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Introduction

Chemotaxis, or directed movement, of a eukaryotic 
cell toward the source of chemoattractant (hereafter 
shorted as CA), i.e. cAMP for Dictyostelium or 
fMLP for neutrophils, play an essential role in many 
pathophysiological processes (Parent 2004, Bagorda 
and Parent 2008). During embryogenesis, axons are 
steered by nerve growth factors to form the nervous 
system (Ruthel and Banker 2015). In immune 
responses, neutrophils are directed to the correct 
locations, and they kill the debris (Oliveira et al 2016). 
Chemotaxis is also central to wound healing and 
is implicated in tumor metastasis (Zimmermann 
2017). For efficient movement, cells must sense the 

difference in CA concentration between its two ends, 
initiate the appropriate intracellular signaling cascade 
to mediate cytoskeletal remodeling and finally, form 
the well-defined front and rear regions (Devreotes and 
Janetopoulos 2003, Dalous et al 2008). At the front, the 
assembly of cytoskeletal actin propels the protrusion 
(Cai and Devreotes 2011). At the opposite side, 
actomyosin contracts and pulls up the rear (Parent 
2004). Clearly, cells should be able to reverse their 
polarity for efficient targeting to the new source of CA 
(Gerisch and Keller 1981). That is, when a polarized 
cell is exposed to a sufficiently high CA gradient from 
the opposite direction, its initial front region could 
be reorganized transiently as the rear region and vice 
versa. Thus, understanding the dynamics of eukaryotic 
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Abstract
Directed movement of eukaryotic cells toward spatiotemporally varied chemotactic stimuli enables 
rapid intracellular signaling responses. While macroscopic cellular manifestation is shaped by 
balancing external stimuli strength with finite internal delays, the organizing principles of the 
underlying molecular mechanisms remain to be clarified. Here, we developed a novel modeling 
framework based on a simple seesaw mechanism to elucidate how cells repeatedly reverse polarity. As 
a key feature of the modeling, the bottom module of bidirectional molecular transport is successively 
controlled by three upstream modules of signal reception, initial signal processing, and Rho GTPase 
regulation. Our simulations indicated that an isotropic cell is polarized in response to a graded input 
signal. By applying a reversal gradient to a chemoattractant signal, lamellipod-specific molecules 
(i.e. PIP3 and PI3K) disappear, first from the cell front, and then they redistribute at the opposite 
side, whereas functional molecules at the rear of the cell (i.e. PIP2 and PTEN) act oppositely. In 
particular, the model cell exhibits a seesaw-like spatiotemporal pattern for the establishment of front 
and rear and interconversion, consistent with those related experimental observations. Increasing 
the switching frequency of the chemotactic gradient causes the cell to stay in a trapped state, further 
supporting the proposed dynamics of eukaryotic chemotaxis with the underlying cytoskeletal 
remodeling.
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chemotaxis is integral to elucidate biochemically 
induced cell movement.

In the past two decades, much progress, par
ticularly with Dictyostelium and neutrophils, has been 
made by identifying additional components of the 
chemotactic pathways related to cytoskeletal remod-
eling (Ridley et al 2003, Parent 2004). The dynamic 
features of eukaryotic chemotaxis are a consequence 
of redistribution of intracellular signaling molecules; 
that is, the regions rich in Rac, Cdc42, PIP3 are associ-
ated with actin branching and growth, while those rich 
in RhoA, PIP2, and PTEN are correlated with myosin-
II-induced contraction (Gardiner et  al 2002, Kolsch 
et al 2008, Pramanik et al 2009). As the time scale of 
intracellular signaling responses is likely to be much 
shorter than those of gene expression and protein syn-
thesis, spatiotemporal regulation of signaling path-
ways have become more interesting, especially when 
testing how cells effectively respond to spatiotempo-
rally varied biochemical stimuli (Gardiner et al 2002). 
Experimentally, state-of-the-art techniques, such as 
microfabrication and in vivo imaging, have greatly 
facilitated quantitative analyses of intracellular signal-
ing responses. For example, a microfluidic device can 
generate the precisely controlled gradient of extracel-
lular CA (Ebrahimzadeh et al 2000, Meier et al 2011). 
Single-molecule imaging using fluorescent proteins 
enables highly sensitive quantification of cellular 
responses and cytoskeletal remodeling by simultane-
ously monitoring the spatiotemporal distribution of 
typical intracellular molecules (Ueda et al 2001, Sako 
et al 2012). Despite the different eukaryotic cell types 
used in those experiments (Weiner 2002, Dalous et al 
2008), the dynamics of cellular chemotaxis are similar 
and can be summarized as follows. (1) Adaptive: the 
cells can sense a small difference in CA concentration 
between the front and rear regions over a wide range of 
mean concentrations (Parent 1999, Chen et al 2003). 
(2) Rapid: the cells generate the initial polarization 
in approximately 1–2 min (Weiner 2002). (3) All-or-
none: the cells usually have one major pseudopod at 
a time (Dalous et al 2008). (4) Tunable: the cells con-
tinually adjust their polarized direction in response 
to new stimuli (Gerisch and Keller 1981, Dalous et al 
2008). These four features are a prerequisite for a cell to 
undergo dynamic chemotaxis and should be included 
in a universal framework with the known signaling 
pathways.

Various mathematical models have been proposed 
to explore different mechanisms involved in intracel-
lular signaling responses of chemotactic cells (Devre-
otes and Janetopoulos 2003, Iglesias and Devreotes 
2008, Vanderlei et al 2011). The earliest turning-type 
model argues that the stable pattern of eukaryotic 
chemotaxis may arise if there is autocatalytic local pro-
duction of a slow diffusive activator that also causes 
the production of a fast diffusive inhibitor (Meinhardt 
1999). This model suggests symmetry breaks at the cel-
lular scale with multiple activated regions; hence, the 

activation is not restricted to the front region. In addi-
tion, the model cell cannot change the direction of its 
polarity in response to a new stimulus, such that the 
entire system exhibits a ‘lock-on’ state. Several sub-
sequent models have been developed based on a local 
excitation-global inhibition (LEGI) principle (Parent 
1999, Ma et al 2004). In a basic LEGI model (Parent 
1999), receptor occupancy triggers a fast, local excita-
tory signal and a slow, global inhibitory signal. At the 
cell front, the concentration of the activator is greater 
than the inhibitor and vice versa at the rear. Likewise, 
a balanced-inactivation model was also developed by 
considering two second messengers produced at equal 
rates (Levine et al 2006). The diffusion of one messen-
ger, coupled with an inactivation scheme, ensures a 
switch-like response to external gradients over a wide 
range of mean concentrations. Lacking in these two 
models, however, are mechanisms of the role of actin-
dependent pathways in regulating eukaryotic chemot-
axis. To address these issues, an additional model was 
established based on a LEGI-biased excitable network 
hypothesis, where the LEGI scheme serves as an input 
to the downstream biochemical network that controls 
cytoskeletal activity (Xiong et al 2010). Unfortunately, 
these models do not account for stable polarity due to 
the difficulties in assigning polarity-specific comp
onents. Additionally, an antagonizing pathway model 
proposes that external stimuli activate two divergent 
pathways that mutually inhibit one another via inter-
action with the actin cytoskeleton (Onsum and Rao 
2005), which can correctly localize and stabilize spe-
cific proteins to the respective front and rear regions 
of the cell. It also predicts that the cell slowly rotates 
its original pseudopods in response to a secondary 
reversal signal and simultaneously forms two pseudo-
pods in response to a pair of stimuli, which does not 
agree with the experimental observations. Our previ-
ous work on the bidirectional molecular transport 
mechanism (Feng and Zhu 2014), in which the Rho 
GTPase-PIs feedback loops (PIs denote to PIP3 and 
PIP2 hereafter) are employed and the cell is treated as 
an intracellular and intra-membrane signal feedback 
system, has ignored the F-actin-independent path-
way for simplicity. Finally, one more set of models 
was established by relying on the wave-pinning (WP) 
mechanism (Mori et  al 2008, Walther et  al 2012); 
namely, the evolution of a decelerating front is elicited 
by a transient and localized stimulus that becomes sta-
tionary due to overall mass conservation. Consider-
ing that the WP mechanism crucially depends on the 
exchange between active and inactive forms of signal-
ing molecules with unequal diffusive rates, it is only 
suitable to describe the spatiotemporal evolution of 
Rho GTPases, not PIs, even though the latter could bet-
ter represent the dynamics of cytoskeletal remodeling. 
Thus, universal models must be developed to unravel 
how signaling molecules form a polarized distribution 
to initiate the dynamic chemotaxis of a cell and then 
respond to a reversal CA stimulus.

Phys. Biol. 15 (2018) 056004
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Here we present a multi-modular modeling 
framework for eukaryotic chemotaxis. Numerical simu-
lations were designed to interpret a group of distinct but 
interrelated experimental observations, including ini-
tial polarization, reversal polarization, cell trapping, and 
cell mutation. Our modeling indicated that intracellular 
signaling responses with chemotactic pathways act as a 
bidirectional molecular transportation system controlled 
by a spatial gradient of active Rho GTPases that are trans-
duced from the external signaling field. Physically, this 
prediction supports a surprisingly simple seesaw-like 
regulatory mechanism between the cell front and rear.

Biological backgrounds

Our modeling began by understanding that the 
primary components of chemotactic pathways among 
different kinds of eukaryotic cells are highly conserved, 
and signaling cascades are dominated by distinct 
mechanisms at different signaling layers (modules). 
As mentioned in our earlier work (Feng and Zhu 
2014), four modules were applied, including signal 
reception (I), initial signal processing (II), small Rho 
GTPase regulation (III), and bidirectional molecular 
transport (IV). We propose a brief modeling strategy 
(figure 1(a)) and describe detailed descriptions of the 
molecular mechanisms involved in each module.

Signal reception
Cells sense the CA using transmembrane receptors (i.e. 
G protein-coupled receptors (GPCR)). The GPCRs are 
uniformly distributed along the plasma membrane 

(Parent 1999, Ridley et  al 2003), which serves as an 
important regulator for cells to accurately sense the 
change in extracellular gradients.

Initial signal processing
The cascades between heterotrimeric G proteins (α, 
β, and γ) and F-actin independent signaling provide 
the initial amplification of sensed extracellular signals 
and adaptation mechanisms (Parent 2004, Stephens 
et al 2008). Upon CA binding to GPCRs, GTP can be 
exchanged for GDP on Gα subunits, leading to the 
dissociation of the G protein into Gα and Gβγ subunits 
(Onsum and Rao 2005). The released Gβγ subunits 
then stimulate a membrane-bound pool of PI3K in 
a Ras-dependent manner, while the Gα subunit is 
required for terminating Gβγ activity (Sasaki et al 2007, 
Van Haastert and Devreotes 2004). The total amounts 
of Gα and Gβγ are exactly the same, an essential 
requirement for achieving perfect adaptation.

Small Rho GTPase regulation
Rho-family small GTPases serve as central hubs in 
transducing signals from extracellular CA to the 
actin cytoskeleton (Raftopoulou and Hall 2004). The 
Rho GTPases are switch-like proteins that are cycled 
between active membrane-bound (GTP) forms and 
inactive cytosolic (GDP) forms (Raftopoulou and Hall 
2004, Jilkine et al 2007). Activation of Rho GTPase is 
mediated by guanine exchange factors (GEFs) and 
inactivated by GTPase activating proteins (GAPs), 
while translocation of Rho GTPase from the membrane 
to cytosol is regulated by GDP dissociation inhibitors 

Figure 1.  Model components and implantation. (a) Proposed signaling cascades. Here the cascades responsible for eukaryotic 
chemotaxis are reorganized into four modules. (I) Signal reception module: the cell senses the attractant molecules CA via GPCRs. 
(II) Initial signal processing module: G protein dissociates into Gα and Gβγ subunits, which trigger a fast activation response and 
slower inhibition response. (III) Rho GTPase regulation module: spatial regulation of Rho GTPase members (Rac, Cdc42, and 
RhoA) is achieved by the localization of GEFs and the antagonistic effects between them. (IV) Bidirectional molecular transport 
module: spatial effects generated from Rho GTPase-PIs feedback loops control the bidirectional cytoskeletal remodeling. Curved 
solid and dashed arrows indicate the positive and negative feedback loops, respectively, and the insert illustrates the principle of 
our modeling. Here, a simple seesaw principle is used to demonstrate the core of the bidirectional molecular transport mechanism. 
That is, if the molecular transport toward one direction is enhanced compared to the opposite direction, the system would finally 
achieve an all-or-none response. Curved arrows in the insert illustrate the roles of upstreaming modules for controlling the positive 
direction of molecular transport. For initial polarization, the required directional cue is relative weak (depicted by fine arrows); 
for reversal polarization, the required directional cue from the opposite direction is strong (depicted by bold arrows). (b) Lattice–
Boltzmann method for implementing the model. The geometry of the cell is modeled as a cycle structure. The whole computation 
domain is meshed by a D2Q9 lattice. The purple, red, and green lattices are specified as extracellular, membrane, and cytoplasm, 
respectively, and the molecular diffusion coefficients are specified as Df, Dc, and Dm, respectively.
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(GDIs) (Raftopoulou and Hall 2004, Holmes et al 2012). 
Besides the self-regulation of each Rho-family member, 
there is considerable cross-talk between different 
members of the Rho-family (Jilkine et al 2007). Cdc42 
is considered to serve as the upstream signal of Rac, 
while RhoA has mutual inhibitory interactions with 
Cdc42 and Rac (Gambardella and Vermeren 2013). The 
CA-induced spatial regulation of Rho GTPase could 
be initiated by Gα and Gβγ. For example, Gα activates 
specific Rho GEFs via PDZ-GEF/Lsc1 (Fenteany and 
Glogauer 2004), and Gβγ binds to p21-activated kinase 
1 (PAK1) and then activates Cdc42 via PAK-associated 
GEF (PIXα) (Gambardella and Vermeren 2013).

Bidirectional molecular transport
Once the gradient of active Rho-family GTPase is 
established, the spatial distributions generated by 

Rho GTPase and PIs tend to mediate positive/negative 
feedback loops (Weiner et al 2002, Charest and Firtel 
2006), which drive bidirectional molecular transport. 
Intracellular transport of signaling molecules may 
orchestrate the localization of actin regulators and 
myosin activators, both of which are directly related 
to force generation mechanisms (Charest and Firtel 
2006, Rottner and Stradal 2011).

Protrusive front region with highly active Cdc42/Rac
A role for small Rho GTPases in a self-organizing 
feedback loop of actin-PI3K-PIP3 was proposed 
based on observations that latrunculin treatment and 
pharmacological inhibition of PI3K or Rho GTPases 
significantly blocks PIP3 accumulation (Charest and 
Firtel 2006). Concretely, active Cdc42/Rac molecules 
interact with various actin-binding proteins (ABPs), 

Table 1.  Parameter estimates relevant to four modules of modeling.

Parameter Description Value Sources

Df , Dc, Dm Diffusion coefficients for extra-

cellular, cytosolic, membrane 

species 

50, 10, 1 µm2 s−1 Korlach et al (1999) and Arrio-Dupont et al (2000)

K Diminution rate of CA 1 s−1 Postma et al (2001)

GR Total number of GPCR 80 000 Ueda et al (2001) and Rappel and Levine (2008)

k− Dissociation rate 1 s−1 Janssens and Van Haastert (1987) and Rappel and 

Levine (2008)

k+ Association rate 30 nM−1 s−1 Janssens and Van Haastert (1987) and Rappel and 

Levine (2008)

δA, δI Diminution rates of activator, 

inhibitor
0.2, 0.2 s−1 Levine et al (2006)

kAI Inactivation rate between acti-

vator and inhibitor
100 µm (s · molecule)−1 Levine et al (2006)

kS Production rate of activator 

and inhibitor
1, 1 s−1 Levine et al (2006)

kI Association rate of inhibitor 3 nM−1 s−1 Levine et al (2006)

Rtot, Ctot, ρtot Total levels of Rac, Cdc42, 

RhoA 

7.5, 3, 3 µM Michaelson et al (2001) and Jilkine et al (2007)

Rb, Cb, ρb Typical basal levels of active 

Rac, Cdc42, RhoA

3, 2.4, 1.25 µM Maree et al (2006) and Maree et al (2012)

δR, δC, δρ Basal decay rates of active Rac, 

Cdc42, RhoA
1, 1, 1 s−1 Zhang and Zheng (1998), Jilkine et al (2007) and Maree 

et al (2012)

IR, IC, Iρ Baseline activation rates of Rac, 

Cdc42, RhoA
0.4, 0.8, 0.4 s−1 Maree et al (2006)

β, τ Ecific GEF-dependent Cdc42, 

RhoA activation rates
3, 3 s−1 Sakumura et al (2005)

α Cdc42-dependent Rac 

activation rate
1 µm (s · molecule)−1 Otsuji et al (2007)

ε Cdc42 and RhoA inactivation 

rate
1 µm (s · molecule)−1 Otsuji et al (2007)

γ RhoA-dependent Rac 

inactivation rate
1 µm (s · molecule)−1 Otsuji et al (2007)

P2b, P3b Basal levels of PIP2, PIP3 10, 0.45 µM Ma et al (2004) and Maree et al (2012)

KPI3K
M , KPTEN

M
PIP3 and PIP2 level for 

half-max PI3K, PTEN feedback

8, 8µM Estimated

kPI3K
cat , kPTEN

cat
Enzymatic rates per active 

PI3K, PTEN 
4, 4 s−1 Estimated

Rmax, ρmax Activity constants of Rac, RhoA 4, 1 µM Estimated

Phys. Biol. 15 (2018) 056004
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such as SCAR/WASP and Arp2/3 complex, which 
initiates F-actin polymerization (Parent 2004). During 
this process, PI3K is recruited from the cytosol to the 
membrane and catalyzes the phosphorylation of PIP2 
to produce PIP3 (Stephens et al 2002, Van Haastert and 
Devreotes 2004). PIP3 molecules then act as binding 
sites for various ABPs, which in turn promote F-actin 
polymerization and lead to the further membrane 
recruitment of PI3K and the repetition of the cycle (Sasaki 
et al 2007). The barbed ends of actin filaments proliferate 
by Arp2/3-mediated branching, extending until they 
reach the membrane and then exerting protrusion forces 
against the membrane (Rottner and Stradal 2011).

Rear region with highly active RhoA
Active RhoA molecules interact with 
phosphatidylinositol phosphatase (PTEN) (Li et  al 
2005), which is recruited from the cytosol to the 
membrane by PIP2 (Sulis 2003). In its active form, PTEN 
antagonizes the action of PI3K by converting PIP3 to PIP2 
(Weiner et al 2002, Sulis 2003, Billadeau 2008). Myosin-
II is colocalized with PTEN, and its activity is regulated 
by myosin light-chain (MLC) phosphorylation, which 
is positively regulated by MLC kinase (MLCK) or Rho-
associated kinase (ROCK) (Van Haastert and Devreotes 
2004, Besser and Schwarz 2007). Consequently, 
actomyosin contracts and pulls up the rear.

Theoretical modeling

Consider that a cell is placed at a shallow CA filed, and 
only the contour membrane of the cell is assumed to 
sense the biochemical stimuli (figure 1(b)). By focusing 
on the spatiotemporal regulations of intracellular 
signal cascades, the structural elements inside the cell 
body are ignored, and the lamellipodium is treated as 
a cylindrical disk, with the cytosol as its interior and 
the cell membrane/cortex as its perimeter. There are 
different diffusive coefficients for molecular diffusion at 
extracellular regimes, the cytoplasm, and membranes, 
given as Df  =  50, Dc  =  10, and Dm  =  1 µm2 · s−1, 
respectively (table 1). Basic equations, derived from the 
above biochemical scheme (figure 1(a)), consist of a set 
of coupled partial differential equations  (PDEs) that 
describe the reaction kinetics, cross-talk, diffusivity, and 
communication between the intermediate products. 
The translocation behaviors of those signaling molecules 
between the membrane and the cytosol are modeled in 
distinct ways. Proteins such as PI3K, PTEN, PAK1, and 
Lsc1, with limited amounts, are treated by a stochastic 
kinetics approach. In view of fast diffusion and a 
sufficient amount, the inactive cytosolic or GDP forms of 
Rho GTPase are assumed to be uniformly distributed in 

the cytosol and then calculated by the conservation law.

Basic equations
In this subsection, the equations  and parameters 
are summarized for our modeling. Implementation 
decisions and simplifying assumptions are also discussed.

Signal reception
Diffusion and diminution of CA molecules were 
modeled by the reaction-diffusion equation, with 
corresponding initial and boundary conditions,

∂S

∂t
= Df∇2S − KS,� (1a)

S(x, y, t) = S0, for x ∈ [x1, x2] , y ∈ [y1, y2] ,

S(x, y, 0) = 0, for x /∈ [x1, x2] , y /∈ [x1, y2] ,

S(X, Y , t) = 0,
� (1b)

where S, Df, and K are the concentration, diffusive 
coefficient, and diminution rate of CA molecules, 
respectively.x ∈ [x1, x2] and y ∈ [y1, y2] define the 
domain of the point source, where the concentration 
of CA equals S0. X and Y represent the boundary of the 
CA field. The binding kinetics of the CA molecules (as 
ligands) to the GPCRs (as receptors) are described by 
the following reaction equation,

R + L
k+
�
k−

RL� (2)

where R, L, RL, k+ and k− represent receptor, ligand, 
complex, association rate, and dissociation rate, 
respectively.

Initial signal processing
The input CA signals need to be further translated into 
an intracellular asymmetry of signaling molecules. 
Here, we used a balance-inactivation mechanism to 
mimic this process (Levine et al 2006). The original 
mechanism proposed previously involves three 
interacting steps. First, the local level of receptor 
occupancy ([RL]) drives the production of a 
membrane-bound species A and a cytosolic species 
I at equal rates, ks. Second, the cytosolic species 
diffuses inside the cell and attaches to the membrane 
at a rate kI, where the membrane-anchored species I is 
denoted as Im for our modeling. Finally, both species 
A and Im inactivate each other with a rate ki, and also 
A and Im spontaneously degrade at the rates δA and δI 
respectively, which was used to mimic their biologic 
antagonism. The evolution dynamics of A, I and Im are 
described as follows:

∂A

∂t
= Dm∇2A + kS[RL]− δAA − kiAIm,� (3a)

∂Im

∂t
= Dm∇2Im + kII − δIIm − kiAIm,� (3b)

∂I

∂t
= Dc∇2I,� (3c)

with a boundary condition,

Dc
∂I

∂n
= kS[RL]− kII.� (3d)

Upon the original balance-inactivation model, the 
abstract component activator A and inhibitor I can 
be identified as Gβγ and Gα, respectively, even though 
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the mechanistic details responsible for their cross-
talk are not explicitly explored. A and Im may initiate 
the downstream Rho GTPase regulation module by 
interacting and/or incorporating with corresponding 
GEF of Rho GTPase via the intermediate messengers. 
In this model, we simply assumed that PAK1 and Lsc1 
bind to the membrane at a rate proportional to the local 
density of A and Im, respectively. The translocating 
behaviors of PAK1 and Lsc1 from the cytosol to the 
membrane are described by the binding reaction 
equation  (equation (2)), where PAK1 and Lsc1 act 
as ligands, while A and Im act as receptors. Because 
the numbers of PAK1 and Lsc1 (similar to PI3K 
and PTEN) are limited and their impacts on system 
behavior are significant, we identified them as effectors. 
Spatiotemporal evolution of cytosolic effectors obeys 
the following standard diffusion equation,

∂Ec

∂t
= Dc∇2Ec,� (4a)

with a boundary condition for the outward pointing 
normal derivative of the cytosolic effectors,

Dc
∂Ec

∂n
= −k+SmEc + k−Mc,� (4b)

where Ec  =  EPAK1, ELsc1, EPI3K, and EPTEN represent 
the cytosolic concentrations of PIXα, Lsc1, PI3K, and 
PTEN, respectively, Mc  =  MPAK1, MLsc1, MPI3K, and 
MPTEN define the membrane-bound concentrations 
of PAK1, Lsc1, PI3K, and PTEN, respectively, and Sm 
denotes the corresponding receptor concentration. 
Converting the concentration (in µM) into the site 
density of molecules (in µm−2) is achieved by applying 
a factor, η  =  100 mM−1 µm−2 (Gerisch and Keller 
1981).

Small Rho GTPase regulation
We considered small Rho GTPases (Rac, Cdc42, 
RhoA) dynamics using a simplified model described 
previously, where mass conservation of various 
signaling components and diffusion-driven instability 
generates their polarized distribution (Otsuji et  al 
2007, Maree et  al 2012). We assumed that each 
member of Rho GTPases was cycled between active 
membrane-bound forms and inactive cytosolic forms. 
The interactions among each member of Rho GTPases 
formed double negative feedback loops, as presented 
in the schematic of the Rho GTPases interactions in 
figure  1(a). The spatiotemporal evolution of active 
Rho GTPases is described as follows,

∂G

∂t
= Dm∇2G + PG(

Gi

Gtot
)− ωGG,� (5a)

where G  =  R, C, and ρ represent the active (membrane-
bound) forms of Rac, Cdc42, and RhoA, respectively. 
Gtot  =  Rtot, Ctot, and ρtot are the total concentrations of 
Rac, Cdc42, and RhoA, respectively. Gi  =  Ri, Ci, and ρi 
are the total concentrations of the respective inactive 
(cytosol) forms of Rac, Cdc42, and RhoA, calculated 

by the mass conservation law. PG is the activation term 
and expressed as:

PR = IR + αC, PC = IC + βEC, and Pρ = Iρ + τEρ.
� (5b)

Here IR, IC, and Iρ are the baseline activation rates. α 
sets the rate of Cdc42-enhanced Rac activation, β is 
the rate of GEF-mediated activation of Cdc42, and τ is 
the rate of GEF-mediated activation of RhoA. ωG is the 
inactivation term and expressed as:

ωR = δR + γρ, ωC = δC + ερ, andωρ = δρ + εC.
� (5c)

Here δR, δC, and δρ are the GAP-mediated baseline 
inactivation rates. γ sets the rate of RhoA-mediated 
Rac inactivation, and ε is the mutual inactivation rate 
of Cdc42 and RhoA.

Bidirectional molecular transport
PIP3 and PIP2 are membrane lipids that play 
well-known regulatory roles in the actin-myosin 
cytoskeleton (Stephens et  al 2008). PIP3 provides 
binding sites for various ABPs to promote F-actin 
assembly and, thus, serves as the marker of the front of 
a polarized cell (Kolsch et al 2008). PIP2 offers binding 
sites for myosin-II and, thus, serves as the marker of 
cell rear (Cai and Devreotes 2011). The spatiotemporal 
regulation of PIP3 (P3) and PIP2 (P2) forms the core 
of the bidirectional molecular transport mechanism, 
which is described by the following equations.

∂P3

∂t
=Dm∇2P3 + kPI3K

cat (
MPI3KP2R̃

KPI3K
M + P2

)

− kPTEN
cat (

MPTENP3ρ̃

KPTEN
M + P3

),

�

(6a)

∂P2

∂t
=Dm∇2P2 + kPTEN

cat (
MPTENP3ρ̃

KPTEN
M + P3

)

− kPI3K
cat (

MPI3KP2R̃

KPI3K
M + P2

).

�

(6b)

Here

R̃ = min(
R

Rmax
, 1), ρ̃ = min(

ρ

ρmax
, 1).

In equation (6a), the first term on the right-hand side 
accounts for PIP3 diffusion, the second represents 
PIP3 production due to membrane-bound PI3K 
(MPI3K) acting on PIP2, and the third accounts for 
PIP3 diminution due to membrane-bound PTEN 
(MPTEN) acting on PIP3. The value of kPI3K

cat  (kPTEN
cat ) is 

the maximum enzymatic rate per active PI3K (PTEN) 
molecule. KPI3K

M  (KPTEN
M   ) is the typical level of 

PIP3 (PIP2) that gives half-maximum feedback via 
membrane-bound PI3K (PTEN). ̃R (ρ̃) is a normalized 
factor that defines the effect of Rac (Rho) activity on 
the activation of PI3K (PTEN). Rmax (ρmax) acts as 
a constant for Rac (RhoA) activity. If R̃ (ρ̃) is greater 
than Rmax (ρmax), the activity of Rac (RhoA) is no 
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longer a limiting factor for PI3K (PTEN) activation, 

and then ̃R(ρ̃) equals unity.
Equation (6b) describes PIP2 dynamics. Simi-

larly, the first term on the right accounts for PIP2 dif-
fusion, the second represents the production of PIP2 
from PIP3 via membrane-bound PTEN, and the third 
accounts for the reduction of PIP2 into PIP3 via mem-
brane-bound PI3K. The total amounts of PIP3 and 
PIP2 remain constant over time. PI3K and PTEN act as 
key regulatory proteins of PIP3/PIP2 conversation, and 
both could translocate between the membrane and the 
cytosol by interacting with PIP3 and PIP2, respectively. 
While the active form feeds back onto its own produc-
tion through cooperative binding, such a membrane-
cytosol exchange cycle introduces the strongest feed-
back loop into the system.

Numerical methods
Numerical simulations were conducted with 
our previous work (Feng and Zhu 2014). Briefly, 
equations  (1)–(6) were solved using the Lattice–
Boltzmann method (LBM) within a static cell perimeter, 
in which a simple Monte–Carlo method was embedded 
to treat those stochastic source terms. The LBM 
approach is an auxiliary construct that possesses well-
known computational advantages by using the fixed 
Cartesian meshes and straightforward implementation 
of boundary numerical schemes, allowing a smooth 
interpolation between the interior and exterior of the cell. 
The cell is placed in a regular grid containing 100  ×  250 
grid points and a grid spacing of 0.2 µm. Cell diameter 
is chosen to be 10 µm. A time step of 0.0025 s was used 
to solve the diffusion-reaction equation and implement 
the Monte–Carlo method. Initially, the concentrations 
of all signaling molecules were uniform in the interior 
of a circular domain, representing an unstimulated 
resting cell. All diffusible molecules satisfied the no-flux 
boundary conditions at the cell edge.

Results

Basic features of cell polarization
To assess whether the model represents basic 
experimental observations, we ran the full model 
(equations (1)–(6)) with biologically based parameter 
sets (table 1). The spatial positions of various molecules 
on the membrane were presented using a single variable 
θ, an angle varied between 0 and 2π. To eliminate the 
effect of the initial condition, the model cell underwent 
self-evolution in the absence of external stimuli to 
achieve a resting steady state (data not shown). To 
replicate point source-induced chemotaxis, the model 
cell was first simulated with a graded field formed by 
a CA point source 10 µm away from the cell for 200 s, 
followed by instantaneously switching the same 
point source to the opposite side at the location 5 µm 
away from the cell at t  =  200 s for an additional 300 s 
thereafter. Except for the graded external stimulus, no 
front or rear regions of the cell were defined prior to the 

simulations. The spatiotemporal distributions of the 
integral molecule are shown in figure 2.

Initial graded stimulus period
After the initial introduction of the CA point source, 
the diffusion of CA molecules creates a concentration 
gradient around the cell perimeter (figure 2(a)). 
This steady-state CA field is established relatively 
fast, in less than 5 s, with an average concentration of 
approximately 1 nM and a gradient of 14.3  ×  10−2 nM 
µm−1. As a result of the high and fast dissociation rate 
of this binding event, the extracellular gradient of CA 
ligands is spatially mirrored by the graded occupancy 
of GPCRs (figure 2(b), blue line). The asymmetry in 
GPCR occupancy is spatially amplified by the fast signal 
processing process. The nascent, uniform front and 
rear regions are now marked by the accumulated Gβγ 
and Gα, respectively (figure S1(a) and (b) (stacks.iop.
org/PhysBio/15/056004/mmedia)), with no signifi-  
cant functional difference. The accumulation of 
Gβγ and Gα introduces a local perturbation in Rho 
GTPase regulation by downregulating PAK1 and Lsc1 
(figure S1(c) and (d)), respectively. Together with the 
mutual inhibition effects between RhoA and Cdc42, 
the stimuli-biased distributions of Cdc42 and RhoA 
are established (figures 2(c) and (d)). The reciprocal 
localization of Cdc42 and RhoA, along with their 
complementary regulation effects on Rac, ensures 
that Rac becomes positively regulated at the front 
and negatively regulated at the rear. Thus, the Rac 
activity displays a steeper gradient (figure 2(e) and 
(e′)). Spatial separation of Rho GTPase members then 
act as a compass to direct cytoskeletal remodeling. In 
the regions of high Rac/Cdc42 activity, elevated Rac 
enhances PI3K activation and, in turn, promotes a local 
increase in PIP3 concentration. Local recruitment of 
PI3K from the cytosol to the membrane through PIP3 
induces a local reduction of PIP2, which increases the 
dissociation of membrane-bound PTEN. Therefore, 
a short range positive feedback loop (Rac  →  PI3K ⇆ 
PIP3) is formed, enabling PI3K and PIP3 to be localized 
at the front (figures 2( f ) and (h)). In regions of high 
RhoA activity, the previously dissociated PTEN from 
the front rebinds with PIP2. After being activated by 
RhoA, these PTEN molecules cause further diminution 
of PIP3 to produce PIP2, which in turn forms a long-
range negative feedback loop (RhoA  →  PTEN ⇆ 
PIP2) that enables PTEN and PIP2 to be localized 
at the rear (figures 2(g) and (i)). Such diffusion-
driven bidirectional molecular transport is guided 
by the established internal Rho GTPase gradient and 
achieves a steady state when the pool of cytosol PI3K is 
significantly depleted. As a result, the final distribution 
of PIP3 achieves an all-or-none pattern, ensuring that 
only a single lamellipodia is maintained.

Reversal graded stimulus period
Following the introduction of reversal stimuli at 
t  =  200 s, the redistributed patterns of different 
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Figure 2.  Basic features of polarization produced by WT model cell. (a) Spatial distribution of CA outside the cell. A micropipette 
containing constant CA concentration (considered as a point source) was initially placed at the middle right side of the cell. The 
diameter of the cell was 10 μm. (b) GPCR occupancy profiles at an initial stimulating time point (t  =  100 s, blue line) and a reversal 
stimulating time point (t  =  300 s, red line). (c)–(g) Simulations of spatiotemporal evolution of active Rho GTPases, that is, Cdc42 
(c), Rac (d), and RhoA (e), and PIs, that is, PIP3 ( f ) and PIP2 (g), along the periphery of the model cell. The ‘0’ angle is chosen to the 
time point toward the micropipette during the initial stimulus period. The spatial profiles of Rho GTPase (c′)–(e′) display shallow 
gradients (blue lines), in response to an initial stimulus, or steep gradients (red lines), in response to a stronger reversal gradient. PIP3 
and PIP2 act as the markers of cell front and rear, respectively. Both display an all-or-none distribution pattern at the end of initial 
and reversal stimulus period. (h) and (i) Spatial distribution of PI3K (h) and PTEN (i) at t  =  100 s, when the cell has already reached 
a well-polarized state. Initially, both PI3K and PTEN, as effectors, are set to be uniform in the cytosol with concentrations of 0.07 
and 0.11 µM, respectively. Cytosolic distributions of the effectors generate fluctuations near the membrane region due to stochastic 
translocation behaviors. Local concentrations of membrane PI3K and PTEN are related to the local concentrations of cytosolic PIP3 
and PIP2, respectively. ( j ) Concentration of PIP3 as a function of time at the front (blue line) and the rear of the cell (red line). There 
is a clear delay period generated at the beginning of the reversal stimulus period (200–240 s), whereby the cell returns to an almost 
non-polarity state rather than generating two pseudopods at the same time.
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regulatory proteins induced the cell to correctly 
repolarize according to the new stimuli (figures 2(c)–
(g), t  =  500 s). Specifically, the change in CA gradient 
was immediately sensed by the cell through the biased 
occupancy of GPCRs (figure 2(b), red line). Due to 
the introduction of balance-inactivation mechanism 
(equation (3)), the switch-like redistribution of Gβγ 
and Gα constantly ensured the precise spatial control 
of PAK1 and Lsc1, such that the internal asymmetry in 
Rho GTPase was re-established along the new direction 
(figures 2(c)–(e)). The response was rapid: it reached 
a new steady state within 10 s. The spatial bipolar 
redistribution pattern of Rho GTPase was more 
significant. That is, active Rac and Cdc42 responses 
exhibited symmetric peaks facing the new point 
source (figures 2(c′) and (d′)), whereas active RhoA 
accumulated away from the source (figure 2(e′)). Such 
a redistribution of Rho GTPase greatly altered the local 
activation rate of PI3K and PTEN and, further, the 
direction of molecular transport. After approximately 
120 s, PIs distribution achieved an all-or-none pattern, 
according to the new stimuli direction, as expected. 
There was also a significant delay in PIP3 response 
to the reversal stimulus (figure 2( j ), t  =  200–240 s). 
In other words, the cell was predicted to return to an 
almost non-polarity state, but it was not predicted to 
spontaneously generate two major pseudopod. The 
specific molecular labels (i.e. PI3K, PIP3) possibly 
disappeared first from the initial front and then 
reappeared at the opposite side because the inversion 
of cell polarity was initiated by a global inhibitor that 
turned down actin polymerization in the entire cell, 
followed by a fast-acting positive feedback loop raised 
to establish a new front (Dalous et al 2008). This global 
inhibitor was not necessarily required based on the 
current modeling. Rather, the spatiotemporal effect 
generated from Rho GTPase-PIs mediated feedback 
loops could well explain this phenomenon. Despite the 
fast redistribution of active Rho GTPase (figures 2(c)–
(e)), the accumulation of PIP3 at the initial front may 
still exist for a while (figures 2( f ) and ( j )), resulting 
in competition for cytosolic PI3K at two ends. Since 
the cytosolic PI3K could not effectively arrive at the 
new front side, the spatial effect of Rho GTPase-PIs 
mediated feedback loops was limited and no PIP3 
accumulation occurred there. After abolishing PIP3 
accumulation at the initial front, the competition for 
cytosolic PI3K between the two ends was won by the 
new front side. Henceforth, the spatial difference in 
Rho GTPase activity was continually amplified, which 
finally led to a full PIP3 response at the new front side.

Effect of CA gradient steepness on cellular 
polarization
We tested the role of CA gradient steepness in 
eukaryotic chemotaxis. First, we quantified the effect 
of gradient steepness on the initial polarization by 
adjusting the distance between the point source and 
the cell. All other parameters remained the same. As 

shown in figure S2, four positions of the source point 
(a, b, c, and d, from far to near) were chosen, on which 
the formed steepest gradients were 2.8, 4.7, 7.9, and 
14.3  ×  10−2 nM µm−1. mrespectively. Time courses 
of PIP3 accumulation at the original cell front were 
compared, corresponding to each stimulus. As the 
applied stimulus gradient become steeper, the time 
required for the cell to achieve steady polarization 
became shorter and varied from 180 to 80 s. 
Meanwhile, the peak value of PIP3 also increased from 
6 to 9 µM. Msuggesting that the cell developed larger 
pseudopod in response to a steeper CA gradient. In 
addition, due to the balanced-inactivation mechanism 
introduced in the initial signal processing module, the 
modeled cell can respond to a 2% difference in CA 
concentration between the front and the rear of the 
cell (data not shown). Without a doubt, the required 
shallow CA gradient could be derived only if the cell 

was a distance of 3λ
(√

λ = Df/K
)

 from the source. 

By further adding a specific uniform CA field, the 
percentage variation of CA concentration across the 
cell could be simulated.

Next, we tested eukaryotic chemotaxis with differ-
ent gradients of reversal stimulus. Similarly, three posi-
tions of CA point sources (e)–(g) were chosen (figure 
S2). From near to far, the formed reversal stimulus 
gradients were 43.7, 23.7 and 14.3  ×  10−2 nM µm−1, 
respectively. To reduce computational costs, those sim-
ulations were stated from the same planar polarized 
state. For each reversal stimulus condition, five succes-
sive snapshots of PIP3 redistribution are presented in 
figure 3(b). In general, the steepness of the reversal gra-
dient determined the dynamics of PIP3 redistribution 
and further defined the cell reorientation. Particularly, 
in the case of the steepest reversal gradient (point e), 
PIP3 first disappeared from the original front and then 
reappeared at the opposite side (figure 3(b), top row), 
suggesting that the cell reoriented itself in response to 
the new stimulus by generating an entirely new front. 
At mild steepness (point f), PIP3 redistributed with 
slow rotation (figure 3(b), middle), implying that the 
cell preferred to make a U-turn to align to the new gra-
dient. However, in the case of shallow steepness (point 
g), the cell was locked on the original distribution pat-
tern of PIP3 to a great extent (figure 3(b), bottom row), 
so that the cell could not reorient itself to the new 
stimulus.

Collectively, these simulations further illustrated 
the cooperativity of Rho GTPase-PIs mediated feed-
back loops. The appearance of PIP3 accumulation 
resulted from the local strength of Rho GTPase-PIs 
mediated feedback loops, which indeed depended 
on both local Rac activity and PIP3 concentration. 
In the initial cell polarization, Rac activity and PIP3 
concentration reached maximal values at the original 
front. Naturally, a steeper initial CA gradient induced 
a steeper intracellular Rho GTPase gradient, and 
accordingly, it evoked the spatial effect of Rho GTPase-
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PIs feedback loops in a rapid manner. In reversal 
polarization, the maximal value of PIP3 concentration 
appeared at the original front, whereas the maximum 
local Rac activity occurred at the opposite side due to 
the fast dynamics. This mismatch in the distributions 
of active Rac and PIP3 made the location of maximum 
feedback strength appear at the rear, near the original 
front, or at the original front, corresponding to the 
steepest, mildest, and shallowest stimulus, respectively.

Simulations with time-varied CA signals
To further validate this model, we also used a 
microfluidic function generator with double 
T-junction channels to alter the gradient direction of 
CA in a precise and time-dependent manner (Meier 
et al 2011). The most interesting finding was that a very 
fast switch frequency in the gradient direction led to a 
resting state for trapping the cells, compared to those 
at a stepwise reduction of gradient switching periods 
(from 200 s to 15 s). Our simulations indicated that, at 
a long period of t  =  200 s, the PIP3 response followed 
the varied gradients of the stimulus, indicating that 
the cell fully adjusts the polarity according to the 
respective gradient direction (figure 4(a)). At t  =  60 s, 
the induced PIP3 patches were less pronounced (figure 
4(b)). Notably, the PIP3 accumulation completely 
disappeared at the very rapid switching period of 
t  =  15 s (figure 4(c)), suggesting that cytoskeletal 
remodeling ceased and the cell was chemotactically 
trapped in rapid switching. As an ideal case, a cell 
exposed to spatially uniform CA field was also 
simulated. Here, spontaneously appearing patches of 
PIP3 could still be achieved (figure 4(d)), even though 

more time was required, compared with the gradient-
induced case (figure 2( f )).

The underlying mechanism of this high frequency-
dependent cell trap observation can also be well inter-
preted using the rational of our modeling. Basically, 
cell trapping is shaped by the balance between the 
efficient transport of intracellular molecules and the 
switch frequency of the external stimuli. If the switch 
frequency matches the rate of intracellular biochemi-
cal reorganization, the strength of the Rho GTPase-PIs 
mediated positive feedback loop becomes sufficiently 
strong to drive the bidirectional molecular transport. 
Here, the intracellular molecules display a successful 
shuttle run feature that is guided by temporally varied 
stimulus. However, if the switch frequency is much 
faster than the rate of intracellular molecular trans-
port, the effect of external stimuli is limited to inter-
rupt the spontaneous establishment of intracellular 
molecule patches, and no net molecular accumulation 
is achieved.

Chemotaxis dynamics of PTEN-mutated cells
Next, we analyzed how specific signaling molecules 
regulate the dynamics of eukaryotic chemotaxis. 
For example, the cytosolic concentration of PTEN 
molecules is either downregulated or upregulated for 
a cell exposed to the same initial or reversal stimulus 
(Sulis 2003, Subramanian et al 2007). Time courses of 
PIP3 accumulation at the original front or rear regions 
are calculated in figures  5(a) and (b), respectively. 
For PTEN downregulation, a significant decrease in 
PTEN level ((PTEN)  =  0.03 µM) induces a global 
high level of PIP3 concentration (blue lines), implying 

Figure 3.  Effect of gradient steepness on cell polarization produced by a WT model cell. (a) Time course of PIP3 accumulation at 
‘0’ angle as a function of different values of gradient steepness. As the initially applied gradient steepness decreased from 14.3 to 
2.8  ×  10−2 nM µm−1, the time required to complete the initial polarization process increased from ~ 80 s to 180 s. (b) Five successive 
snapshots of PIP3 spatial distribution upon different reversal gradients. The cell was initially polarized and exposed to the reversal 
stimulus at t  =  200 s. Generally, the steepness of reversal CA gradient controls the dynamics of PIP3 accumulation and further 
regulates the cell reorientation. (b-top) Upon the steepest reversal signal (43.7  ×  10−2 nM µm−1), PIP3 first disappears from the 
front (t  =  250s) and then reappears at the opposite side (t  =  320 s), suggesting that the cell correctly repolarizes in the direction of 
the new gradient; (b-middle) with the less steep gradient of the reversal signal (23.7  ×  10−1 nM µm−1), PIP3 was redistributed in a 
slowly rotating manner, suggesting that the cell prefers to make a U-turn to the new stimulus; (b-bottom) with the shallow reversal 
signal (14.3  ×  10−1 nM µm−1), PIP3 accumulation froze at the front region during the entire reversal stimulus period; therefore, the 
cell cannot effectively reorient itself to the new stimulus.
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that the cell could develop multiple, rather than single, 
pseudopod(s). A slight decrease ((PTEN)  =  0.07 
µM) reduced the delay in establishing new PIP3 at 
the original rear side (red lines), compared with the 
‘wild-type’ or WT cell at (PTEN)  =  0.11 µM (brown 
lines). For PTEN upregulation, a slight increase 
((PTEN)  =  0.13 µM). Mresisted PIP3 accumulation, 
as observed in the reduced PIP3 concentration (black 
lines). Further increases in (PTEN) (=0.15 µM) 
completely abolished the establishment of reversal 
PIP3 accumulation (green lines), suggesting a threshold 
value of PTEN concentration, above which the cell fails 
to develop reversal polarity.

This response pattern for a PTEN-varied cell upon 
initial CA stimulus can be deduced intuitively. Since the 
PTEN acts as an inhibitor toward the Rho GTPase-PIs 
mediated feedback loops, a PTEN-downregulated cell 
becomes easily excited, whereas a PTEN-upregulated 
cell has high inertia to prevent the excitation. Thus, 
those cellular behaviors, upon a reversal stimulus, 
could be better understood by analyzing typical time 

courses of the amount of cytosolic PI3K and PTEN 
(figure S2, derived from a WT cell). During the rever-
sal stimulus period (t  =  200–500 s), the strength of the 
positive feedback loop (Rac  →  PI3K ⇆ PIP3) decreases 
at the original front and increases at the opposite side, 
while the negative feedback loop (RhoA  →  PTEN ⇆ 
PIP2) acts oppositely. As a result, more membrane-
bound PI3K molecules at the original front enter into 
the cytosol with a significant increase in cytosolic PI3K 
profile. In contrast, the PTEN profile demonstrates a 
significant reduction when more cytosolic PTEN mol-
ecules are recruited to the membrane. A critical time 
point at which the cell starts to rebuild its polarity was 
determined by the relative levels of cytosolic PI3K and 
PTEN. Naturally, it was more difficult for the PTEN-
upregulated cell to achieve this critical point, showing 
a more significant delay phenomenon. Considering 
that the PTEN-downregulated cell failed to maintain 
only one major pseudopod upon initial and reversal 
polarization process, whereas the PTEN-upregulated 
cell had difficulty establishing initial polarity, it is 

Figure 4.  Elevated switching frequency of external gradient led to chemotactically trapped cells. (a) At a long exposure period of 
t  =  200 s, cells read the direction of the signals and repeatedly reverses polarity. (b) At a relatively shorter period of t  =  60 s, the 
appearance of PIP3 patches still indicated the direction of stimulus but was less pronounced, suggesting that the cell has no time to 
develop polarity. (c) At the shortest period of t  =  15 s, the cell completely lost PIP3 patches corresponding to the chemotactically 
trapped cell state. (d) For the uniform stimulus condition as a control, the cell spontaneously developed PIP3 patches. The white line 
in each panel indicates the temporally varied CA signal at the front of the cell.
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important for eukaryotic cells to maintain a proper 
level of PTEN. In addition, since the roles of PI3K and 
PTEN in regulating cell polarity are contrary (Parent 
2002), decreasing PTEN or increasing PI3K has similar 
effect, and vice versa (data not shown).

Discussion

Considering theoretical modeling, our model can 
quantify the dynamics of rapid intracellular signaling 
responses in eukaryotic chemotaxis based on two 
aspects. First, in contrast to previous models treating 
intracellular signal cascades as a pure signal processing 
system relying on abstract inhibitory and activating 
components (Meinhardt 1999, Ma et  al 2004), our 
model is centered on a molecular transport system 
and based on a realistic signaling network. Second, 
in contrast to most earlier models assuming that the 
interior of the cell is homogeneous (Onsum and Rao 
2005), our model precisely accounts for cytosolic 
diffusion and the stochastic translocation behaviors 
of effector molecules, for example, the PIP3 profiles. 
Although the simplification of cytosolic diffusion 
generates little effect on initial polarization of the cell, 
it brings up significant differences during reversal 
polarization. Here, a dramatically high value of the 
diffusion coefficient (i.e. Dc  =  30 µm2 s−1) leads 
to a reduction of the delay and corresponds to the 
generation of pseudopods at two ends (figure S3). This 
is not surprised biophysically, because low diffusivity 
enables an effector molecule that has detached from 
the membrane to be trapped locally via reversible 
binding and unbinding events when the concentration 
of substrate molecules is sufficiently high. By contrast, 

an extremely high or even infinite diffusivity constant 
abolishes the trapping of those detached effector 
molecules. Thus, the introduction of realistic cytosolic 
diffusion of effector molecules is essential for a model 
to reflect biologically competitive effects between two 
signaling poles, which was not explicitly described in 
earlier theoretical studies.

Our modeling consists of four layered modules, 
and each module is dominated by a specific mech
anism. This strategy is supported by a body of exper
imental evidence. For example, latrunculin-treated 
Dictyostelium cells adopt a spatial sensing mech
anism that does not depend on the intact cytoskeleton  
(Janetopoulos et al 2004). Direct activation of endog-
enous Rac in HeLa cells enables the bypass of several 
upstream signaling molecules, and the graded acti-
vation triggers cellular polarization similar to that 
induced by exogenous CA gradients, implying that Rac 
activation serves as the start point in defining cytoskel-
etal remodeling (Holmes et al 2012). Moreover, various 
intermediate interactions exist among different mod-
ules (for example, PIP3 provides binding sites for vari-
ous GEFs, and in turn, it regulates Rho GTPase (Bagorda 
and Parent 2008). Accordingly, there should be an addi-
tional PIP3 regulation module upstream of Rho GTPase. 
However, since this module only allows the cell to exceed 
the remodeling threshold without generating a short-
board effect on the entire system, this effect can be also 
included into the initial signaling processing module. 
Thus, we assumed a four layered module as a plausible 
scheme to embody the specific signal transduction cas-
cades during eukaryotic chemotaxis (Parent 2004).

By comparing this model with existing experimental 
observations, we also gained several additional insights 

Figure 5.  Responses of PTEN-mutant model cell to equalized stimulus. Time courses of PIP3 accumulation at the original front 
(a) and original rear (b) that occur in various PTEN mutants. Compared with the WT cell ((a) and (b), brown lines), a significant 
decrease in PTEN expression ((PTEN)  =  0.03 µM) resulted in a global high level of PIP3 ((a) and (b), blue lines). With a slight 
decrease in PTEN ((PTEN)  =  0.07 µM), the delay phenomenon in establishing the new front was reduced ((a), red dotted line), 
where a significant increase was present in the PIP3 response at original rear at t  =  0–30 s. This was attributed to a relative excess of 
PI3K that ensures the recruitment of PI3K at both cell ends. When more PTEN was transported backwards, the increase in the local 
strength of negative feedback loop impaired PIP3 response. A slight increase in PTEN expression ((PTEN)  =  0.13 µM) resisted the 
establishment of PIP3 accumulation, as reflected by the absolute level of PIP3 concentration ((a) and (b), black lines). When PTEN 
was further increased ((PTEN)  =  0.15 µM), the establishment of the reversal PIP3 accumulation was completely abolished ((a) and 
(b), green lines), suggesting that a threshold for PTEN expression exists, above which cells fail to develop reversal polarity.
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into a system-level understanding of eukaryotic chem-
otaxis. One of the most important points is the concep-
tual role of an inhibitor. Inhibitors are required when 
modeling the signaling transduction of chemotaxis 
was initially postulated with the Turing-type model, in 
which the inhibitor is a rapidly diffusing protein, and its 
role is to induce diffusion-driven instability to achieve 
internal signal amplification (Meinhardt 1999). Fol-
lowing the popularity of the LEGI mechanism (Parent 
1999, Ma et al 2004), it was widely accepted that a global 
inhibitor is mapped directly onto PTEN (Stephens et al 
2002). Here, we proclaim that the inhibitor might be a 
group of molecules that provide negative effects at dif-
ferent stages of signal transduction, rather than a single 
molecule. For instance, Gα may act as an inhibitor in the 
initial signal processing module. According to the bal-
ance-inactivation mechanism, the inactivation effect 
between Gβγ and Gα reasonably ensures the formation 
of a switch-like distribution or achieves the adaptation 
in response to uniform stimuli, even though exper
imental evidence to directly support this speculation is 
still lacking. By contrast, PTEN acts as inhibitor in the 
bidirectional molecular transport module. Its activity 
is regulated by RhoA, which, along with membrane and 
cytosol exchange through PIP2, forms the core of the 
negative feedback loop that helps establish the polarity 
at the cell rear.

Our modeling also helps to elucidate when and 
how the cell develops polarity. Latrunculin-treated 
Dictyostelium cells generate bipolar localization of 
PIP3 when simultaneously assigning two CA-filled 
micropipettes at the opposite sides of the cell, indi-
cating that the cellular response at one side does not 
necessarily inhibit the response at the opposite side at 
the initial stage (Janetopoulos et al 2004, Van Haastert 
and Devreotes 2004). However, highly polarized cells 
cannot simultaneously respond at both the cell front 
and rear, mainly due to the spatiotemporal regulations 
of Rho GTPase-PIs mediated feedback loops in a see-
saw-like pattern (figure 1(a), insert). At an initial CA 
gradient, the bipolar separation of small Rho GTPase 
members serves as a clear compass (as indicated by a 
rotation angle) to induce the rolling-over of the see-
saw, resulting in an all-or-none distribution of internal 
molecules. To turn over the already-biased seesaw, the 
rotation angle from the opposite direction should be 
larger than the initial rotation angle, corresponding to 
a stronger reversal Rho GTPase compass signal. The 
biased seesaw also returns to a horizontal position for 
a non-polarity cell state. It should also be pointed out 
that both the processes of sensing a new target CA and 
rebuilding a polarized status for a cell yield different 
time scales. Generally, the former is much faster (in 
seconds) than the latter (in minutes) (Van Haastert 
and Devreotes 2004). To simplify the modeling in this 
work, we introduced the balance-inactivation mech
anism to propose that the cell can always see the new 
target before it makes the reversal, U-turn, or lock-on 
decision based on a varied CA gradient.

While our simulations provide cellular responses 
that mirror most of the observed signaling responses 
in eukaryotic chemotaxis, several issues remain to 
be tested in the future. First, we simply used specific 
GPCR-mediated PI3K signaling pathways as the prox-
ies for cytoskeletal remodeling, rather than modeling 
the entire signaling network. Actually, the coordinated 
polymerization and depolymerization of F-actin-
based cytoskeleton are regulated by many other molec-
ular mechanisms. For example, the former requires 
various ABPs, such as Arp2/3 and VASP (Stephens et al 
2002, Rottner and Stradal 2011); the latter asks for, at 
least, the CA-mediated PLCβ/PI3Kγ/GSK3 signal-
ing pathway. Adding these functional components to 
models could further the understanding of eukary-
otic chemotaxis. Second, only biochemical factors are 
considered in the current work. In reality, mechanical 
cues such as matrix stiffness (Kuo et al 2012, Schaefer 
and Hordijk 2015) and shear flow (Dalous et al 2008, 
Wang et al 2014) are also crucial. When cells sense the 
mechanical factors using distinct mechanisms with 
stretch-activated ion channels or mechanosensitive 
cellular adhesive molecules, they are transduced into 
biochemical signals with common downstream sign-
aling pathways (Vogel and Sheetz 2009). Thus, a sys-
tematic study of chemotaxis under mechanical stimuli 
would unveil new mechanisms of mechanotaxis by 
incorporating mechanical sensing modules. Finally, 
while our modeling attempted to capture the dynamic 
features of intracellular signaling responses, the model 
cell is still static. Qualitatively, if a cell moves toward 
the source, its internal signaling dynamics would be 
accelerated, since a steeper CA gradient should be met. 
Quantitatively, however, one may observe from the CA 
gradient profile (figure S2) that the influence of cellu-
lar motility on the intracellular signaling responses is 
negligible, as long as a cell is located farther than 3λ 
from the source. Nevertheless, our ongoing work is to 
incorporate a motility module into the current model, 
and this integrated model would be especially useful 
for unraveling the spatiotemporal regulation effects of 
internal signaling cascades upon the tunable cellular 
responses.

Conclusions

Rapid signaling responses are indispensable in 
implementing functions of a eukaryotic cell. In this 
work, we developed a 2D mathematical model for 
eukaryotic chemotaxis at an intermediate level of the 
molecular network. At least four key related features 
were validated from our modeling. First, active Rac/
Cdc42, PIP3, and PI3K were enriched at the front 
of the cell, whereas active RhoA, PIP2, and PTEN 
were concentrated in the opposite rear side. Cell 
polarization was dynamically regulated by these core 
intracellular molecules and reached a steady state 
within 1–2 min. Second, there was a significant delay in 
generating new pseudopods when the cell responded 
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to a reversal stimulus, mainly due to competition for 
effector molecules (i.e. PI3K and PTEN) between two 
ends but not through an undiscovered global inhibitor. 
Third, the cell became trapped upon high-switching 
frequency of the direction of gradient stimulus. 
Finally, it was crucial to maintain the balance between 
the relative amounts of PI3K and PTEN molecules for 
proper initial and reversal polarization.
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