Ut. So, these two curves of 1 tR
  and R−1 are the envelopes of 

the curve F1R  . The curve of 1 tR
  has the same intersection point Ut at the abscissa, which 

provides a lower bound of UF. Moreover, the intersection extrapolated from the linear fitting 

of  1R U
 with the abscissa gives an upper bound FU . It is seen that FU  consistently 
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converges to UF (see Figure 11 and red circles in Figure 12) and the range of F,tU U 
   

becomes narrower as Ut approaching to the real rupture point. 

  The number of data points used for the above predictions are fixed as the same as that used 

in fitting βF. As shown in Figure 11, this leads to that R−1 varies concavely. Thus, an 

alternative method that the linear fitting can be performed according to the best linear 

correlation of the final approximate linear part of R−1 versus U up to individual Ut. The 

predicted value    
  of UF is determined as the intersection with the abscissa axis, by linearly 

extrapolating the fitted straight line to zero. It is seen from Figure 12 that this method gives a 

more accurate prediction. Based on these estimations of    
 , the value of βF can be 

accordingly estimated (see Figure 12d) by using equation (3). 

 

5. Discussion 

5.1 Energy criterion for catastrophic rupture and its kinematic counterpart 

The above reported tests can be illustrated as an elastic system consisting of a sample and 

an elastic testing machine with the spring constant k in series (see Figure 13). Thus, the 

displacement U of the crosshead of the testing machine is the combination of the deformation 

u of the deformed sample and ue of the load apparatus, that is 

  eU u u u F u k    , (6) 

where k is the stiffness of the load apparatus. Derivatives of both sides of equation (6) gives 

that 
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 

 
 

1
1

1
, 2

nn

n n

dF udU

du k du

dF ud U
n

du k du


 



  


. (7) 

This means that all n  2 order derivatives of U(u) and F(u) with respect to u are the same 

except for a constant k. Therefore, all discussion on force F(u) can be replaced with U(u), 

which is more easily measured in geo-field as well as in laboratory. 

At the catastrophic point, the energy release made by the elastic load apparatus is able to 

compensate the required dissipative energy needed in the deformed sample without the input 

of external work [Cook, 1965; Salamon, 1970; Hao et al., 2007; Hao et al., 2010], that is 

 0dW  , (8) 

where dW is an increment of external work. This energy criterion for catastrophic rupture can 

be rewritten as 

     0edW F dU F du du F du dF k         . (9) 

Then, the catastrophic rupture point can be decided by 

 
 

F

dF u
k

du
  . (10) 

[Cook, 1965; Salamon, 1970; Hao et al., 2007; Hao et al., 2010]. Geometrically, this form of 

energy criterion can be interpreted by the tangency of the force-displacement curve F(u) 

through an elastic straight line with the slope of negative stiffness −k at the rupture point (see 

Figure 13). In fact, if a rupture process follows a straight line with the slope −k, it always 

yields the energy criterion dW = 0, namely, self-sustained rupture. 
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Substituting equation (7) into equation (10), we can get the kinematic counterpart of the 

energy criterion for catastrophic rupture, that is 

 
F

0
dU

du
 , or 

F
F

du
R

dU
   . (11) 

Therefore, the tangency of the force-displacement curve F(u) with the elastic straight line 

(equation (10)) converts to the tangency of the curve u(U) with the straight line of U = UF 

(equation (11)) at the rupture point. Consequently, the energy criterion of catastrophic rupture 

governs the singularity of the response function R at a catastrophic point. 

In laboratory tests, it is convenient to monitor both the temporal evolution of stored energy 

in the load apparatus by measuring (U−u), and the response R (the force-displacement curve 

that illustrates the state of rock samples). However, it is worth noting that, in nature and 

practical engineering, fault rupture or instability is much more complex than such a 

simplified system. It should be also mentioned that the behavior discussed here is of 

catastrophic rupture and very different from the well-defined „critical‟ one of phase 

transformation in statistical physics. 

 

5.2 The range of power-law exponent and its physical implication 

Since dU/du = 0 at the rupture point UF (equation (11)), the relationship between (1−U/UF) 

and (1−u/uF) can be approximated by a power function with  > 1 in the vicinity of the 

catastrophic point, that is 

    F 0 F1 1U U B u u


    (12) 
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or 

 0y B x , (13) 

where B0 and λ are two parameters, x = (1−u/uF), and y = (1−U/UF), respectively (see Figure 

14a). Here, uF represents the response quantity u at the catastrophic point. Then, 

  F

F F1R du dU B U U


    (equation (3)) can be deduced with  F F F 0B u U B  and 

F

1 1
1

2



    . 

As shown in Figure 13 and Figure 14a, the curves of F(u) and u(U) exhibit a finite 

curvature at the rupture point (x = y = 0). Thus, we have  ≥ 2 (see Figure 14b). The result of 

 = 2 (namely, F

1 1
1

2



    ) can be derived in terms of series expansion [Jin et al., 2012]. 

In series expansion, the first term of the series equals to zero due to energy criterion and the 

other order terms higher than the second one are omitted. Thus, the range of  being  2,  

leads βF to fall into  1, 1 2   (see Figure 14c). This is consistent with the experimental 

results in Figure 8. 

According to equation (7), the tangency of U(u) to the straight line U = UF has the same 

n-th order contact [Porteous, 2001] as the tangent of F(u) and the corresponding straight line 

with the slope −k. Thus, the variation of  (or βF) is a reflection of the higher-order behavior 

of the loading curve nearby the rupture point. However, the energy criterion for catastrophic 

rupture is only a constraint on the first order derivative of the loading curve (equations (7) 

and (10)). Moreover, the variation of  → ∞ (or βF → −1) indicates the closeness between the 

loading curve F(u) and the straight line with the slope −k near the rupture point (see Figure 
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13 and Figure 14b). The greater  (i.e., the closer to its lowest value −1 of the power-law 

exponent βF), the closer to the rupture process without work input the loading process 

becomes. That is, the changeable power-law exponent βF represents different-order contact to 

a catastrophic rupture process without external work input. 

 

6. Conclusions 

In the present experiments of granites and marbles under quasi-static uniaxial and 

unconfined compression, the power-law exponent of the response function at catastrophic 

rupture ranges from −1/2 to −1. This is verified by an analytical discussion based on a 

smoothly continuous model. Essentially, the power-law singularity is governed by the energy 

criterion and can be interpreted with a power function approximation. It is also demonstrated 

that, as the exponent is close to its lowest value −1, rocks are prone to catastrophic rupture 

without work input. 

Practically, the reduced power-law exponent fitted with the real-time extended endpoint of 

sampling data set goes across −1/2 and decreases monotonically to its lower limit βF in the 

vicinity of the catastrophic rupture point. Based on this relationship and the lowest value of 

the power-law exponent (−1), there is a constraint to the upper bound of the catastrophic 

rupture point UF. This predicted upper bound together with the real-time sampling data set 

constitutes a predictive interval. With the extension of the sampling data set, the predicted 

interval becomes narrower and the predicted upper bound moves toward UF. This approach 
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provides an unceasingly improving prediction of catastrophic rupture in real-time. 
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Figure 1. Schematic illustration of a system consisting of a load apparatus and a sample in 

series. 
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Figure 2. Illustration of a linear extrapolation to predict the failure time, which is the 

intersection point by extrapolating the best-fitting line of R−1 to the U-axis. 
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Figure 3. Optical microscope images of (a) an ordinary granite, (b) a black granite, (c) a 

white marble, and (d) a yellow marble before loading. 
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Figure 4. (a) The testing equipment (MTS810 testing system) for uniaxial compression tests 

and (b) its platens and extensometer, where U is the controlling displacement. (c) Schematic 

illustration of the testing and acquisition system. (d) The experimental protocol to illustrate 

the change of displacement, deformation and stress of a sample versus time. 
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Figure 5. Typical rupture modes of tested samples of (a-c) marble and (d-h) granite. 
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Figure 6. Differences of two typical rupture modes: catastrophic and gradual rupture. The 

different curves of F−U and F−u in samples with catastrophic rupture (a) but gradual failure 

(b). Additionally, (c) the singular trend of u−U and R−U before catastrophic rupture.  
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Figure 7. Power-law singularity of the normalized response function R/Rmax for (a) a black 

granite and (b) a white marble, where Rmax represents the maximum value of R at the rupture 

point. 
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Figure 8. The range of the power-law exponent βF. Each kind of symbols represents a 

specific kind of samples. Color represents different values of the slope in the vicinity of 

failure (i.e., βF) that ranges between −1 and −1/2.  
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Figure 9. An example of a white marble in Figure 6b to show the fitting process and results 

of the slope by using a moving fitting window. (a) The fitting process with a moving window 

and (b) the fitted results and error bars of the slope of log10(R/Rmax) versus log10(1−U/UF) by 

using a moving fitting window with a fixed number of data points inside. 
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Figure 10. The reduced exponent βt decreases to βF as Ut approaching to UF (five marble 

samples). 
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Figure 11. Predicted rupture point FU  and its update in real-time for a white marble. (a) Ut = 

0.237 mm, βt = −0.50, and F 0.256 mmU  . (b) Ut = 0.238 mm, βt = −0.61, and 

F 0.241 mmU  . (c) Ut = UF = 0.239 mm, βt = βF = −0.84, and FU  = 0.239 mm. In 

comparison, the experimentally observed UF is shown by a vertical black solid line. The 

black solid circles denote  1 tR U


 based on data set ended at Ut and the red ones are 

 1R U
. (d) The values of Ut used for prediction marked on the curves of u−U and R−U. 
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Figure 12. The predicted results by using the approximate linear part of R−1. Two predicted 

results in the time sequence of (a) Ut = 0.229 mm and (b) Ut = 0.237 mm. (c) The comparison 

of two predicted results of UF by using the method mentioned here (circle) and that in Figure 

10 (square), respectively. (d) F   estimated by using equation (3) and the predicted values of 

UF shown by circles in Figure 11c. 
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Figure 13. Schematic diagram showing the energy criterion (equation (10)) for catastrophic 

rupture, where inset is a simplified model of the sample and load apparatus in series. 
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Figure 14. Illustration of a power function approximation in the vicinity of the catastrophic 

point (x = y = 0). (a) Evolution of the normalized deformation u/uF versus the normalized 

displacement U/UF of a sample. (b) Variation of y = (1−U/UF) versus x = (1−u/uF) with 

different values of exponent , and (c) the relationship between log10(R/Rmax) and 

log10(1−U/UF) with βF ( = 1/−1).  

  



 

 

© 2018 American Geophysical Union. All rights reserved. 

Table 1. Parameters of two kinds of samples, where the values in parentheses represent the 

number of samples subjecting to catastrophic rupture. 

 

Sample Total number Sample size (mm3) 
Initial stiffness 

 (kN/mm) 
Density (kg/m3) 

Black granite 21 (21) 16×18×40  681 3081.6 

Ordinary granite 59 (59) 20×15×40 398 2625.0 

Yellow marble 26 (23) 16×18×40 361 2534.7 

White marble 146 (14) 20×20×40 283 2867.2 

 

 


