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Homogeneous melting near the superheat limit of
hard-sphere crystals†

Feng Wang,a Ziren Wang,b Yi Peng,a Zhongyu Zheng,c,d and Yilong Han∗a

A defect-free crystal can be superheated into a metastable state above its melting point and
eventually melts via homogeneous nucleation. Further increasing the temperature leads to the
metastable crystal becoming unstable and melting catastrophically once beyond its superheat
limit. The homogeneous melting is not well studied near the superheat limit and this limit is difficult
to measure accurately, even for the simplest model of hard-sphere crystals. Here our molecular-
dynamics simulations identify its superheat limit at volume fraction φlimit = 0.494± 0.003, which
is higher than the previous theoretical estimations. We found that the hard-sphere crystal at the
superheat limit does not satisfy Born’s melting criterion, but has a vanishing bulk modulus, i.e.
a spinodal instability, which preempts other thermodynamic or mechanical instabilities. At the
strong superheating regime, the nucleation deviates from the assumptions in the classical nucle-
ation theory. In contrast to crystallization which often develops nuclei with various intermediate
structures, the melting of face-centered cubic (fcc) hard-sphere crystal does not produce interme-
diate structures such as body-centered cubic (bcc) crystallites although bcc is more stable than
fcc at the strong superheating regime. Moreover, we found that the time evolutions of the order
parameters and the pressure all exhibit a compressed exponential function, in contrast to the
stretched exponential relaxation of supercooled liquids. The compressed exponential functions
have the same exponent, which poses a new challenge to theory.

1 Introduction
Crystal melting is a well-known first-order phase transition which
lacks a fundamental theory1–3. It is connected to other areas
of physics such as insulator-conductor transition through melting
of the Wigner crystal formed by electrons4, glass transitions5,6

and superstring theory7, as well as other disciplines such as biol-
ogy and environmental science. Melting usually begins heteroge-
neously from free surfaces1,8 or grain boundaries9 when crystals
are heated to the melting point. By suppressing the melting from
surfaces, a crystal can be superheated above its melting point.
Such a superheated metastable crystal is rare in nature, but can
be experimentally achieved by the following two methods: (1)
Coating a single crystal with a high-melting-point material10,11.
The possible interface and edge melting can be avoided when
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the solid-solid interfaces have a high enough affinity. (2) Heat-
ing the interior of a crystalline domain with a focused beam of
light12–15. The metastable state of the superheated crystal and
the liquid nucleation during the melting have been experimen-
tally achieved under a quasistatic light heating14. The melting of
superheated crystals has broad implications in technologies such
as laser-processing materials16 and explosive materials17. When
the degree of superheating is increased beyond a threshold value,
the crystal becomes unstable and melts catastrophically from ev-
erywhere rather than via nucleation, due to the vanishing of the
free-energy barrier between crystal and liquid phases. This su-
perheat limit sets the condition for the existence of crystals2. In
contrast to the intensively studied supercool limit of liquids (i.e.
the glass transition point), the superheat limit of crystals has been
much less studied.

Homogeneous melting of surface- and defect-free crystals is of
fundamental interest. For two-dimensional (2D) melting, both
the KTHNY theory18 and the grain-boundary-mediated melting
theory19 only apply to infinitely large, defect- and surface-free 2D
crystals. They have been intensively studied and tested by experi-
ments20,21 and simulations22–24. Three dimensional (3D) homo-
geneous melting of superheated crystals has been studied in theo-
ries25–27, simulations28–31 and experiments10–14, but it remains

1–7 | 1

Page 1 of 8 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
2 

Fe
br

ua
ry

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

D
A

D
 D

E
 B

U
E

N
O

S 
A

IR
E

S 
on

 1
5/

02
/2

01
8 

09
:4

7:
25

. 

View Article Online
DOI: 10.1039/C7SM02291C

http://dx.doi.org/10.1039/c7sm02291c


m
el
tin

g

fr
ee

zi
n
g

liquid

(a)

(f)

(e)(c)

(b) (d)

t=70t=40

(g)

(h)

t=1

t=1

t=40 t=70

0.1 0.3

liquidliquidliquid

liquid

Fig. 1 Melting kinetics of a superheated crystal at φ = 0.50 containing 4× 163 particles. (a, c, e) Real-space configurations of liquid-like particles
colored according to their q̄6 (Movie 1). The colorbar of q̄6 is in (a). Crystalline particles are not shown. (b, d, f) q̄6 and q̄4 of all particles corresponding
to (a, c, e) respectively (Movie 2). The intensity of the color represents the logarithm of statistical counts. The “bcc”, “hcp”, and “fcc” labels denote the
locations of these perfect crystals at zero temperature. Thermal noises make the distribution in (b) deviate from the perfect fcc lattice. Note that the
largest nucleus in (c) is already post-critical. (g) Trajectories of all particles in the q̄6-q̄4 plane. (h) Schematic of the melting and freezing kinetics.

challenging to accurately measure the melting behaviors near the
superheat limit. The superheated hard-sphere crystal melting has
only been briefly studied in simulation without exploring the nu-
cleation and the superheat limit32. The hard-sphere system is
the simplest model exhibiting melting and freezing transitions.
This system is particularly useful for understanding crystal-liquid
phase transitions because these transitions depend primarily on
the hard cores of atoms33. The system is a good model for the
commonly used colloids34 and serves as a reference system for
the perturbation theories of real materials35. The phase dia-
gram of hard spheres in 3D has been well established (Fig. S1
in Electronic Supplementary Information (ESI))35 but the super-
heat limit has not. The superheat limit of hard-sphere crystals
has been estimated using different theories including the single-
occupancy model36 and density functional theory (DFT) with var-
ious approximations35,37–40. Whereas hard-sphere crystallization
has been studied intensively both experimentally and via simula-
tion, the melting of hard-sphere crystals has rarely been simulated
under strong superheating. Experimentally, the melting of super-
heated crystals has been observed at the single-particle level in
colloidal systems, but the kinetics are too rapid to measure under
strong superheating; moreover, colloidal spheres are not exactly
hard spheres14,41. Hence the superheat limit of hard-sphere crys-
tals remains unknown and the melting kinetics around the limit
are unclear.

Here, we address these questions and identify the super-
heat limit of the hard-sphere crystal at volume fraction φlimit =

0.494±0.003 by three methods consistently: (1) the vanishing of
metastable crystal through the time evolutions of the order pa-
rameters, (2) the vanishing of an elastic modulus, and (3) the
finite-size effect on the nucleation processes. We show that the
superheat limit is set by the vanishing of the bulk modulus, pre-
empting the conventional Born’s shear instability.

2 Methods

We performed event-driven molecular dynamics simulations of
the hard-sphere system with mass m = 1, diameter σ = 1 and
thermal energy kBT = 1. The time unit τ0 =

√
mσ2/kBT is the

amount of time a sphere usually takes to travel the distance of
one diameter. The unit cell of the face-centered cubic (fcc) lattice
is cubic and contains four particles. The whole simulated crystal
is cubic and contains L3 cubic unit cells. To measure the finite-
size effect, N = 4L3 (L = 4, 8, 16, 32, 64) spheres were initially
placed at the perfect fcc lattice sites and assigned random initial
velocities following the Maxwell-Boltzmann distribution. Periodic
boundary conditions are used to avoid surface melting. The vol-
ume fraction φ is defined as the fraction of volumes occupied by
the spheres. A lower φ corresponds to a higher temperature in an
atomic system. The hard-sphere fcc crystal has the melting point
φm = 0.545, and a crystal becomes superheated and metastable at
φ < φm.

We monitored the structural evolution using the global trans-
lational order parameter QT, the global orientational order pa-
rameter Q4,6, and the local orientation order parameters q̄4,6
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which reflect different crystalline symmetries. The global trans-
lational order parameter QT = 1

N ∑i cosk · ri, the global orien-

tational order parameter Ql =

√
4π

2l+1 ∑
l
m=−l

∣∣ 1
N ∑i qlm(i)

∣∣2, and

the local orientational order ql(i) =
√

4π

2l+1 ∑
l
m=−l |qlm(i)|2, where

qlm(i) = 1
Nb(i) ∑

Nb(i)
j=1 Ylm(r̂i j)

42. The wave vector k was measured
from the position of the first peak of the structure factor S(k).
ri is the position of particle i. Nb(i) is the set of nearest neigh-
bors of particle i. Ylm is the spherical harmonic function, where
l = 4 or 6 for the symmetries of the fcc structure. Here neigh-
boring particles are defined as those within a distance of 1.4σ

of each other43. Moreover, we monitored the local order pa-
rameters coarse-grained over the first-shell neighbors q̄l(i) =√

4π

2l+1 ∑
l
m=−l

∣∣∣ 1
Nb(i)+1 ∑ j qlm( j)

∣∣∣2, where the summation index j

includes all neighbors of particle i as well as i itself. q̄l=4,6(i)
contains information about the second layer of neighbors, and
hence it improves the accuracy in distinguishing one local sym-
metry from another44.

3 Results and Discussion

3.1 Homogeneous nucleation of liquid phase

The kinetics are important for a first-order phase transition, but
they are usually difficult to predict, especially at strong super-
saturation where the assumptions in classical nucleation theory
(CNT) are often violated3. We found that the melting of the su-
perheated defect-free crystal follows a homogeneous nucleation
of liquid phase, e.g. Figs. 1a, c, e and Movie 1. Under the strong
superheating (φ = 0.50), deviations from the CNT assumptions
are observed, such as the non-spherically-shaped nuclei and nu-
clei coalescence. Using CNT, we estimated the critical nucleus
radius about 5σ at φ = 0.50 and the free energy barrier about
80kBT based on the chemical potential difference and interfacial
energy between the hard-sphere crystal and the liquid in liter-
ature35(see section V of ESI for the calculations). Such a high
barrier implies that the nucleation can never occur in a practical
time scale, which contradicts to our observation (Fig. 1c). This
is because the estimated value from CNT is inaccurate due to the
violation of assumptions of CNT at strong superheating, includ-
ing non-spherical nucleus shape with rough surfaces, curvature
effects to the surface tension for tiny nuclei, and coalescence of
small nuclei. It is well known that CNT works well at weak su-
persaturation and often breaks down at strong superstatuaration.
In addition, we use the mean first passage time of liquid nucleus
sizes to estimate the critical nucleus radius to be about 2.6σ (see
section VI of ESI for the details), which is smaller than 5σ esti-
mated from the CNT (see ESI) and smaller than the system size
(e.g. L = 16σ). Hence the finite-size effect is small, as confirmed
in section II of ESI.

When a liquid crystallizes into an fcc crystal, the nucleus of-
ten experiences an intermediate state such as a body-centered cu-
bic (bcc) or random hexagonal close-packed (rhcp) crystallite in
hard-sphere systems45–47 because the free energy of a crystalline
nucleus depends on various factors such as surface tension and
crystallinity48. q̄6 and q̄4 of each particle averaged over two lay-
ers of neighbors are effective to distinguish different crystal struc-
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Fig. 2 Evolution of the order parameters (a) QT, (b) Q6, (c) Q4, (d) 〈q̄6〉,
(e) 〈q̄4〉 and (f) pressure P during the melting process of a crystal contain-
ing 4× 163 particles. 0.47 (red)≤ φ ≤ 0.535 (blue) with step size 0.005.
QT,6,4 are of order one for crystals and zero for liquids. Black curves in
(a-f) are the fittings of Eq. 1. (a-f) only show a short time interval [0,200τ0]

from the full 104τ0 simulation. (g, h) All order parameters and pressure
in (a-f) yield the same fitted melting time τ and exponent β (Fig. S2). τ

and β (symbols) in the compressed exponential fits of QT(t) from 100
independent simulations at each φ . Black curves represent the average
values. The red dashed line represents β = 2. Errors of τ and β are
smaller than the symbol size.

tures49. Our measured q̄6 and q̄4 in Fig. 1b, d, f and Movie 2 show
that the fcc crystal transforms directly into a liquid without any in-
termediate state at strong superheating, even when bcc structure
is more stable than fcc structure for hard spheres at φ < 0.50350.
This single-step melting was also observed in the simulations of
the superheated copper and aluminum31 and is distinct from the
multi-step pathways typically observed in crystallization46,49, as
schematically shown in Fig. 1h. These results clearly show that
the kinetics of a first-order phase transition could be very different
from the kinetics of its reverse transition.

3.2 The universal compressed exponential evolution of the
order parameters

The evolution of order parameters and pressure exhibits plateaus
at φ ≥ 0.495 (Figs. 2a-f), reflecting a metastable crystal. No such
plateaus are observed for φ ≤ 0.49, indicating that the superheat
limit lies within the range 0.49 < φlimit < 0.495. Interestingly, we
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found that the changes of the order parameters QT, Q6,4, q̄6,4 and
the pressure P during melting can all be well fitted by the same
functional form (Figs. 2a-f),

Q(t) = (Qfcc−Qliquid)e
−(t/τ)β

+Qliquid. (1)

Note that the initial state is set as a perfect fcc lattice, which
rapidly thermalizes to a metastable crystal during 1τ0 (Fig. 2);
Consequently this initial relaxation is excluded from the fitting
because the fitting only describes the homogeneous melting pro-
cess from a metastable crystal to a liquid. For each φ , different
order parameters have different fitted Qfcc’s and Qliquid’s but al-
most the same relaxation time τ and exponent β (Fig. S2). This
indicates that the homogeneous melting is a simple process that
can be described by a single reaction coordinate such as QT. Con-
sequently, the translational and orientational symmetries change
simultaneously during melting. This is different from the typical
2D crystal melting in which the translational symmetry changes
before the orientational symmetry20.

The fitted β ≈ 2 (i.e. it is Gaussian) at φ < 0.495, and β

increases rapidly at φ > 0.495 (Fig. 2h). Eq. 1 with β > 1
is a compressed exponential function, in contrast to the com-
monly observed stretched exponential function with β < 1 in
the relaxation of disordered systems (e.g. supercooled liquids).
Stretched exponential behaviors have been intensively studied,
but whether they have a universal microscopic origin remains
unclear51. On the other hand, compressed exponential behav-
iors are rare and much less understood than stretched exponen-
tial behaviors. They certainly have not been reported in previous
crystal-melting studies. Compressed exponential behaviors have
been found in the Johnson-Mehl-Avrami-Kolmogorov (JMAK) law
for nucleation processes52, the crystallization of certain metallic
glasses53, certain types of relaxation near jamming or glass tran-
sitions54–58, and the hyper-diffusive dynamics of nanoparticles in
a supercooled solvent59. These examples usually have β < 2 (ex-
cept the JMAK law that β = 3 or 4), indicating that the nucleation
at φ > 0.495 with a much higher β may have a different micro-
scopic origin.

3.3 Spinodal instability at the superheat limit

Various possible thermodynamic instabilities may set the super-
heat limit of a crystal. Empirically, several stability limits have
been proposed, such as the isochoric (equal volume for equilib-
rium liquid and superheated solid) point, the isenthalpic (equal
enthalpy) point and the isentropic (equal entropy) point2,25–27.
Isochoric instability is based on the assumption that a crystal is
denser than a liquid. Isentropic instability arises when the en-
tropy of a superheated crystal begins to exceed that of a liquid27,
analogous to the Kauzmann paradox for glass transitions. For
hard-sphere crystals, the isochoric point lies at φf = 0.494, and the
isenthalpic and isentropic points lie at the same point φ ≈ 0.51538

(0.51750). Another class of thermodynamic stability criteria ini-
tially proposed by Born is based on mechanical instabilities when
one of the elastic moduli becomes zero. A 3D crystal with cubic
symmetry has three independent moduli, and hence it has three
types of mechanical instabilities60: (1) spinodal instability when

[40]
[38]

[35]
[39]

[37]

61

Fig. 3 Instabilities of the hard-sphere fcc crystal. (a) Values of the crys-
tal instability point predicted theoretically and via simulation are labeled
above the φ -axis. The spinodal point (B = 0, superheat limit) and Born’s
instability point (C′ = 0) obtained from (b) are labeled below the axis. (b)
The three measured elastic moduli fitted by Eqs. 2 and 3 (curves) show
that the spinodal instability (B = 0) preempts the other two instabilities,
setting the superheat limit at φlimit = 0.494±0.003. The shadows around
the curves represent the uncertainties in the fitting and extrapolation. Er-
rors of the measured elastic moduli are smaller than the symbol size.

the bulk modulus B = 0, causing the decohesion of crystal and
strong density fluctuation; (2) Born instability when the shear
modulus C′ = 0, under which the symmetry is broken with the
coupling of shear modes under volume conservation; and (3) the
instability when another shear modulus C44 = 0. Born proposed
that C′ was the first to vanish among the three moduli and asso-
ciated it with the melting point rather than the superheat limit.
In fact, all elastic moduli are finite at the melting point so that
the crystal does not melting catastrophically, but via nucleation
or surface melting. Later studies showed that other elastic insta-
bilities are possible at the superheat limit60. The instability of
hard-sphere crystals has been theoretically studied mainly using
DFT with various approximations, but the predicted instability
points vary considerably as summarized in Fig. 3a and the type
of instability cannot be determined. Recently, a numerical study
estimated the instability point φ ≈ 0.45 by applying the nested
sampling method to 128 spheres without determining the type of
instability61.

We measured B, C′ and C44 ranging from φ = 0.51 to 0.6025
using the stress-strain relation62 (Figs. 3b and S9). A strongly
superheated crystal at φ < 0.51 melts too quickly for measuring
the elastic moduli. Hence extrapolation is necessary to locate the
mechanical instabilities. This problem exists in all studies of the
superheat limits of crystals63, and the studies of spinodal point of
liquid-gas transition52. Conventional polynomial extrapolations
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Fig. 4 (a) Elastic modulus parameters of the crystals in the stability tri-
angle. (b) A zoom-in plot of the small rectangle in (a). The curve is
calculated from the fitted B, C′ and C44 using Eqs. 2 and 3. The arrow
points to the direction that φ decreases. Errors of s2 and s3 are smaller
than the size of the dot symbols.

lack physical meaning and may not correctly capture the high-
density divergence of the elastic modulus or the trend near the
superheat limit (see ESI). Here we use the precise equation of
state (EOS) which has physical meanings and can accurately de-
termine the superheat limit. In our fitting formula B = φ

dP
dφ

, P(φ)

is given by Speedy’s EOS for hard-sphere crystals64:

π

6
Pσ3

φkBT
=− c4

φ/φcp−1
− c1

φ/φcp− c2

φ/φcp− c3
. (2)

Similarly, we propose that all elastic moduli have the same func-
tional form

C = φ
d f (φ ,c1,c2,c3,c4)

dφ
, (3)

where the stress-like functional f (φ ,c1,c2,c3,c4) takes the same
form as Speedy’s EOS P(φ), but the constants ci are different
for B, C′ and C44. Physically, the first term in Eq. 2 is derived
from the free volume theory35,64. c4 is related to the asymp-
totic divergence at the closest-packing φcp, C ∼ 6kBT

πσ 3
c4φ/φcp

(φ/φcp−1)2 ,
and has been measured by fitting the elastic moduli data near
φcp

65. The second term in Eq. 2 represents the correction in
the low-density regime, and has not been previously used in fit-
ting the elastic moduli in the whole density regime. Eqs. 2
and 3 fit all of the measured elastic moduli (Fig. 3b) and yield
c4 = 3.001± 0.002, 2.550± 0.001, 4.150± 0.001 for B, C′, C44 re-
spectively, close to the values of 3, 2.55, 4.14 measured in ref.65.
This lends confidence to the reliability of the fitting. As a byprod-
uct, we obtained more accurate coefficients in Speedy’s EOS by
fitting B for strongly superheated crystals (see section IV of ESI).

The three moduli extrapolated to zero in Fig. 3b show that the
spinodal instability (B= 0) at φlimit = 0.494±0.003 preempts other
instabilities, which agrees well with the observed instability at
0.49 < φ < 0.495 in Fig. 2. Interestingly this φlimit coincides with
the freezing point φf = 0.494, which is also the isochoric point for
hard spheres. Although different simulations such as Monte Carlo
or Brownian dynamics simulations may affect the kinetics32, they
are not expected to affect the elastic moduli and thus should yield
the same superheat limit. The superheat limit is much higher
than the predictions of DFT as shown in Fig. 3a35,38–40. Although
many crystals such as the Lennard-Jones system exhibits Born’s

Fig. 5 (a) Mean first-passage time (MFPT) of (1−QT) for the crystal at
different φ ’s labeled on the curves. The curve at each φ is the average
of 100 independent runs, e.g. the curve labeled with 0.498 is the average
of the 100 gray curves. (b) Variance (proportional to the susceptibility 66)
of the global order parameters QT, Q6 and Q4. The power-law fittings
(black lines) show that the susceptibilities of the global order parameters
do not diverge at φlimit = 0.494. (c) The MFPT of (1−QT) of crystals of
size L = 4,8,16,32,64 at φ = 0.494. (d) The area under the curve (AUC)
of the MFPT for various φ and L.

instability at the superheat limit28, the non-Born spinodal insta-
bility at the superheat limit has also been observed in some met-
als, such as Au63.

C′ = 0 preempted by B = 0 is confirmed by the stability triangle
shown in Fig. 4. We plot the elastic moduli data via two dimen-
sionless parameters60

s2 =
C11−C44

C11 +2C44
,

s3 =
C11−C12−2C44

C11 +2C44
,

(4)

where C11 = (3B+4C′)/2 and C12 = (3B−2C′)/3. The elastic sta-
bility requirements B > 0, C′ > 0 and C44 > 0 form a triangle on
the s2-s3 plane60. Our measured (s2, s3) are within the triangle,
indicating that the crystals are mechanically stable. The extrap-
olation from the trend of measured data in Fig. 4 shows that the
curve reaches the B = 0 boundary instead of the C′ = 0 boundary.
This confirms that the spinodal instability B = 0 preempts C′ = 0
at the superheat limit. The instability triangle in Fig. 4 can iden-
tify the instability type more accurately, which has been used in
determining the stability of perfect crystal structures60 but not
for superheat limit studies.
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3.4 The crossover from nucleation to catastrophic melting
near the superheat limit

Around the superheat limit φlimit = 0.494, homogeneous melt-
ing changes from a nucleation process to catastrophic melting.
This change occurs gradually as demonstrated by the continuous
change in the mean first-passage time (MFPT) of the disorder pa-
rameter (1−QT) in Fig. 5a. The MFPT measures the average
first time that the system reaches a disorder parameter (1−QT)

greater than a given value, and the average is performed over
100 independent simulation runs. Other order parameters have
similar MFPTs. Furthermore, the variances of the global order pa-
rameters QT, Q6 and Q4 of the metastable crystals exhibit power
laws (Fig. 5b), however, the extrapolated singularities cannot be
reached due to the non-existence of crystal at φ < φlimit, i.e. no
singularity is encountered as φ approaches φlimit. Hence the su-
perheat limit is not a pseudo-spinodal point which exhibits singu-
lar behavior similar to a critical point52.

3.5 Superheat limit identified from the finite-size effect

Our simulation shows three stages: relaxation, nucleation and
post-critical nucleus growth. Particles are initially placed on the
perfect lattice sites and rapidly relax to a superheated crystal with
random thermal motions. This short relaxation period is indepen-
dent of system size. In the second stage, the time required for
generating a liquid nucleus, i.e. the incubation time, is inversely
proportional to the system size N = 4L3 because nuclei are equally
likely to form in the system. Hence, the collapse of MFPTs to a sin-
gle curve for different L’s implies that the process is a relaxation of
the initially perfect crystal, rather than size-dependent nucleation
and growth. In other words, the end of the collapse indicates the
superheat limit. Here we compare the MFPT of (1−QT) at a fixed
φ (Fig. 5c) and the area under the curve of the MFPT at various
φ (Fig. 5d) for various system size up to L = 64 (i.e. ∼ 1.05 mil-
lion particles). The end of collapse is observed at φlimit = 0.494,
as labeled in Fig. 5d, which confirms the result obtained by elas-
tic modulus. The collapse of the MFPTs of L = 8 to 64 (Fig. 5c)
also indicates a negligible finite-size effect. The longer MFPT (i.e.
the higher stability of the crystal) for L = 4 is likely attributed to
the suppression of long-wave-length fluctuations in such a small
system.

3.6 Lindemann melting criterion

The Lindemann parameter L̃ =
√
〈∆r2〉/a measures the mean vi-

brational amplitude of particles, where ∆r is the distance to the
equilibrium position (i.e. the lattice site) and a is the lattice con-
stant. Many materials have similar L̃ at the melting point and thus
the value of L̃ is used as an empirical melting criterion. Our mea-
sured Lindemann parameter L̃(φm) = 0.124 at the melting point
and L̃(φlimit) = 0.193 at the superheat limit. This is consistent
with L̃ ≈ 0.2 at the superheat limit of many real materials2; it is
comparable to the value 0.18 obtained in colloidal crystals14 and
only slightly smaller than the value 0.22 for the Lennard-Jones
system28.

4 Conclusions
The nature of instability at the superheat limit is related to the
fundamental mechanism of crystal melting2, but it is difficult to
measure because crystals are unstable close to the limit and there
is a lack of theoretical guidance on how to perform extrapola-
tion. We propose a physical formula for hard spheres based on
a revised version of Speedy’s EOS which fits all of the measured
elastic moduli and pressure closely (Fig. S6). As a byproduct, our
revised EOS shows a better accuracy than previous EOSs of hard-
sphere crystals especially at low densities. We identified the su-
perheat limit of a hard-sphere fcc crystal at φlimit = 0.494±0.003,
where the spinodal lattice instability B = 0 preempts all other
instabilities, including the conventional Born’s shear instability.
This mechanical result is not related to the dynamics, thus in-
dependent to the simulation methods. The superheat limit can
be accurately identified using either the finite-size effect of the
MFPT or the generalized equation of state rather than conven-
tional polynomial extrapolations. These two new methods for
superheat limit studies can be applied in other experimental or
simulation systems.

Before reaching the superheat limit, the homogeneous melting
kinetics follows the conventional one-step nucleation without any
intermediate state. During such a melting process, the evolutions
of various order parameters and pressure exhibit the universal
compressed exponential function which has not been observed
or explored in other melting systems. The compressed exponen-
tial function has an unusually large β , posing a new challenge to
melting theory.
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