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A spatial pyramidal cross-correlation based on interrogation area sub-division is introduced to improve the measurement
resolution in particle image velocimetry (PIV). The high-resolution velocity can be achieved with a velocity prediction model via
coarse cross-correlation. The prediction formula is deduced from the frequency response of the moving average (MA). The
performance of this method was assessed using synthetically generated images of sinusoidal shear flow, two-dimensional
vortical cellular flow, and homogeneous turbulence. A real PIVexperiment of turbulent boundary layer was used to evaluate the
new method. The results indicate that the spatial pyramid cross-correlation can robustly increase the spatial resolution.
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1 Introduction

The flow velocity field can be obtained using particle image
velocimetry (PIV) from the maximum peak of the correlation
map over the interrogation windows [1]. Due to the inherent
algorithm used in PIV, the obtained velocity is filtered ac-
cording to the size of the interrogation windows (IW), which
can be simply modeled using a moving average (MA) [2].
The modulation caused by MA can reduce the accuracy of
the velocity obtained by cross-correlation (CC). The spatial
resolution can be improved by reducing the size of IW.
However, the signal-to-noise ratio (SNR) drops dramatically
when the number of image particle pairs decreases to below
ten in a small IW [1]. To overcome this limitation, iterative
optimization with image deformation [3–5] was developed
for flow field with large velocity gradients. The iterative
process can be schematically described as multi-grid analysis

and iterative analysis [6]. The effect of predictor-corrector
filtering on the stability and spatial resolution of iterative
PIV interrogation was investigated theoretically and nu-
merically by Schrijer and Scarano [6]. Although the accuracy
is improved by iterative analysis with image deformation, the
spatial resolution is still limited by the IW because the fre-
quency response is negative when the size of the IW is larger
than the local wavelength of the velocity.
Another improvement to the spatial resolution is to change

the frequency response of the CC by weighting the inter-
rogation window [2]. Adel and Riethmuller [7] developed a
hybrid PIV-PTV method that combines the advantages of the
robustness of PIV and the spatial resolution of particle
tracking velocimetry (PTV). According to Scarano [8], the
error of the MA depends on the local curvature radius of the
displacement distribution, and it increases with the square of
the window size. Thus, a super-resolution velocity field can
be obtained by directly measuring the local second deriva-
tives of the displacement distribution over the IW [8].
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Complex approaches with spatial adaptivity according to the
image properties and flow conditions were also introduced to
overcome the limits of conventional PIV algorithms. In the
adaptive image interrogation method proposed by Theu-
nissen et al. [9], the location, number, and size of the IW
were adaptively optimized according to the seeding density
and velocity fluctuations. Novara et al. [10] introduced a
method to adapt to the shape and orientation of interrogation
volumes to a 3D-PIV motion analysis, which was a 3D ex-
tension of previous concepts using 2D analysis [11]. How-
ever, as commented by Theunissen et al. [12], the adaptation
of the cross-correlation windows based on the instantaneous
velocity fields is prone to error propagation due to the poor
accuracy of the second order derivatives.
In PIV processing, improving the spatial resolution must

consider the SNR of CC. For time-resolved PIV, the inter-
rogation size can be significantly reduced by increasing the
number of image pairs for long sequences [13,14]. Sciac-
chitano et al. [15] proposed a novel approach, the multi-
frame pyramid correlation, which combines the correlation
maps of different temporal separations to enhance the SNR
and precision. The correlation based correction (CBC)
method proposed by Hart [16] applies an element-by-ele-
ment multiplication of correlation tables calculated from
adjacent regions to eliminate the stochastic correlation va-
lues during PIV processing. This method can significantly
increase the SNR of CC. While, it seemed that the accuracy
was not adequate [8]. Unlike the traditional outlier detection
and elimination methods [17–19], the CBC method can re-
move the noise from the correlation plane.
In this work, a new spatial pyramid cross-correlation

method was investigated to improve the spatial resolution in
a robust manner. In contrast to the multi-frame pyramid
correlation for time-resolved PIV [15], this method utilizes
the multi-resolution correlation map of only one image pair
to enhance the SNR. One-dimensional (1D) sinusoidal shear
displacement, two-dimensional (2D) vortical cellular flow,
and homogeneous turbulence were considered to assess the
performance of the pyramidal CC. Moreover, a turbulent
boundary layer (TBL) experiment was utilized to evaluate
the method.

2 Multi-spatial-resolution pyramidal cross-
correlation

2.1 Cross-correlation based on subdivision of inter-
rogation area

The CCwithout normalization is expressed in the equation as

C f i j g i x j y= ( , ) ( + , + ), (1)x y
i

M

j

N

,
=0 =0

where the parameters f i j( , ) and g i j( , ) represent the fluctu-

ating grey intensity indexed by i and j over the IW, and
f i j( , ) is obtained from the particle images IA, g i j( , ) is from
the particle images IB. The parameters x and y denote the
shifted displacement where the CC is calculated. In this
study, the size of f is M N× and the dimension of g is larger
than f . It is reasonable to make a hypothesis that the particles
is uniformly distributed over the measurement domain.
Therefore, the normalization of the coefficient is not neces-
sary. The coefficient map is obtained by shifting the smaller
f of image IA over the g of image IB. Then, the displacement
can be evaluated by searching and fitting the peak of the
coefficient array.
Figure 1 shows the schematic diagram of CC. The dotted

lines denote the IWas f , and the solid lines denote the search
region as g. As shown in the figure, the size of the final CC
map is L L(2 + 1, 2 + 1). If we divided the IW into many sub-
IWs with same size (as presented by the purpose dotted line),
the size of the CC map of the sub-IW is also L L(2 + 1, 2 + 1),
and it is easy to deduce that the CC of the full-IW is
equivalent to the summation of the CC of the sub-IWs. This
can be expressed as

C C= , (2)
t

T
t

f
=1

s

where the subscripts of f and s indicate the full-IW and sub-
IW. The parameter T is the total number of sub-IWs indexed
by superscript t. Ignoring the influence of the noise, every
coefficient map of the sub-IW contains a peak corresponding
to the local velocity, thus, eq. (2) means that the velocity
obtained from full-IW is the average of the sub-IWs, which is
very similar to the MA filter [2,6].
One important advantage from the IW subdivision is to

reduce the time cost of computation. As we known, a large
overlap between adjacent vectors is applied in the PIV pro-
cess to reduce the errors from interpolation and derivation in
the velocity field. The overlap of the IW would increase the
burden of computation since the CC of the overlap regions
are repeatedly evaluated. A subdivision strategy is im-
plemented according to the overlap factor. If a 50% overlap
factor is applied in PIV, the full-IW is divided into 2×2 sub
areas. Only the CC of sub-IW is calculated at each grid,
instead of the full-IW. Thus, the computational cost can be
reduced to 1/4 under direct CC. Additional operation is to
sum the CC map of the sub-IWs according to eq. (2). While,
for FFT-based CC, the cost reduction may be not so sig-
nificant because FFT is already a fast and efficient algorithm.
Figure 2 shows the computational time for full-IW and sub-
IW at different overlap factors based on the FFT-based CC.
The time cost can be reduced 30% and 23% for 50% and
75% overlap factor, respectively.
The velocity obtained using PIV is a spatial average of the

real velocity over the IW. Owing to the low SNR in the small
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sub-IW, C t
s may contain pronounced random noise or outlier

peaks. The summation of the adjacent sub-IWs can smooth
out the noise and enhance the actual peak. Consequently,
other proper and possible accumulation modes can also be
introduced into eq. (2) to enhance the SNR of CC. The
correlation based correction proposed by Hart [16] already
used the multiplication of the correlation planes from one or
more adjacent regions to eliminate anomalies. Moreover, in
our opinion, the CC of full-IW can also be calculated by
replacing the summation with median operation. Discussion
of these methods goes beyond the scope of this study, and we
still adopt the classical summation mode for this study.

2.2 Local velocity prediction model

A simple local velocity prediction model will be introduced
in this part. This model will be used in pyramidal CC to
predict the local velocity from the coarser information. The
horizontal velocity component u x y( , ) is given as eq. (3) by
expanding the displacement distribution over the IW in the

form of two order Taylor series.
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where the parameter x y( , )0 0 represents the center of the IW,
and x y( , ) denotes the position over the IW. The expression of
the vertical velocity component v is similar to u. Since the
velocity obtained by CC is similar to the velocity of MA
filter, the velocity from MA filter with length d (size of a
square window) at x y( , )0 0 is

u u d u
x

u
y= + 24 + . (4)x y x y
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This result can also be found in the article by Scarano [8].
The MA result u only depends on the local real velocity, the
second-order partial derivative and the filter window size. In
order to figure out u x y( , )0 0

, another MA filtering with different

filter size is adopted to the velocity field. Therefore, u x y( , )0 0

can be predicted as

u u d
d d u u= + ( ), (5)
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where u p is the predicted velocity at the center of the IW. The
parameters d d,1 2 is the window size of the MA filter, and
d d>1 2. u u,d d1 2

is the velocity filtered by the different filter
size. According to eq. (5), the local real velocity can be
predicted from the low resolution values. Figure 3 shows the
predicted result from one-dimensional signal with variable
wavelengths. The filter length d1 and d 2 is 48 and 32, re-
spectively. Note that wavelength is increased from 30 at
x = 0 to 50 at x = 200. From this picture, the predicted signal
shows a good agreement with the ground truth at large wa-
velength. The deviation between u p and u real increases with
decreasing wavelength. The prediction is much closer to the
real velocity than other two MA results.
The accuracy of the prediction is relative to the filter size

and local velocity wavelength (or the local velocity gra-
dient), as can be seen in Figure 3. The accuracy of the pre-
diction can be deduced from the simplified one-dimensional
frequency response of MA. For a wave signal with wave-
length λ, the result of MAwith filter length d is also given as

u d u= sinc , (6)d

where the coefficient dsinc( / ) is the amplification of the
wavelength (Figure 4). Combing the eq. (5) and eq. (6), the

Figure 1 (Color online) Diagram of cross-correlation based on inter-
rogation area subdivision. N and M denote the size of the IW, L represents
the search region over the g of image IB. The lowercase letters n and m
indicate the size of the sub-IW. All the parameters are in pixel scales.

Figure 2 (Color online) The comparison of computational time between
full-IW and sub-IW at different overlap factors, the FFT is adopted in the
CC. The size of the test image is 512×512 pixels, and the size of the IW is
32×32 pixels. The computational time is the total time for processing a pair
images.
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predication formula can be rewritten as

u d d
d d

d d u= sinc + sinc sinc . (7)p
2 2

2

1
2

2
2

2 1

If d d/ < / < 1.432 1 , the modulation coefficient of u p is
always larger than ( )dsinc /2 , which means the prediction is
more accurate than the MA filtering result ud2

.

2.3 Spatial pyramidal cross-correlation

The local velocity prediction model based on MA can be
used in CC, even though the frequency response of CC for
particle images is somehow more complex than that of MA
[2]. With this prediction model, a multi-resolution pyramidal
architecture is developed based on interrogation area sub-
division. According to eq. (2), the CC of the full-IW (Cf ) can
be estimated as the summation of the CC of the sub-IW (Cs).

Therefore, increasing the number of sub-IWs can increase
the size of the full-IW, consequently reduce the resolution of
the CC. To simplify the discussion and expression, a square
sub-IW is adopted, and its size is denoted as m m× pixels.
Empirically, the size of sub-IW should guarantee that there is
at least one particle in the sub-IW. A full-IW is expanded
using multiple sub-IWs, whose number is M×M, which
means the size of the full-IW is M m M m( × ) × ( × ) pixels.
The idea of multi-resolution pyramidal CC is shown in
Figure 5. In this figure, the l represents the current layer of
the pyramid, and the Ml is the number of sub-IWs at the l
layer. The parameter Ml is given as an odd number for the
convenience to locate the center of the CC, and it can be
easily calculated as

( )M l l= 2 × + 1, (8)l max

where lmax is the total number of layers in the pyramid.
The local velocity at the l layer can be predicted from the

l 1 and l 2 layer according to the velocity prediction
model as shown in eq. (5). In this part, we use V to present
the 2D velocity vector u v[ , ] of PIV. The expression for the
prediction is written as

M
M MV V V V= + ( ), (9)l

l

l l
l lp 1

-1
2

-2
2

-1
2 1 2

where Vl 1 and Vl 2 is the coarse velocity at the l 1 and l 2
layer, and Vp is the predicted velocity at the l layer.
The CC at l layer is refined to suppress the noise based on

the predicted velocity. At l layer, the CC map contains more
random noise because of the smaller IW size. However, the
predicted displacement can be used to enhance the signal of
CC in the current layer. The pyramid correlation algorithm is
realized by subpixel-shifting the coarse CC plane to the
peaks of the current CC plane based on the difference in
displacement. The Cl represents the CC of the lth layer, and
the distance of the correlation peaks between lth layer and
l k( )th layer can be approximated as V Vl kp . Note that
velocity of current layer Vl is replaced with Vp. The CC map
at l k( )th layer is shifted toward to the direction V Vl kp

using a linear interpolation. After shifting, the position of the
correlation peaks at different layers is approximately equal to
the predicted value Vp, and the new correlation matrix is
denoted as Cl k where k is from 0 to l 1 and the symbol
“ ” represents the shifting operation. The enhanced CC (Cl)
at current layer is realized by accumulating the shifted coarse
CC as

C l C= 1 . (10)l
k

k l

l k
=0

= 1

A brief description of procedures is given in Table 1. A

Figure 3 (Color online) One dimensional example of the local velocity
prediction model. The ground truth indicated by the line with circle markers

is written as u x x= sin 2
30 + 0.1real , the wavelength (30+0.1x) increases

with x, and x is set to be an integer from 0 to 200. The lines marked by
diamonds and squares are the results of MAwith different filter length, the
diamond is for d = 481 and the square is for d = 322 . The line with triangles
represents the predicted value from the eq. (5).

Figure 4 (Color online) Frequency response of MA [2,5,8]. The para-
meters d and represent the filter size and the wavelength of the wave
signal, respectively. The vertical line indicates the local minimum at
d / 1.43.
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new, more accurate, and robust displacement is obtained
from the maximum peak of the enhanced CC plane because
the random noise is suppressed by the coarse CC.

2.4 Iterative image deformation with spatial pyramidal
CC
The pyramidal CC provides a robust method to calculate the
displacement with high resolution. It is convenient and easy
to apply pyramidal CC in the algorithm of iterative image
deformation (IID). After estimating the displacement using
pyramidal CC, both of the A and B images are deformed to
the center time according to the interpolated displacements
with the center difference pattern. The displacement is va-
lidated using normalized median test and smoothed by 3×3
Gaussian filter. Linear and spline interpolations are applied
to the images and displacements, respectively. The iterative
analysis, where the grid nodes are fixed, is adopted to further
improve the accuracy of the measurement. In this study, the
iteration number of the image deformation is denoted by n.

3 Numerical assessment

The method’s performance was assessed by statistically

analyzing the synthetic images of sinusoidal shear flow, 2D
vortical cellular flow, and homogeneous turbulence. The
particle images were generated according to the framework
proposed by Lecordier and Westerweel [20] and Pan et al.
[21]. The CCD resolution was 512×512 pixels, and the ratio
of the sensitive area of one pixel to the pixel pitch was fixed
to one. The intensity of the seeding particles followed a
standard Gaussian distribution. The intensity level of the
particle images was obtained by the 2D integration of the
Gaussian function. The mean diameter of the particle image
was two pixels with a zero pixel standard deviation [22].
Gaussian white noise with a different variance was added to
every pixel. The noise level was set to the ratio of the stan-
dard deviation of the noise intensity to the maximum
brightness. The noise level was from 0 to 40% with a uni-
form interval of 5%. The seeding density of particles was
0.08 particles per pixel (ppp), which returned about 20 par-
ticles within an IW of 16×16 pixels.
The present pyramidal method is compared with the

iterative window deformation technique, which herein will
be referred to as conventional PIV. To statistically evaluate
the performance of different methods, the root mean square
error (RMSE) of the u-component are calculated according
to the formula [23]:

u N u ux x= 1 ( ) ( ) , (11)
x

RMSE c e
2

where the parameter N is the total number of grid nodes in
the velocity field, the parameters u x( )c and u x( )e represent
the computed and exact velocity respectively, the parameter
represents the domain of the velocity field.

3.1 One-dimensional sinusoidal shear displacement

The one-dimensional simulation was performed using a si-
nusoidal displacement with wavelength =40 pixels and
amplitude U0=2 pixels [8]. To test the high-resolution per-
formance of the pyramidal CC, a small sub-IWof 4×4 pixels
with 5 pyramidal layers (lmax=5) was adopted to calculate the
displacement distribution. The size of the full-IW of the first

Figure 5 (Color online) Sketch of multi-resolution pyramidal cross-cor-
relation.

Table 1 Algorithm for the pyramidal cross-correlation

Algorithm
a Calculate the CC of the sub-IW.
b Calculate the displacement distribution of the coarse CC of the lth layer.
c Validate the velocity field using a normalized median test [19] or other effective outlier detection methods.
d If l≥3:

d1 Predict the displacement based on eq. (9).
d2 Enhance the CC map of the current layer based on eq. (10).

d3 Estimate the new displacement dl from the enhanced Cl and validate the new velocity field.
d4 Increase l by 1 until l reaches its maximum value.
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layer is 36 pixels, and the size of the last layer is 4 pixels.
This configuration yielded a velocity of 128×128 gird points.
Note that only a single pass PIV process without iteration
was adopted in this case.
Figure 6 shows the correlation maps obtained by the pyr-

amidal CC and the conventional CC at the same node in
different layers without considering the noise. The CC of the
first two layers is identical, and the enhancement starts at the
third layer. For conventional CC, the SNR of the CC de-
creases with an increase in l owing to a reduction in the size
of the full-IW. When the size of IW is equal to four pixels
(l=5), the CC is almost contaminated by noise. However, the
pyramidal CC still generates a clear peak in the correlation
plane with a higher SNR. The CC was normalized by its
maximum value, and the high correlated distribution is
elongated along the X-direction because of the high dis-
placement gradient. As shown in Figure 6, the pyramidal CC
can achieve a high-resolution in a more robust manner.
The velocity profile calculated by the pyramidal CC is

presented in Figure 7(a). The u-component is averaged along

the X-direction, and the color represents the layer of the
pyramid, except for the actual simulated data. With in-
creasing l, the peaks of the wave gradually approach two
pixels, which indicates that the modulation effect of the MA
is reduced by decreasing the size of the IW. In order to test
the stability of the pyramidal CC on noise, Gaussian white
noises with noise levels of 20% and 40% were added to the
synthetic images. The single-pass displacement was vali-
dated using a normalized median test [19] without smooth-
ing, and the error was estimated according to eq. (11). Figure
7(b) shows the RMSE of the u-component as a function of
the pyramidal layers and noise level. Even though the size of
the IW is only four pixels at the fifth layer, the error is
reduced to approximately half of that in the first layer. The
pyramidal CC is stable although it is slightly affected by the
image noise.

3.2 Two-dimensional vortical cellular flow

The 2D performance was assessed using the simulated vor-

Figure 6 (Color online) Comparison of the CC planes between the conventional method and pyramidal method in different pyramidal layers.

Figure 7 (Color online) (a) Velocity profiles calculated by the present pyramidal CC and (b) RMS error of u as a function of the layers l and the noise level.
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tical cellular flow with a varying wavelength [21,24]. The
maximum of the u-component was set to a fixed value of
three pixels while the wavelength decreased linearly from
130 pixels to 30 pixels along the X- and Y-axes. The v
component has the same configuration as u. The expression
of the vortical cellular flows is given as

( )

( )

u u k
k

k
k

v v k
k

k
k

= cos 2
(130 0.2 ) sin

2
130 0.2 ,

= sin 2
(130 0.2 ) cos

2
130 0.2 ,

(12)

x

x

y

y

x

x

y

y

max

max

where both of umax and vmax are equal to three pixels. The
parameters kx and ky represent the index of the images along
the X-axis and Y-axis, respectively. The denominator
( k130 0.2 x or k130 0.2 y) represents the varying wave-
length. As shown in Figure 8(a), the size of the 2D-vortex
decreases, and the magnitude of vorticity increases from the
top-left corner to the bottom-right corner, owing to the re-
duction in the wavelength of the velocity components. This
flow field contains a series of vortices, and their intensities
are inversely related to their scales.
The remainder of Figure 8 shows the comparison between

the results calculated from conventional PIV and pyramidal
PIV. Figure 8(b) shows the spatial distribution of the velocity
and vortices computed by conventional PIV with an IW=32
pixels. Figure 8(b1) shows one-pass iteration without image
deformation, and (b2) shows a three-pass iteration with im-
age deformation. Figure 8(c) shows the spatial distribution
computed by pyramidal PIV with a sub-IW=4 pixels and
lmax=5. According to eq. (8), the size of the IW in first layer is
36×36 pixels. Figure 8(c1) shows a one-pass iteration
without image deformation and Figure 8(c2) shows a three-
pass iteration with image deformation. In the Figure 8(b), the
conventional PIV is unable to estimate the displacement at
the bottom-right corner, owing to the modulation effect of
the IWon the small-scale vortices. Even though the image is
deformed according to the predictor, the displacement could
not be recovered from the previous wrong information.
However, at the upper-left corner of the large vortices, the
IID can significantly reduce the error introduced by the
modulation effect of a large IW. In the Figure 8(c), the
hierarchical vortices could be well resolved even without
applying IID, as shown in Figure 8(c1). The smallest struc-
tures at the bottom-right corner are not identical to the the-
oretical pattern in Figure 8(a). However, this situation is

Figure 8 (Color online) Spatial distribution of velocity and the vortices in the multi-vortex flow. (a) The imposed particle image displacement (the vectors)
and the corresponding vortex (the contour). The vectors are down-sampled by a spacing of 8 to give a clear picture. (b) The distribution computed by
conventional PIV of IW=32 pixels: (b1) a one-pass iteration without image deformation; (b2) a three-pass iteration with image deformation. (c) The
distribution computed by pyramidal PIVof sub-IW=4 pixels and lmax=5: (c1) a one-pass iteration without image deformation; (c2) a three-pass iteration with
image deformation.
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improved by combining pyramidal PIVand IID, as shown in
Figure 8(c2). The conventional PIV can resolve the small-
scale structures by reducing the size of the IW. However, the
incremental outliers decreased the reliability of the mea-
surement.

3.3 Two-dimensional homogeneous turbulence

Apart from the vortical cellular flow described in the pre-
vious section, the 2D homogenous and isotropic turbulent
flow is adopted to evaluate the performance of the present
method. The velocity data was downloaded from the Internet
(http://fluid.irisa.fr/data-eng.htm) and was generated by the
Cemagref team [25] in Rennes, France. One instantaneous
field among the data is used to generate particle image pairs
with a size of 512×512 pixels. The Gaussian white noise
levels of 0% and 40%were added to the image pairs. The ppp
is set to 0.15 to generate high quality images. In this test, a
comparison between pyramidal PIV and conventional PIV is
performed to check the resolution and accuracy. For the
pyramidal PIV, two configurations are adopted. The size of
the sub-IW is six pixels, and the lmax is equal to four in the
first configuration. The size of the sub-IW is four pixels and

the lmax is equal to five in the second configuration. For
conventional PIV, a series of configurations with different
final IWs (4 to 48 pixels) are tested. The IID is used in both
methods. Figure 9 displays the instantaneous vortex map (the
top row) and error distribution (the bottom row) of the tested
velocity field without artificial imaging noise. The maximum
displacement is approximately about 3.5 pixels. The error
vectors are calculated as the difference between the exact
DNS data and the computed data. The vectors are down-
sampled to a space of 12 pixels to provide a clear display.
Figure 9(a) and (b) shows the results of the conventional PIV
with a final size of 6 and 30 pixels, and Figure 9(c) shows the
result from the pyramidal PIV (first configuration). From the
distributions of the error magnitude Figure 9(a2)–(c2), it is
clear that the smaller IW (6 pixels) can introduce much
higher noise than larger IW (30 pixels). The error of the latter
always locate at high-velocity-gradient regions even though
the images are deformed according to the velocity. The error
of pyramid PIV (Figure 9(c)) is much smaller than that of
conventional PIV.
Figure 10 shows the RMSE of the u-component as a

function of the IW size. The errors of the conventional PIV
are estimated for different IW sizes, and the errors of the

Figure 9 (Color online) The instantaneous raw vortex field (the top row) and corresponding error distribution (the bottom row) of the test data without
artificial imaging noise. (a) The result of the conventional PIV (final IW is 6 pixels); (b) the result of the conventional PIV (final IW is 30 pixels); (c) the
result of the proposed pyramidal PIV with sub-IW=6 pixels and lmax=4. The error vectors in (a2)–(c2) represent the difference between the exact DNS field
and the measured velocities field. The filled contour maps display the vortex field and the error magnitude, respectively. All the computed velocities are raw
data without smoothing.

874 . . . . . . . . . . . . . . . . . . Wang H P, et al. Sci China Tech Sci June (2018) Vol.61 No.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874

http://fluid.irisa.fr/data-eng.htm


pyramidal PIV are estimated at each layer. The dashed lines
with an x symbol and the solid lines represent the results of
images with and without Gaussian white noise, respectively.
In conventional PIV, the uRMSE presents a lowest value at the
optimal size of the IW, which is the result of the balance
between the effects of modulation and random noise. It is
difficult to determine the optimal IW size in advance because
it is infeasible to estimate the effects of seeding density and
imaging noise. For pyramidal PIV, the errors in the first two
layers with a large IW is identical to conventional PIV re-
sults. Different configurations of the pyramidal PIV show
that the error almost monotonically decreases with a decrease
in the size of the IW. The error in the pyramidal PIV at the
smallest IW is much lower than that in conventional PIV at
the same IW size and approximately equal to the lowest
uRMSE of conventional PIV. This suggests that the pyramidal
PIV is a robust and straightforward way to approach the
optimized processing condition.

The details of the energy spectra of the u-component along
the X-axis are presented in Figure 11. The results are ob-
tained from the images without noise. The solid lines re-
present the results of conventional PIV and pyramidal
method. The dashed lines indicate the cutoff frequency of the
IW, and the energy spectra to the right side of the dashed
lines are artificial for modulation effect. The parameter kx

denotes the streamwise wavenumber. The spectrum of IW=6
pixels is contaminated by the random noise because of the
small size of the IW. For a larger IW (IW=30 pixels), the
energy is underestimated because of the strong modulation
effect. The spectra of IW=18 and sub-IW=6 are both closer
to the result of DNS, and the pyramidal PIV is slightly
greater than IW=18 at high wavenumbers. The error of the
pyramidal PIV approximately equal to the optimal IW in
conventional PIV without image noise (also shown in Figure
10). It indicates that the pyramidal PIV can rechieve the
optimal result of conventional PIV.

4 Experimental assessment on turbulent
boundary layer

The pyramidal method was applied to resolve the near-wall
velocity profile of the TBL under actual flow conditions. The
experiment was conducted in a water tunnel at the Beihang
University in China. A flat acrylic glass plate with dimen-
sions of 14.4×1 m2 was vertically mounted in the tunnel to
generate the desired plate TBL. The distance between the
plate and the sidewall was 0.6 m, which was much larger
than the thickness of the boundary layer. The turbulent flow
was tripped by a spanwise attached tripwire. The tripwire
had a diameter of 3 mm and was located 100 mm down-
stream of the leading edge. The measured plane was parallel
with the wall, and its center was located 12 m from the
leading edge of the plate. The experimental configuration is
depicted in Figure 12. The near-wall flow was measured by a
time-resolved 2D PIV system. A continuous 532 nm semi-
conductor laser with a thickness of approximately 1 mm was
used to illuminate the tracer particles in the flow, whose
mean diameter was approximately 20 μm. The laser was
perpendicular to the plate and located at the center of the
spanwise. The particle images (2048×2048 pixels, 16 bits)
were recorded by a high-speed FASTCAM SA2 CMOS
camera at a rate of 1000 Hz. To get the near-wall velocity, an
objective with a 180-mm long-focus length was used, and the
imaging region included the wall of the plate. The distance
between the lens and the measured region (36×36 mm2) was
approximately 45 cm. The given experimental settings yiel-
ded a high magnification of 55 pixels/mm, and the maximum
displacement was approximately 16 pixels.
Note that the seeding density in the near-wall region was

lower than that seen in the normal PIV. Therefore, the ad-

Figure 10 (Color online) The RMSE of u-component as a function of
size of IW. The error of the pyramidal PIV is estimated at each layer. The
solid lines are the results of the perfect images, while the dashed lines are
obtained from the images with 40% Gaussian white noise.

Figure 11 (Color online) Energy spectra of the u-component with a log-
log representation. The results were obtained from the images without
noise. The dashed lines indicate the cutoff frequency of the IW. The
parameter kx denotes the streamwise wavenumber. The details in the da-
shed box are enlarged within the small axis.
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jacent odd particle images were averaged to generate a new
image series with higher ppp. Then, the images were pre-
processed using historical minimum removal, sliding back-
ground removal, and a Gaussian smoothing (3×3 kernel
size). The ppp of the image was approximately 0.004 after
preprocessing to remove noise (the peaks, whose intensity
was larger than 5000 counts, were detected as particles). To
perform a comparison between the conventional PIV method
and the pyramidal method, 120 image pairs were randomly
selected from the data sets. There was no significant re-
flection on the wall of the raw images.
The final size of the IWof the conventional PIV was set to

50×50 pixels, and the overlap factor was 80%. There were
approximately 10 particles in the IW. This configuration
yielded a velocity field with 201×201 grid points. The outlier
rate had reached 10% because of the low seeding density. For
pyramidal PIV, five layers were used to resolve the velocity,
the size of the first layer is 90×90 pixels, and the size of the
sub-IW is 10×10 pixels. The coarse CC map will be used to
refine the CC map of the sub-IWs. A three-pass image de-
formation analysis was utilized in both the methods. The
intermediate velocity field was validated by a normalized
median test [19] and smoothed by a 3×3 Gaussian kernel
with a standard deviation of 0.6, while the velocity field of
the final iteration was validated without smoothing. Under
these configurations, the computational cost of pyramidal
CC was approximately about twice that of conventional CC.
The basic properties of the TBL were estimated by the

measurement of laser Doppler velocimetry (LDV). The
Musker profile method proposed by Kendall and Kooches-
fahani [26] was applied to fit the LDV data and estimate the
basic properties of the TBL. The thickness of the boundary
layer was 154.2 mm, and the skin friction velocity u was
equal to 13.1 mm/s when the free streamwise velocity U
was approximately 328.4 mm/s. The inner length scale y *
was approximately 0.077 mm. The Reynolds number based
on momentum thickness (Reθ) and skin friction velocity (Reτ)
were approximately 5039 and 2010, respectively.
A single snapshot of the TBL flow is shown in Figure 13.

In Figure 13(a), the instantaneous velocity field and vorticity

field are obtained from conventional PIV with a window size
of 50 pixels and an overlap factor of 80%. In Figure 13(b),
the results are carried out with 5 layers pyramidal PIV with
sub-IW of 10 pixels. The negative vorticities in the inner
layer are generated due to the non-slip condition. The shear
layer in the bottom figure exhibits much more clearly than
that in the top figure. The mean velocity profile and the
fluctuating velocity profile obtained by different methods are
given in Figure 14. The solid lines are the results of pyr-
amidal PIV and conventional PIV, respectively. The x-mar-
kers represent the result of the LDV. As seen in the figure,
obvious differences appear in the near-wall region (y+<10)
for the mean and fluctuating profile owing to the high ve-
locity gradient. The curve of pyramidal PIV is much closer to
the LDVresult than that of conventional PIV. For example, at
y+=1.4, the mean velocity of the present method and con-
ventional method are 1.23 and 2.75, respectively, while the
fluctuating values are 1.62 and 2.45, respectively. The results
of the pyramidal PIV are much closer to the linear law for a
viscous sublayer. The results of the pyramidal PIV and LDV
are slightly lower than the linear law indicated by the dashed
line, and the velocity fluctuation of pyramidal PIV is still
higher than the LDV data. In the logarithmic region, the
fluctuation of pyramidal PIV is higher than the conventional
PIV, and the pyramid method is much closer to the LDV data,
which indicates that the small-scale flow structures can be
better resolved by the pyramidal PIV.

5 Conclusions

Limited by the particle density and image noise, the con-
ventional PIV had to adopt a proper size of the IW to guar-

Figure 12 (Color online) Turbulent boundary layer experimental set-up.

Figure 13 (Color online) Velocity vectors and vorticity contours for (a)
conventional PIV and (b) pyramidal PIV in TBL experiment. Top: con-
ventional PIV, bottom: pyramidal PIV.
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antee accuracy and smoothness of the velocity. In practice,
the optimal size of the IW is difficult to estimate in advance.
The method presented in this study, spatial pyramidal cross
correlation, could reduce the error to the lowest level with a
small sub-IW size. Based on the frequency response of CC,
the local velocity was predicted and corrected in a simple and
robust manner. The key parameters are the size of the sub-IW
m and the total number of levels in the pyramid lmax. The
former is much smaller than the size of the IW in conven-
tional PIV, however, it is also determined by the imaging
noise and seeding density. It is suggested that there should be
at least one particles in the sub-IW. The parameter lmax must
be great than three and guarantee the robustness for the first
two layers. Therefore, the sizes of the IWs in the first two
layers are slightly larger than the size in conventional PIV.
The performance of this method was assessed with three
different flow types. The results indicated that the modula-
tion effect of the MA can be reduced, and the small-scale
structures can be resolved by this method. Specifically, when
combined with iterative image deformation, this method
further improved the accuracy to a level equal to that of the
optimal conventional PIV. The application of this method to

a TBL experiment showed that the near-wall velocity profile
is better resolved by this method with time-consuming
doubled versus the conventional PIV. The recently increasing
interests in spatial-temporal energy spectra raise the re-
quirement of space-time accurate velocity from PIV mea-
surements [27–30]. The proposed method will be useful for
this purpose. However, an increased noise level was also
observed in the energy spectrum owing to the truncation of
the predication and the noise of the images. This random
noise can potentially be reduced by low-pass filtering.
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