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Abstract. Weak-light phase locking is a key technology for Taiji space gravitational wave detection and its path-
finder mission. Previously, the phase locking was achieved by a complicated technique, which controls the fre-
quency of the laser via a piezo-electric actuator (kHz range or more) and a temperature actuator (sub-Hz range).
We propose an easy phase-locking strategy, which is based on the electro-optic modulator (EOM). Compared
with the traditional way, this strategy only needs to modulate the driven voltage of the EOM, and the frequency
bandwidth can cover all ranges. An experiment is also established to prove the feasibility of the method. The
results show that the noises are <80 urad/Hz'/2 in frequencies from 0.2 to 1 Hz, and the thermal drift is the main
noise source in our recent system. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.0E.57.5.054113]
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1 Introduction

As a supplement to the observation of an astronomical event
by the electromagnetic (EM) radiation, the detection of the
gravitational wave (GW) offers an additional tentacle to
probe the dark side of our universe, where the EM interaction
is weak (perhaps no EM interactions at all), or the EM wave
fails to penetrate and reach the earth.'> Similar to the
EM radiation, the GW is also a broadband information car-
rier,> the spectrum of which spreads from 107 Hz to
>10 kHz.> The ground-based GW detectors, such as
LIGO (Laser Interferometer GW Observatory),*> Virgo
(Virgo GW observatory),° KAGRA/LCGT (Large-scale
Cryogenic Gravitational-wave Telescope),” IndIGO (Indian
Initiative in Gravitational Wave Observations),8 ET
(Einstein Telescope),” are sensitive to the medium—high fre-
quency GW signals from deca-Hz to kilo-Hz. However, the
GW signals in the medium—low frequencies from milli-Hz to
deci-Hz are believed to have much richer astronomical sig-
nificance. The information carried by such GWs can help us
to unveil the evolution of the universe, such as the large-scale
structure formation, massive black holes, and galaxies,
where the massive black holes are harbored in Ref. 10.
To build the medium-low frequency GW detector by
means of the laser interferometer, the effective arm length
needs to be millions of kilometer. Limited by the earth cur-
vature and seismic noise barrier, the medium—low laser inter-
ferometer GW detector has to be built in space.'""!?

The Laser Interferometer Space Antenna (LISA) is a
space mission to observe the GWs between 0.1 mHz and
1 Hz. It is scheduled to be launched into space in 2034 as
a European Space Agency L3 mission.!>!® Its technology
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demonstration mission, LISA pathfinder, was launched at
the end of 2015, successfully paving the way for LISA by
demonstrating the key technologies.'” Similar to LISA,
Chinese space mission—Taiji, the interferometer arm length
of which is 3 million km, initiated by the Chinese Academic
of Sciences in 2008, plans to be launched in 2033.'%%
Before the Taiji mission, there is also a pathfinder mission
to validate all the key techniques, such as the intersatellites
interferometer, the telescope, the beam pointing, the ranging
tone, the phase locking, and so on.?

The laser power of Taiji should be about 1 or 2 W because
of the limitation of its life span. After million kilometer trans-
mission, only a small fraction of the transmitted laser beam
can be received by the detector of the remote satellite
because of the large beam divergence and the finite aperture
(AP) of the telescope. Instead of the simple reflection, a tech-
nique called as weak-light phase locking (WLPL) will be
introduced into the remote satellite.”’'~> Finally, the high-
power slave laser carrying the complete phase information
of the transmitting light is sent back to the local satellite.
Similar to LISA, the precision of WLPL for Taiji is
27 X 107 rad/Hz'/?. For Taiji pathfinder, the requirement
is set to be 27 x 107 rad/Hz!/2. Traditionally, the phase
locking is always realized by controlling its frequency via
piezo-electric and temperature actuators on the slave laser
crystal.” This strategy is complicated and difficult to imple-
ment in an actual test. Electro-optic modulator (EOM) is an
optical device, which utilizes the electro-optic effect to
modulate a beam of light. The modulation can be imposed
on the phase, the frequency, the amplitude, or the polariza-
tion of the beam. Therefore, we can modulate the outgoing
beam of the laser through the EOM instead of controlling the
frequency of the laser. In this paper, we have demonstrated
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the phase locking based on the EOM for Taiji pathfinder in
principle.

In Sec. 2, experimental setups and optical layouts are
shown in detail. In Sec. 3, the phasemeter and EOMs,
which are the key elements of our experiments, are first cali-
brated. In Sec. 4, the phase-locking experiments are carried
out, and the corresponding results are shown for further
discussion.

2 Experimental Setups

The optical layouts of our experimental setups are shown in
Fig. 1. A solid-state laser (wavelength: 1064 nm, linear
polarized, and single mode) is used as the light source.
The light is divided by a 50/50 beam splitter (BS). One
of the beam directly accesses into an acoustic-optical modu-
lator (AOM), while the other beam accesses into the other
one after its spread direction is changed by a reflector.
When through the AOMs, both beams are frequency shifted,
and the first-order Bragg diffracted beams with the maxi-
mum power are selected by the APs. The difference between
the modulated values by AOMs is the frequency of the
heterodyne interferometric signal. After the APs, the two
beams are separately split into reflection and transmission
by BSs. Through several functional mirrors, the two reflec-
tion beams form a Mach—Zehnder (MZ) interferometer as the
phase reference, which is enclosed by the red square frame
with the mark “1” in Fig. 1. Meanwhile, the two transmission
beams are first passed through two EOMs (Thorlabs EO-
PM-NR-C2). One of the EOMs simulates the phase noises
of the free running laser, while the other is for the phase
divergence compensation between the two laser beams.
After that, the other MZ interferometer is formed as an
error signal in the phase-locking loop, which is enclosed
by the purple square frame with the mark “2” in Fig. 1.
Unlike the reference interferometer, there are two photode-
tectors (PDs). PD, is for the in-loop, and PDy, is for the out-
of-loop. The phase divergence between the in-loop signal
and the reference signal is measured by the phasemeter
and then delivered to the proportional integral derivative
(PID) controller. According to the phase divergence, the cor-
responding voltage, applied to EOM, is calculated by the

Laser

Fig. 2 The physical picture of the phase-locking optical systems.

controller for the phase compensation among the laser
beams. The optical system is put on an optical bench
enclosed by a cuboid acrylic cage to prevent air convection.
The actual physical picture of the optical system is shown
in Fig. 2.

3 Calibration

3.1 Phasemeter Sensitivity

A digital phasemeter with four channels is utilized in our
experiment, which is established on a commercial field-pro-
grammable gate array platform.?*?’ Prior to the experiment,
we have tested the linear property and the noise spectrum of
the phasemeter by a functional generator (Agilent 33522A,
two channels). In the linear test, two signals (1 MHz) from
the generator are, respectively, connected with the first (or
arbitrary) two channels of the phasemeter. Phase difference
values between the two signals are accurately modulated by
the phase modulation of the generator. The degree of the lin-
earity can be obtained by comparing the serial phase values
between the setting and the measurement. Noises spectra are
tested in the condition of zero measurement, in which the
signal of one channel of the generator is divided into four
and then this delivers to the channels of the phasemeter,

Simulator

Out-of-loop

Fig. 1 The optical layout of the experimental systems, and the heterodyne frequency is setto 1 MHz. BS,
50/50 beam splitter; R, reflector; AOM, acoustic-optical modulator; AP, aperture; PM, phasemeter; EOM,
electro-optic modulator; PID, proportional integral derivative; and PD, photodetector.
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Fig. 3 The linear performance of the phasemeter.

respectively. The results of both experiments are shown in
Figs. 3 and 4.

As shown in Fig. 3, the expression of the fit line is
y = x +0.0155, with the R? and the slope equal to 1
(four decimal places). It means that the phasemeter shows
an excellent linearity performance. In Fig. 4, the sensitivity
of the phasemeter could meet the requirements for Taiji in the
frequency ranges of 0.1 to 1 Hz and 0.1 to 1 mHz. However,
due to the thermal drift and the sampling jitter, the noise
increases largely in the frequencies between 0.1 Hz and
1 mHz. The sampling jitter noise is produced by the sam-
pling jitter of the analog-to-digital converter (ADC). Its
value not only relates to the timing jitter of the ADC-driven
clock but also the response time jitter of the ADC. By the
introduction of the pilot tone,” the noise can be suppressed
below the Taiji sensitivity curve. The main idea is that the
measurement signal is added with a dedicated pilot tone sig-
nal (the frequencies of two signals are different). This mixed
signal is sampled by the ADC, and the sampling jitter noises
of the measurement signal and the pilot tone, which are pro-
portional to each frequency, are recorded by the phasemeter,
respectively. Finally, through simple calculations between

the two values, the sampling jitter noise of the measurement
signal can be directly removed.

3.2 Electro-Optic Modulator Linearity

It is known that the phase modulation ¢,, depends linearly on
the potential V,, applied to the EOM (Pockels effect,
¢, =A-V,). Therefore, A should be calibrated before
using. The potential applied to the EOM is linearly increased
from 0 to 100 V in 100 s, and the respective phases between
the reference and the experimental interferometer are read
out by the phasemeter. The calibrated results are shown
in Fig. 5.

In Fig. 5, by the linear fit, the expression of the fit line is
y = 0.01322x, and the value of R? is equal to 0.9987. It
means that modulated phases show a good linearity perfor-
mance along with the potential increase. So, the translated
coefficient of the EOM (the slope of the fit line) is equal
to 13.22 mrad/V. The fluctuations around the red line of
the phase are mainly due to that the experimental equipment
and instruments, such as the optical bench, the radio fre-
quency (RF) coaxial cables, the phasemeter, and the
EOMs, are easily influenced by the thermal drift of the
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Fig. 4 The typical noises of the phasemeter in the amplitude spectra density. The capitals (A, B, C, and
D) represent the respective channels of the phasemeter. The results have been smoothed by the method
of linear amplitude spectrum density (LASD),2® developed by Albert Einstein Institute (Hannover,

Germany).
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Fig. 5 The results of the EOM calibrated experiments.

environment, especially when no active temperature control
is introduced.

4 Results and Discussions

After the calibrations of the phasemeter and the EOM, the
phase-locking experiments are carried out in our lab. The sig-
nal from the PD of the reference interferometer is split into
two and then connected with channels A and B of the pha-
semeter for the background noise testing. The signals of the
in-loop and the out-of-loop are separately connected with the
channels C and D of the phasemeter. Results are shown
in Fig. 6.

In Fig. 6, the black line is the background noise of our
optical system, in which the common-mode noises are
rejected in the ideal condition. The sensitivity can reach
30 urad/Hz'!/? in the bands of 0.01 to 1 Hz, which are domi-
nated by the electronic noises in our system. Then, the curve
slightly increases to 50 urad/Hz!/? in the frequencies below
10 mHz, which are influenced by the thermal drift. The pink
line is the free running performance of the loop. The largest
noise mainly comes from the thermal drift of the environ-
ment. The red line is the performance of the in-loop. The
value of the red line is the lowest one in Fig. 6 representing

that the PID feedback loop is well working, especially in the
lower frequencies bands (<0.1 Hz). The blue line shows the
performance of the out-of-loop, which is used to evaluate the
noise level of the phase-locking loop. It can be obtained from
the line that sensitivity reaches to 80 urad/Hz'/? in the
frequencies between 0.2 and 1 Hz. Due to the thermal
drift, noises increase to 0.5 mrad/Hz!/?, when frequencies
decrease to 1 mHz. In addition, a noise obviously locates
at 0.2 Hz in every line, except for the black line. The optical
system is put on an optical bench enclosed by a cuboid
acrylic cage, which has no extra active temperature stabili-
zation control. Moreover, scientific instruments that generate
heat, such as the drivers of EOM and laser, the direct current
power supplier, the phasemeter, make the temperature field
of the optical bench more complex. Therefore, a possible
explanation about the noise of 0.2 Hz is that an unknown
thermal source from our used instrument or the air condi-
tioner affects the experiment.

Obviously, the thermal drift is the dominant noise source
in our optical system. The temperature fluctuation can be
coupled into the phase noise directly through many devices,
such as the optical bench, the RF coaxial cable, the EOM, the
phasemeter, the laser. Moreover, the differential wave-front
sensing®® error and tilt-to-length®' coupling are aroused by

10° F——1 ——
10" E ~~
SR T~

Phase noises (rad/Hz

—Free-running
—=Out-of-loop =
—-Background E
-o-In-loop

107
Frequency (Hz)

107 10°

Fig. 6 The amplitude spectra density of the experiment of phase locking based on EOM, which has also

been smoothed by the method of LASD.
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the beam angular motion, which is caused by the thermal
drift and the environment vibration. In actual fact, the ther-
mal noise is always a combined effect from one or more
sources. If we want to decrease the thermal noise to the maxi-
mum, any possible heat source should be moved far away
from the side of the optical bench, and some effective ther-
mal isolation measures should also be implemented. By the
comparison of the results of the free running (pink line) with
the out-of-loop (blue line), noises around the whole frequen-
cies band can be well compensated up to 2 orders of mag-
nitude by the phase locking based on EOM, especially in the
lower frequencies band (<0.1 Hz). Traditionally, the phase
locking is realized by controlling the frequency of the
laser via piezo-electric and temperature actuators on the
slave laser crystal. The former is used for the feedback
loop in kHz range, and the temperature controller is used
in sub-Hz range. Differently, the strategy in this paper
only needs to modulate the phase of the laser beam through
the EOM. The modulation speed of the EOM-driven voltage
supplier decides the frequency bandwidth, which includes
the kHz and sub-Hz ranges. It means that this strategy
can be used as an alternative to replace the traditional
phase-locking method in the Taiji pathfinder mission.

5 Conclusions and Outlooks

Traditionally, the phase locking was achieved by a compli-
cated technique, which controls the frequency of the laser via
a piezo-electric actuator (kHz range or more) and a temper-
ature actuator (sub-Hz range). In this paper, we have success-
fully established an experiment and proved the feasibility of
the phase locking based on the EOM. This strategy only
needs to modulate the driven voltage of the EOM, and the
frequency bandwidth can cover all ranges. Compared with
the traditional way, the phase locking based on the EOM
is easy and efficient. The demonstration experiment shows
that the noise of the loop is <80 urad/Hz!/? in the frequen-
cies from 0.2 to 1 Hz. Because of the thermal drift, the noise
will be increased to 0.5 mrad/Hz!/? in the frequencies below
0.1 Hz. The thermal drift, which can directly couple into
phase noises through many devices, is the main noise source
in our recent system. To meet the requirement of the Taiji
pathfinder, more careful noise analysis of the phase-locking
system below 0.1 Hz is needed.
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