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Fish schools are fascinating examples of macro-scale systems with

collective behaviours. According to conventional wisdom, the establish-

ment and maintenance of fish schools probably need very elaborate

active control mechanisms. Sir James Lighthill posited that the orderly for-

mations in fish schools may be an emergent feature of the system as a result

of passive hydrodynamic interactions. Here, numerical simulations are per-

formed to test Lighthill’s conjecture by studying the self-propelled

locomotion of two, three and four fish-like swimmers. We report the emer-

gent stable formations for a variety of configurations and examine the

energy efficiency of each formation. The result of this work suggests that

the presence of passive hydrodynamic interactions can significantly

mitigate the control challenges in schooling. Moreover, our finding regard-

ing energy efficiency also challenges the widespread idea in the fluid

mechanics community that the diamond-shaped array is the most

optimized pattern.
1. Introduction
Collective behaviours of self-propelled objects immersed in fluid have recently

become a trans-disciplinary research focus which has attracted attention from

biologists, physicists, applied mathematicians and engineers. Examples of the

systems studied include insect swarms [1,2], fish schools [3,4], bird flocks

[5–7], bacteria swarms [8,9] and assemblies of active micro-particles [10,11].

To date, most of the works were concerned with micro-scale systems. From

the perspective of fluid mechanics, understanding collective behaviours in

macro-scale systems is more challenging due to the complexity associated

with increased Reynolds number.

Fish schools represent one typical example of macro-scale systems with

emergent collective behaviours. The study of the fish schooling phenomenon

has a long history in zoology and ethology [3]. This fascinating phenomenon

also inspired the development of theoretical models by physicists and mathe-

maticians [12–15]. Despite the past efforts, two riddles remain unsolved.

First, what is the reason for the aggregation of a large number of fish?

Second, how do fish maintain the orderly patterns during swimming?

To answer the first question, several reasons have been suggested. The

possibilities include social and genetic factors [16], reducing predation

[17,18], advantages in feeding [19] and also energy benefits due to hydrodyn-

amic factors [13,14,20,21]. With regard to the benefits of swimming in schools,

the diamond pattern was once thought to be the most optimized pattern for

reducing energy expenditure [13,14]. Although the experimental evidence to

support this was largely lacking and some contradictory results have been

obtained in natural systems [22,23], this is still the most widespread idea

in the fluid mechanics community. In a recently study, other patterns
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Figure 1. An FSI-driven swimmer which emulates a fish performing undu-
latory locomotion: (a) schematic diagram for the computational model;
(b) wake structure represented by the vorticity contours. (Online version
in colour.)
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such as line, phalanx and rectangle, were also found

to enjoy some hydrodynamic advantages over solitary

swimming [24].

As to the second question, the conventional view is that

fish are smart enough to subtly tune their swimming gaits to

position themselves at the preferred locations in perturbed

flows. Thus, the synchronized swimming in fish schools may

require complex collective decision and feedback control mech-

anisms [25]. Following this philosophy, some computational

models for two tandem fish in a sustained ‘leader–follower’

configuration have been developed recently. In these works,

the optimized swimming gaits of the follower were

selected via minimizing expended power [26] or reinforcement

learning [27,28].

In this regard, a rather different view was proposed by Sir

James Lighthill in the 1970s [29]. He posited that the orderly

patterns can spontaneously emerge and remain stable with

the aid of ‘passive forces’ that originate from the flow-

mediated interactions. He also drew an analogy between

the grouping of fish and the formation of crystals by liquid

molecules. The hypothesis that ‘passive forces facilitate the

coordinated grouping of swimming fish’ is termed the Light-

hill conjecture. Although it is theoretically elegant, this

scientific hypothesis has been barely touched for a long

time (neither proved nor disproved).

Recently, some progress has been made with respect to

the Lighthill conjecture. Several numerical and experimental

studies were carried out to investigate the interactions

between two self-propelled swimmers in a ‘leader–follower’

configuration [30–32]. Both swimmers were modelled

as flapping foils with prescribed heaving motions and

self-propulsion was permitted in the horizontal direction.

The results indicated that the hydrodynamic interactions

alone were sufficient to generate coordinated collective

locomotion. If both swimmers were independently actuated,

the inter-spacing was also found to be dynamically

determined [30,32].

The above works shed some light on the critical role that

‘passive forces’ have played in the grouping of active swim-

mers. However, the scenarios considered in those works

were very dissimilar to that of fish schooling. First, fish

use wave-like undulations to propel themselves forward,

while the kinematics of the swimmers in those studies

somewhat resembled those observed in the flapping

wings of birds. Second, only the ‘leader–follower’ configur-

ation of two swimmers was examined. It is thus not clear

whether those results can be extended to more complex

configurations.

In the present work, we explore the validity of the

Lighthill conjecture by using a computational model

which bears a closer resemblance to the fish schooling pro-

blem than the ones used in [30–32]. More specifically

speaking, we study the schooling of two, three and four

self-propelled fish-like swimmers and examine the emer-

gent stable formations for the in-line, side-by-side and

staggered configurations. The present study is a natural

extension of [30] but it is also significantly different from

it. We believe that it represents one important step forward

towards a full understanding of the role that hydrodynamic

interactions play in the establishment and maintenance of

fish schools. Besides, the results of this study can also pro-

vide useful insight into the control of unmanned

underwater vehicle (UUV) formations.
2. Computational model and methodology
2.1. Computational model
A thin elastic filament is used as a proxy for a fish performing

undulatory locomotion (figure 1a). The swimmer is actuated

by the prescribed sinusoidal heaving and pitching motions at

its head. The specific forms of the vertical displacement and

the rotating angle imposed at the head are y(t) ¼ y0 þ
Acos(2pft þ f ) and u(t) ¼ u0cos(2pft þ f 2 p/2), respect-

ively. Here y0 is the equilibrium lateral position of the

heaving motion, f is the actuation frequency, A and u0 are

the heaving and pitching amplitudes, f is the phase angle.

To ensure free swimming, the horizontal displacement of

the head is not constrained.

The self-propelled swimming of the filament is governed

by the two-dimensional incompressible Navier–Stokes

equations, together with the nonlinear dynamics equations.

The governing equations for the fluid flow can be written

in a dimensionless form as

@u

@t
þ (u�r)u ¼ �rpþ 1

Re
r2uþ f (2:1a)

and

r�u ¼ 0, (2:1b)

where u is the velocity vector and p is the pressure, f is the

forcing term which represents the effect of the immersed

body on the flow. Re is the flapping Reynolds number

which is defined as Re ¼ (UrefL)/n, where Uref, L and n are

the reference velocity, the length of the filament and the kin-

etic viscosity of the fluid, respectively. Here the reference

velocity is chosen to be the maximum trailing edge velocity

for a rigid filament when only the sinusoidal pitching
motion is imposed at the leading edge, i.e. Uref ¼ 2pu0fL.

The physical meaning of the Reynolds number is the ratio

of inertial force over viscous force. In some references, the

Reynolds number based on the swimming velocity is also

used. The swimming Reynolds number and the flapping Rey-

nolds number are usually of the same order in magnitude

and proportional to each other. In the realm of Reynolds

numbers typical of adult fish swimming, the inertial forces

are dominant and viscous forces are negligible (i.e. Re� 1 ).

http://rsif.royalsocietypublishing.org/
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The governing equations for the motion of the flexible

filament can be written in a dimensionless form as

b(s)
@2X

@t2
� @

@s
j(s)

@X

@s

� �
þ @2

@s2
g(s)

@2X

@s2

� �
¼ �F (2:2a)

and

@X

@s
� @X

@s
¼ 1, (2:2b)

where X is the position vector, s is the Lagrangian coordinate

along the arc length, F is the Lagrangian forcing term due to

interactions with the fluid. In the framework of the immersed

boundary method for solving the coupled fluid-and-structure

system, the forcing terms f and F are two forms of the inter-

action force between the filament and the ambient fluid. f and

F can be transformed from one form to the other by using an

interpolation kernel function [33].

The mass ratio b, the dimensionless tension coefficient j

and the dimensionless bending rigidity g are defined as

b ¼ (rsd)/(rfL), j ¼ T=(rfU
2
refL) and g ¼ B=(rfU

2
refL

3), respect-

ively. Here rs and rf are the densities of the filament and the

fluid respectively, d is the thickness of the filament, T and B
are the (dimensional) tension coefficient and the (dimen-

sional) bending rigidity of the filament. In this work, b, j

and g are functions of s and not constants. j(s) is governed

by a Poisson-type equation which can be used to enforce

the inextensible constraint (equation (2.2b)) on the filament

[33]. b(s) and g(s) are two exponential decay functions

which will be given later in subsection 2.2.

Superficially, the computational model here looks too sim-

plified and remote from the real problem of fish schooling.

However, some important key elements of the real problem

are still retained in the model. It can thus serve as the starting

point for the investigations of more complicated systems.

More explanations are provided here on the connections

between this model and the real problem.

The motion of the swimmer’s body is driven by the

fluid–structure interaction (FSI). This passive elastic mechan-

ism is completely different from the internal actuation

mechanism in fish swimming. However, in this work, hydro-

dynamic interaction (rather than actuation) is the only focus

and the primary factor that determines the hydrodynamics

is the body kinematics. Thus, the model problem bears a

close resemblance to the real one, as long as the swimming

gaits are similar. The desired swimming gait is reproduced

by tuning the material properties rather than directly pre-

scribing the deformation. The reasons for such practice are

as follows. First, as a natural extension of [30], a similar actua-

tion mechanism is adopted in the present study. Second, the

passive mechanism has been extensively used in the previous

studies [34–36]. The studies on the relation between swim-

ming gait and rigidity in these works can be very helpful

in determining the values of some parameters. Third, it has

been verified experimentally that the passive actuation mech-

anism in fish played an important role when swimming in a

perturbed flow (such as the flow behind a cylinder) [37].

The frozen degrees of freedom (i.e. lateral displacement

and rotation), which are inherited from [30], pose a great

limitation to the present model. However, we believe that

the permission of free swimming in the streamwise direction

is already one big step forward. Since the pioneering work of

Weihs [13], most models were built by fixing the swimmers’

positions and placing them in a uniform stream. The only
exceptions were references [30–32], in which the in-line con-

figuration was studied without any constrains on the

streamwise motions. The present work represents another

important step forward by extending the results of [30] to

fish-like swimmers and more complicated configurations.

The two-dimensional model is a considerable simplifica-

tion of a three-dimensional school by looking only at one

horizontal layer of fish. An assumption is first made such

that the finite vortex sheets from each layer are combined

into the infinite sheets along the depth. These vortex sheets

are then assumed to roll up into two-dimensional arrays of

vortices [13,14]. The assumptions above have been verified

experimentally for fish swimming in shallow water (which

is a mathematical equivalence to a single-layer school) [38].

In addition, some experiments were recently conducted to

study the stable configurations for fish schooling in shallow

water tunnels [39,40]. In this study, we aim to apply the pre-

sent results to fish schooling in shallow water, such as the

experiments of [39] and [40]. Moreover, the comparison of

the present results with the analytic solutions from [13,14]

can also help us gain some new insight into the problem.

2.2. Control parameters
Since most schooling fish are carangiform swimmers, here we

attempt to emulate the carangiform gait on the filament. To

achieve this aim, the mass ratio b and the dimensionless

bending rigidity g are assumed to exponentially decay from

the head to the tail and are expressed by two exponential

decay functions as

b(s) ¼ a1e�b1sm
(2:3a)

and

g(s) ¼ a2e�b2sn
: (2:3b)

The coefficients in equations (2.3a) and (2.3b) are determined

such that (i) the ranges of b and g and are comparable

with those of some biological propulsors [41–43]; (ii) the con-

straint b2 ¼ 3b1 is satisfied and (iii) a carangiform swimming

gait similar to that of the red nose tetra fish [39] is produced.

The relation between b1 and b2 in (ii) can be derived as fol-

lows. Here we assume that the variations of b and g along

the body are caused solely by non-uniformity in the thickness

d. Since b/ d and g/ d3, we have g/ b3. From the expo-

nential distributions depicted by equations (2.3a) and (2.3b),

b2 ¼ 3b1 is easily derived (provided that m ¼ n holds).

The parameters for controlling the decaying rates of these

two quantities are determined through a cut-and-try pro-

cedure by regarding the swimming gait of red nose tetra

fish Hemigrammus bleheri as the object for mimicking. The

reason for choosing this particular type of fish is the avail-

ability of experimental data for the schooling patterns [39].

The values of all coefficients in the exponential decay func-

tions are listed in table 1, and the resulting ranges of b and

g are 5 � 1023–0.1 and 1.2 � 1024–1.0, respectively.

The swimming gait of the artificial swimmer is obtained

by numerically solving the FSI problem, under the values

of the control parameters listed in table 1. After the steady

locomotion state is reached, we compare the swimming gait

of the artificial swimmer with that of the red nose tetra fish

provided in [39]. It is found that the two swimming gaits pos-

sess similarities in the tail-beating amplitude, the ratio of

wavelength to body length, the wave propagation speed,

http://rsif.royalsocietypublishing.org/


Table 1. Values of the control parameters used in the simulations.

parameters values

flapping Reynolds number (UrefL/n) 600a

dimensionless heaving amplitude (A/L) 0.005

pitching amplitude (u0) 58

coefficients in the exponential decay functions b(s) ¼ a1e�b1 sm

and g(s) ¼ a2e�b2 sn

a1 0.1

b1 3.0

m 2.0

a2 1.0

b2 9.0

n 2.0
aThe Reynolds number defined by the swimming speed, the body length
and the kinematic viscosity of the fluid is roughly 440.
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etc. (see electronic supplementary material, figure S1 and

table S1, for detailed comparisons). The Reynolds number

defined by the swimming speed, the body length and the

viscosity of the fluid is roughly 440, which is lower by no

more than one order of magnitude when comparing with

the Reynolds number range of 1000–6000 measured in the

experiments of [39]. The wake structure produced by the

fish-like swimmer is shown in figure 1b and a reversed

Karman vortex street of ‘2S’ wake mode (two vortices per

flapping cycle) is clearly seen. This is the typical ‘footprint’

left behind by an inertial swimmer in fluid.
2.3. Material and methods
We use the immersed boundary method in the framework of the

discrete stream-function formulation to solve the two-dimen-

sional incompressible Navier–Stokes equations [44,45]. The

algebraic multigrid method is used to solve the linear systems

arising from the discretization. The computer code is parallelized

using the message passing interface protocol [46]. The dynamics

equations for the elastic filament are solved by using the finite

difference method on a staggered grid. We use the loosely

coupled method to handle the two-way interaction between the

fluid flow and the motion of the filament [33]. This code has

been thoroughly validated by using a variety of benchmark

cases and the results match well with those from the references

[33,44–46].

A rectangular computational domain with the size of [2 30L,

30L] � [2 6L, 6L] is used in the simulations. The no-slip bound-

ary condition is enforced at the four boundaries, which are at

least 5L away from the swimmers during swimming. This

domain size is sufficiently large to minimize the artefacts

caused by the unphysical blocking of the far-field boundaries

[47]. The no-slip condition on the surface of the swimmer is rea-

lized by using the immersed boundary technique. For solving the

dynamic equations of the filament, the free-end condition is

enforced at the tail. As to the boundary condition imposed at

the head, the horizontally free swimming condition is combined

with the prescribed heaving and pitching motions [33]. Together

with the dynamic equation which governs the motion of the fila-

ment, a Poison-type equation for the tension coefficient is also

solved to enforce the inextensible constraint on the filament [48].

A multiblock Cartesian grid with hanging nodes is used for

discretizing the Navier–Stokes equations. This grid contains six
sub-grids with different levels of refinement, with a total cell

number of 2.2 million. The mesh spacings are 0.16L and 0.005L,

for the coarsest and finest sub-grids, respectively (electronic sup-

plementary material, figure S2). The grid for discretizing the

dynamics equation has a uniform spacing of 0.005L. The time

step used in the simulations are selected such that the maximum

Courant–Friedrichs–Lewy (CFL) number never exceeds 0.5.

To test the convergence of the solutions to the refinement of

grids, solitary swimming of the elastic filament with the control

parameters listed in table 1 is simulated by using three different

mesh resolutions. The detailed information for the meshes used

are listed in the electronic supplementary material, table S2. The

time histories of the instantaneous swimming speed of the elastic

filament, obtained at different mesh resolutions are shown in

the electronic supplementary material, figure S3. The convergence

behaviour of the instantaneous swimming speed with the refine-

ment of mesh can be clearly seen. Apparent difference exists

between the results obtained at h ¼ L/100 and h ¼ L/200. As

the mesh is further refined to h ¼ L/300, only a minor difference

in the instantaneous swimming speed can be detected. To be

more specific, the percentage difference in the results obtained

at h ¼ L/300 and h ¼ L/200 is only 3.8%. As a compromise

between the accuracy and the cost of computation, all simulations

in this work are conducted at the resolution of h ¼ L/200.
3. Results
3.1. Emergent stable formations
We now examine the collective swimming of two, three and

four ‘fish’. In these fish schools, all individuals are assumed

to possess the same body size and also synchronize in one

common longitudinal direction (i.e. the negative x direction

which is also the swimming direction). The flapping fre-

quencies and amplitudes for all individuals are the same

(and also the same as those for a solitary swimmer). Several

configurations, namely, the in-line, side-by-side and stag-

gered arrangements of two fish, the side-by-side and

staggered arrangements of three fish and the rectangular

and diamond-shaped arrangements of four fish, are

considered here.

In these arrangements, the lateral spacing between any

two individuals in one school is prescribed as 0 or d, while

the phase difference between any two individuals is set to

0 or p. The range of lateral spacing considered here is

0.15L � d � 0.65L. The minimum and maximum values of d
are determined by considering the following three factors.

First, there is some biological evidence that the preferred lat-

eral spacing in fish schools lies in the range of 0.16L to 0.6L
(electronic supplementary material, table S3). Second, col-

lision with the lateral neighbours is observed in some

simulation cases if d , 0.15L. Third, if d . 0.65L, we find

that stable formations are not achievable within the limited

swimming distance (roughly 45L) set by the size of the com-

putational domain. To seek for all possible stable formations

as best as we can, a variety of initial streamwise spacings are

tried for each prescribed value of d (table 2). The stable for-

mations can be clearly identified from the asymptotic

behaviours in the time histories of streamwise spacing

between individuals (some examples are shown in figure 2).

Here we have to admit that some possible stable formations

can still be left out despite the thorough search conducted.

In figure 3, the stable formations observed in the simu-

lations are symbolized in a two-dimensional space. The

http://rsif.royalsocietypublishing.org/


Table 2. Values of lateral spacing and initial streamwise spacing for seeking the stable formations.

lateral spacing (L) initial streamwise spacing (L) configuration type

two fish 0 1.5, 2.0, 2.2, 2.4, 2.5, 2.6, 2.8, 3.0, 3.5, 4.0 in-line

0.2, 0.3, 0.4, 0.5, 0.6 1.1, 2.0 staggered

0.15, 0.18, 0.2, 0.25, 0.3, 0.32, 0.35, 0.4, 0.5, 0.6 0 side-by-side (IP)

0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6 0 side-by-side (AP)

three fish 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.65 0 side-by-side (IP)

0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6 0 side-by-side (AP)

four fish 0.15, 0.2, 0.25 1.0, 1.1, 1.25 diamond-shaped

0.5, 0.6 2.0, 2.5, 3.0, 3.5 rectangular

(a) (b) (c)two fish: compact-inline
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Figure 2. Time histories of the instantaneous streamwise distance l between the head of the reference fish and those of other fishes. (a) Two fish under the in-line
pattern; (b) three fish under the staggered II pattern; (c) four fish under the diamond-shaped pattern. Please note from (a) that no stable in-line formations can be
achieved if the initial separation distances are larger than 2.8L. (Online version in colour.)
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head position of one swimmer in each school (denoted by the

stars in figure 3a) is placed at the origin in figure 3b and also

denoted by a star. The head positions of other individuals in

the same school are labelled by a variety of symbols. Please

note that in the achieved stable formations, the streamwise

spacings between any two individuals are dynamically
determined and not prescribed.

The red solid circles represent the side-by-side formations

of two fish with an anti-phase pattern. It is seen that no

streamwise shifts are observed in these formations. The red

open circles represent the side-by-side formations composed

of two fish with an in-phase pattern. Among these for-

mations, the largest streamwise shift of 0.12L is found at

the lateral spacing of d ¼ 0.3L. The flow structures corre-

sponding to the side-by-side formations of two fish are

shown in figure 4a,b.

The red pluses represent two possible in-line formations

composed of two fish. The first one is the compact formation

in which the two fish are almost in contact with each other

(with a small gap distance of 0.04L). Thus, the two fish

behave just like one elongated fish in solitary swimming.

The second one is the loose formation in which the heads

of two fish are approximately 2.44L apart. The flow structures

corresponding to the two in-line formations are shown in

figure 4c,d. Similar compact [30] and loose in-line formations

[30,32] have also been found previously in the studies of two

self-propelled rigid or slightly deformable flapping foils. This
suggests that the emergence of stable formations is a generic

feature of interacting active swimmers. In contrast with the

two in-line formations found here, the existence of multiple

stable in-line formations has been revealed in the studies of

[30,32]. This implies that group cohesiveness of the in-line

formations depends strongly on the swimming gaits adopted.

The red upward-facing triangles represent the staggered

formations composed of two fish. Similar to the in-line for-

mations, the staggered formations can also be categorized

into the compact and loose types. The compact staggered for-

mations are found at d ¼ 0.2L and d ¼ 0.3L, with a

streamwise shift of 1.04L (or a gap distance of 0.04L). The

loose staggered formations are found at d ¼ 0.3L and d ¼
0.4L, with a streamwise shift of 1.92L (or a gap distance of

0.92L). The flow structures corresponding to the staggered

formations of two fish are shown in figure 4e,f .

The blue solid circles represent the formations composed

of three fish with an anti-phase pattern (the phase difference

between lateral neighbours is p). It is seen that an exact

side-by-side formation of three fish can only be achieved at

the lateral spacing of 0.3L. For other lateral spacings, the

upper and lower fish lead the middle fish in the streamwise

direction. The maximum streamwise shift in this type of for-

mations is approximately 0.10L, which is achieved at the

lateral spacing of 0.6L. The blue open circles represent

the side-by-side formations composed of three fish with an

in-phase pattern. It is seen that the upper and lower fish

http://rsif.royalsocietypublishing.org/
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are exactly side-by-side while the middle fish lags behind in

the streamwise direction. The largest streamwise shift

between the middle fish and the upper (or the lower) fish is

found to be 0.12L, which is achieved at the lateral spacing
of d ¼ 0.3L. The flow structures corresponding to the

side-by-side formations of three fish are shown in figure 4g,h.

The blue pentagons represent the echelon formations of

three fish (with an in-phase pattern). In this type of
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formations, the bottom fish is leading, while the middle and

top ones lag behind in turn. The maximum streamwise shift

between two lateral neighbours is 0.12L, which can be

achieved at the lateral distance of 0.25L. The flow structure

corresponding to the echelon formation is shown in figure 4i.
The blue rightward- and leftward-facing triangles

represent the staggered formations composed of three fish

(with an in-phase pattern). Type I staggered formation

(denoted by the rightward-facing triangles) is achieved at

the lateral spacing of 0.15L. In this type of formation, the

top fish leads the middle one by roughly 1.0L, while the

middle fish leads the bottom one by only 0.1L. Type II stag-

gered formation (denoted by the leftward-facing triangles)

is achieved at the lateral distance of 0.2L. In this type of for-

mation, the middle fish leads the other two by roughly

1.15L. The flow structures corresponding to the staggered

formations of three fish are shown in figure 4j,k.

The solid cyan squares represent the rectangular for-

mation composed of four fish. Two possible stable

formations of this type are found at the lateral spacings of

0.5L and 0.6L, respectively. The former can be categorized

as the compact formation in the sense that the two in-line

fish are only 0.04L apart from each other (this distance is

the same as that in the compact in-line formation of two

fish). The latter can be categorized as the loose formation in

which the two in-line fish are 1.36L apart (this gap is slightly

narrower than that of the loose in-line formation of two fish).

The flow structures corresponding to the rectangular

formations are shown in figure 4l,m.

The open cyan rhombuses represent the diamond-

shaped formation composed of four fish with an in-phase

pattern. This formation is only achieved at a lateral spacing

of 0.2L. In this formation, one middle fish leads the two

outer ones by 1.08L. These two outer fish are exactly side-

by-side and also lead another middle fish by 1.08L. The

corresponding flow structure for this formation is shown

in figure 4n. It is interesting to note that the diamond for-

mation observed here is more compact and shallower than

the one proposed by Weihs [14], where the lateral spacing

and streamwise spacings are 0.5L and 1.88L, respectively.

Another interesting finding is that this diamond formation

can only be achieved under the in-phase condition. (The dia-

mond formation with an anti-phase pattern was suggested by

Weihs [14], but such pattern is found to be unrealizable in

the simulations.)
3.2. Energetics
The energy efficiency of the swimmers in the stable for-

mations can be quantified by the cost of transport per unit

mass (COT), which is defined as the energy required for a

unit mass to travel a unit distance. COT is a dimensional

quantity which is formally defined as

COT ¼
�P�

m �U�
, (3:1)

where �P� is the (dimensional) averaged input power, �U� is the

(dimensional) averaged swimming speed, m is mass of the

swimmer.

COT can also be expressed as

COT ¼ f2LÐ 1
0 b(s) ds

�
�P
�U

, (3:2)
where �P and �U are the dimensionless input power and the

dimensionless averaged swimming speed, which are formally

defined as

�P ¼ 1

Tf

ðTf

0

ð1

0

[F(s, t) � @X(s, t)
@t

] ds dt (3:3)

and

�U ¼ 1

Tf

ðTf

0

@X1(0, t)
@t

dt: (3:4)

Here X1 denotes the x-component of the position vector X, Tf

is the dimensionless flapping period (i.e. Tf ¼ 2pu0).

The relative difference of COT between a fish in formation

swimming and that in solitary swimming can be computed

as

COT� COTs

COTs
¼ (�P= �U)� (�P= �U)s

(�P= �U)s

, (3:5)

where the subscript ‘s’ denotes solitary swimming.

The relative differences in COT of the swimmers in the

stable formations and that of a solitary swimmer are

shown in figure 5. It is seen that some formations can

result in a noticeable enhancement in energy efficiency (i.e.

reduction of COT), in comparison with that of a solitary

swimmer. The formations with relatively large COT

reductions are: (i) the side-by-side formations of two fish

with an anti-phase pattern (figure 4a, up to 16% reduction);

(ii) the compact rectangular formation of four fish (figure 4l,
14% reduction); (iii) the compact in-line formation of two fish

(figure 4c, 14% reduction); (iv) the side-by-side formations of

three fish with an anti-phase pattern (figure 4g, up to 13%

reduction); (v) the type-I staggered formation of three fish

(figure 4j, 11% reduction); (vi) the diamond-shape formation

of four fish (figure 4n, 9% reduction); (vii) the compact stag-

gered formation of two fish (figure 4e, 7% reduction). Please

note that the values listed above are the percentages of COT

reduction which are averaged among all members in the

same school.

For other formations, the COT is almost the same as that

of a solitary swimmer (the relative differences are within in

the range of 5%). For example, in the loose in-line formation

of two fish, almost no energetic advantages are gained. This

is in contrast with the finding in [30], where the follower can

enjoy up to 20% COT reduction in similar formations (which

were composed of two self-propelled rigid or slightly

deformable flapping foils). This implies that the energy effi-

ciency in the loose in-line formations can be sensitive to the

swimming gaits.

One finding that goes against our intuition is that the col-

lective swimming does not always lead to an increased energy

efficiency. For example, in the side-by-side formations with an

in-phase pattern and also the echelon formation, the energy

efficiencies are even lower than that of a solitary swimmer.

Moreover, the finding of the present study also challenges

the most widespread idea in the fluids mechanics community

that the diamond-shaped formation is the most optimized

schooling pattern [13,14]. It is manifest to us that the diamond

formation does not show any energetic advantages over sev-

eral other formations (such as the side-by-side formations

with an anti-phase pattern).
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4. Discussion and conclusion
Our result suggests that multiple stable formations of the

model fish school can be induced solely by hydrodynamic

interactions. In the achieved stable formations, the settled

streamwise positions are dynamically determined and are

also the stable equilibrium points in terms of the streamwise

hydrodynamic force. When perturbed, the hydrodynamic

forces with significant strengths tend to restore the original

positions [32]. For some individuals in certain formations,

the prescribed lateral positions also happen to be the stable

equilibrium points in terms of the lateral force or the

torque. Thus, these swimmers can stay in their lateral pos-

itions (or maintain their longitudinal orientations)

effortlessly. As one example, for the side-by-side formations

of two fish with an anti-phase pattern, d ¼ 0.37L and d ¼
0.32L are the two ‘sweet-spots’ in terms of the lateral force

and the torque, respectively (electronic supplementary

material, figure S4). Please note that these two ‘sweet-spots’

do not coincide with each other.

Generally speaking, the individuals in the stable formations

can experience non-zero lateral force and/or torque if their
lateral positions are not the ‘sweet-spots’ (such ‘sweet-spots’

may not even exist in some cases). Under such circumstances,

counteracting measures are necessary for keeping the lateral

positions and/or the body orientations. It is found that

among all stable formations observed in the simulations, the

magnitudes of lateral forces and torques are relatively small.

The maximum lateral force and torque only reach up to 16%

and 17% of the corresponding RMS values for a solitary

swimmer (electronic supplementary material, table S4).

The simple strategies for maintaining a stable formation

can thus be suggested as follows. First, all individuals synchro-

nize in one common longitudinal orientation. Second, the

actuation pattern which is the same as that of a solitary swim-

mer is adopted by all. Third, for fish, which mainly use bodies

and caudal fins for propulsion, other fins can be used to pro-

duce small counteracting lateral forces and/or torques. One

unresolved issue in justifying the strategies proposed here is

whether all members can always manage to synchronize in

one common longitudinal direction. Definite evidence has

been found that fish can maintain a consistent heading and

obtain guidance from an external reference (possibly related

to the geomagnetic field) [49].
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We can also argue that the ubiquity of unbalanced lat-

eral forces and/or torques due to asymmetry only exists

in schools of relatively small sizes. For larger schools, the

‘sweet spots’ can be easily found by the majority located

in the interior portion, while the effect of asymmetry is

only significant in the narrow region near the peripheries.

Thus, counteracting forces and/or torques are only

needed for the members located in this narrow region.

One important implication of the arguments above is that

lateral spacing is the parameter that can be fully controlled

by the fish during schooling (unlike the streamwise spa-

cing). The factors that determine the selection of a specific

lateral spacing may include: (i) collision avoidance, (ii)

force and/or torque balance and (iii) energy efficiency.

For the majority in a large school, only (i) and (iii) are the

main concerns.

Recently, possible biological evidence for ‘passive hydro-

dynamic interactions facilitating fish grouping’ has been

discovered in the experiments on live fish. Ashraf et al.
studied the collective swimming of two and three red nose

tetra fish Hemigrammus bleheri in a shallow water channel

[39]. This quasi-two-dimensional setting makes it easy for

comparisons with the results of the present work. In their

experiment, fish schools of side-by-side configurations

with noticeable streamwise shifts (which resembles those

shown in figure 4b,h,i) were observed. The presence of

streamwise shifts in the formations was then rationalized

by configuration optimization for maintaining a good trans-

fer of information within the fish pairs [39]. Here we provide

an alternative explanation: fish may rely on passive hydro-

dynamic interactions for grouping and the streamwise

shifts are the emergent features of the system. In the exper-

iments of [39], the streamwise spacing between the two fish

in the side-by-side formations was measured around 0.16L.

Intriguingly, the maximum streamwise spacing that is

achievable in the present simulations is very close to this

value (despite quite a few dissimilarities between the

two systems, such as the actuation condition, the geo-

metric shape and the Reynolds number). We also have to

admit that a perfect one-to-one match between the swim-

ming patterns found here and those observed in the

experiment does not exist. Some formations shown in

figure 4 never appear in the experiment of [39] and vice

versa (electronic supplementary material, table S5). Pre-

sumably, the reason for the mismatch can be mainly

attributed to the synchronization pattern in the lateral

neighbours. In the present simulations, an in-phase or an

anti-phase pattern is assumed (the phase difference is

fixed to zero or p). However, in the experiment of [39],

the periods of unsynchronization, in-phase synchroniza-

tion and anti-phase synchronization in a fish pair are

interspersed among each other.

Here, some attention is also paid to the selection

of swimming formations in fish schools. A reasonable

speculation is that under energy-demanding situations,

maximizing the energy efficiency becomes the selection cri-

terion. Some supporting evidence on this can be found in

another experimental study by Ashraf et al. [40], where

fish schools with up to nine members were examined. In

this experiment, formations with large streamwise shifts

among individuals were observed at their natural free

swimming speed. The ‘grouping units’ in such schools

resembled the patterns shown in figure 4k,m. At a much
higher swimming speed, however, the side-by-side pha-

lanx was the only formation observed. Moreover, the

lateral neighbours in the phalanx tended to coordinate

with each other in an in-phase or an anti-phase fashion

and the lateral spacings between them also appeared to

be much smaller than those in the formations observed at

their natural free swimming speed.

From the perspective of energy efficiency, clearly,

the anti-phase synchronization pattern is superior to the

in-phase one. However, the lateral neighbours did not

show a preference towards the anti-phase pattern in the

side-by-side phalanx observed in [40]. (In the side-

by-side formations of two fish and three fish observed at

relatively high swimming speed [39], the anti-phase

pattern was only slightly in favoured with respect to

the in-phase pattern.) A plausible explanation for this

phenomenon is still lacking.

It should be stressed, however, that even if the anti-phase

pattern is only utilized intermittently [40], the side-by-side

phalanx can still possibly outperform other formations in

terms of energy efficiency. As can be inferred from the COT

data shown in figure 5, in a side-by-side phalanx composed

of large number of swimmers, the majority (except the ones

at the top and the bottom of a school) may enjoy significant

COT reductions provided that a proper lateral spacing is

chosen (the COT reduction can reach up to 22% for the

middle fish in a three-fish formation with an anti-phase

pattern).

In this work, we provide a unique and somewhat contra-

rian view of how fish schools are established and maintained.

We believe that the control challenges of schooling are

significantly mitigated if fish can make the best use of the

flow-mediated interactions. This view is against the conven-

tional wisdom but is fully consistent with the picture of ‘a

school as a moving crystal of fish’ proposed by Sir James

Lighthill in the 1970s.

It should also be emphasized that the result of this study

cannot rule out the possibility that fish may also resort to

more complicated active control strategies for achieving

some purposes such as maximizing compactness or energy

efficiency of the schools. This explains the variety of configur-

ations observed in fish schooling and the constant switching

of positions within schools. In fact, the intricacies of fish

schooling are far from being fully understood, especially

when social behaviours are also involved. Thus, more

in-depth studies (including experimental, theoretical and

numerical ones) are still needed to eventually unveil

this secret.
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