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A B S T R A C T

Sonic metamaterials have a wide range of applications in wave control and super-resolution imaging, and are
favored for their several unique and advantageous properties. However, current double-negative sonic meta-
materials have complex structures composed of various materials, which limits their design and application.
Thus, we must produce double-negative features using a simple structure of one material. Because of their
unique concave configurations and various resonances, star-shaped structures readily form band gaps and show
superior material properties. In this study, we designed and simulated star-shaped single-phase metamaterials,
considered ideal structures. Our numerical results suggest that these metamaterials have two band gaps as well
as double-negative properties over specific frequency ranges. Moreover, we investigated how their band gap and
double-negative properties depended on the concave angle.

1. Introduction

Sonic metamaterials [1] are artificial composite materials with
acoustic characteristics not found in natural materials, such as negative
effective mass density [2–4] and negative effective modulus [5,6].
Negative effective mass density means that the direction of acceleration
and driving force of the medium are opposite under dynamic pressure; a
negative effective modulus can be interpreted as a scattering field
generated by a resonance that is much larger than the incident field,
producing contrary changes in pressure and volume. Having both ne-
gative effective modulus and density, sonic metamaterials are compel-
ling because of their negative refraction over a certain frequency range
[7] as well as the inverse Doppler effect [8] and super-resolution
imaging [9–14].

Generally, sonic metamaterials gain double-negative properties by
being composed of materials with different elastic constants, which
forms hybrid resonances by accessing the various resonance modes of
the structural units [15]. Thus, double-negative acoustic metamaterials
often have complex structures and must be composed of multiple ma-
terials. However, such structures are difficult to design and use. Thus, it
is important to study how to produce double-negative properties using
a single-phase material in a simple structure in order to better design
and develop acoustic devices made of metamaterials.

Using single-phase materials to achieve the double-negative

property is challenging because this extraordinary property depends on
the vibration characteristics of the artificial “atomic” (the sub-wave-
length locally resonant units) in a specific frequency range. Producing
double-negativity requires introducing a resonant unit with both dipole
and monopolar resonances in its structure [15–20]. Negative mass is
usually achieved by introducing a lumped mass into the sub-wave-
length structure constituting the spring resonant unit [16]; the units
show negative effective density at the dipole resonance frequency. To
produce a negative effective modulus, a Helmholtz resonator or a ro-
tating resonator [5,21] is usually introduced into the sub-wavelength
structure, producing a negative effective modulus near the monopolar
resonance frequency. Hybridization states and chiral structures are also
used in designing double-negative acoustic metamaterials [22,23].

Based on the above considerations, Liu et al. produced double-ne-
gative metamaterials by introducing a chiral structure, which had a
negative group velocity over specific frequency ranges [22,23]. Using
four resonant units, Lai et al. formed a hybridized elastomeric solid and
produced a two-dimensional double-negative metamaterial based on
hybrid resonance states [15]. Yang et al. achieved double-negative
properties in a double-layer film system [19]; if the double membranes
vibrate in phase, the dipole vibration provides a negative effective mass
density, whereas if the double membranes vibrate in opposite phase,
the monopole vibration provides a negative effective modulus. How-
ever, these double-negative metamaterials have multiple material
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phases, and their complex structures are difficult to use. Although Zhu
et al. developed a single-phase metamaterial with a chiral microstruc-
ture—which can achieve both negative effective mass density and
modulus owing to simultaneous translational and rotational re-
sonances—the structure is also complicated and bulky. Thus, it is ne-
cessary to introduce new resonance mechanisms containing both dipole
and monopole resonances in a lightweight structure if single-phase
metamaterials are to be developed.

Materials with star-shaped structures possess a negative Poisson’s
ratio from its special concave configuration. Compared with traditional
materials, the star-shaped structure has higher energy absorption effi-
ciency, better designability, homodromous bending capability, and low
mass [24–26]. Its mechanical properties can be adjusted by adjusting its
geometry, such as its thickness, beam length, and beam concavity.
Considering their wave characteristics, with volume changes and var-
ious resonance behaviors, the star-shaped structure is good at forming a
low-frequency band gap and extraordinary properties because of its
concave configuration. In this paper, we systematically study the for-
mation mechanism of band gaps in star-shaped sonic metamaterials.
Revealed by numerical analysis, this star-shaped structure shows spe-
cial resonance properties, achieves wide band gaps, and has the double-
negative property in a specific frequency range. We also investigate
how its geometry affects its band gap, as described below.

2. Star-shaped structure model and numerical calculation method

Depending on its cell structure, star-shaped structures are typical
auxetics that come in either a four-pointed or six-pointed star [25,26].
Its structure is made of slender beams, so it is very light and enables a
variety of resonances. For example, the presence of a lumped mass in
the concave node produces a dipole resonance, while bending of the
cant beams and rotation of the point mass induces a monopolar re-
sonance. These resonances enable the superior acoustic properties such
as negative effective density and negative effective modulus. In this
paper, we focus on the wave characteristics of the four-pointed star, the
unit cell of which is given in Fig. 1.

Although the thickness of the structure will affect the position of its
band gap, we only studied two-dimensional structures in this paper
[27]. This structure consists of four straight beams of equal length L1
and eight star-shaped cant beams of equal length L2. The beams have

equal thickness t. The counterclockwise angle between adjacent cell
walls is denoted as θ. The unit cells are arranged in a square lattice with
the lattice constant a, which can be expressed as +

− °

°{ }L L2 ·θsin( 45 )
sin(45 ) 2 1 . In

the calculations, we set L1, L2, and t to 0.5 cm, 1 cm, and 0.05 cm, re-
spectively. When L1, L2, and t are constant, the angle θ of the star-
shaped structure must be more than 45° and less than 135°. The whole
structure is given the material properties of steel.

The band structure, vibration modes, and effective medium para-
meters of the star-shaped structure were all studied using COMSOL
Multiphysics finite-element method (FEM) software. For two-dimen-
sional sonic metamaterials, the displacement can be divided into an in-
x, y plane and an out-x, y plane. We only considered the fluctuations in
the x-y plane in this study. In the calculations, periodic boundary
conditions are imposed to simplify the computational domain to one
unit cell.
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Based on Bloch’s theorem, solving the k–w relations on the
boundary of the Brillouin zone yields the dispersion relation for the
whole structure [28,29]. When calculating transmission loss, the dis-
placements of the finite elements are taken in one direction only; the
periodic boundary conditions account for an infinite array of units in
the other direction. Assuming that the incident plane wave is on the
surface of the structure, we determine the transmission loss of the star-
shaped structure from the transmission coefficient. Meanwhile, to re-
duce the reflected wave at the boundary, a perfect matching layer is
used in the incident direction. Under the long-wave hypothesis, the
acoustic metamaterials can be regarded as homogeneous, with special
properties according to the equivalent medium theory. Also, the dy-
namic behavior can be represented using equivalent medium para-
meters to determine the propagation of the acoustic wave. The effective
parameters of the medium were calculated by determining the dis-
placement, strain, stress, and force on the boundaries; the details of our
calculation methods can be found elsewhere [15,30].

The effective mass was calculated according to Newton’s second
law:
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44 are the effective stiffness tensors; Txx
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eff , and
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eff are the xx, yy, and xy components of effective stress tensor. Sxx

eff , Syy
eff ,

and Sxy
eff are xx, yy, and xy components of the effective strain tensor.

Under external stimulation, there are three unknowns in the con-
stitutive relations: C eff

11 , C eff
12 , and Ceff

44 . The others can be obtained from
the stress and deformations of unit boundary.
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The effective bulk modulus κeff and effective shear modulus μeff

were defined by C eff
11 , C eff

12 , and Ceff
44 :

Fig. 1. Schematic of the unit four-pointed star structure.
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3. Results and discussion

3.1. Band structure and vibration modes of the star-shaped structure

Using the above methods, we studied the band structure, vibration
modes, and effective medium parameters of the star-shaped structure.
Fig. 2 shows the band structure of the 60° star-shaped structure. Two
wide band gaps exist within the calculated frequency range; the first
band gap appears between the fourth and fifth branches from 5780 Hz
to 6433.7 Hz with a bandwidth of 653.7 Hz; the second band gap exists
between the eighth and ninth branches from 9253.8 Hz to 19,204 Hz
with a bandwidth of 9950.2 Hz. Based on the center frequencies of the
first and second band gaps, the longitudinal wavelengths are 0.85m
and 0.36m, respectively. At only 0.025m, the lattice constant of the
star-shaped auxetic structure is smaller than the wavelength of either
band gap. Thus, the band gaps of the star-shaped structure arise from
local resonances. Because of Fano-like interference (the response
spectrum has an antisymmetric resonance peak), the traditional locally
resonant sonic metamaterials have narrow bandwidth [31]. Moreover,
the second band width of the star-shaped structure (9950 Hz) is much
wider than that of traditional locally resonant sonic metamaterials. The
star-shaped structure shows behavior like low-frequency wave filtering
and wide-frequency vibration isolation.

We also investigated the vibration modes at the cutoff frequency
(Fig. 3); in this figure, the black (colored) lines mark the original (de-
formed) shape of the unit cell. The vibration mode corresponding to the
lower edge of the first band gap entail the bending of two straight
beams and cant beams, while another two straight beams remain still
[Fig. 3(a)]. This result is similar to the vibration mode at the lower-edge
frequency of a three-component locally resonant photonic crystal
(LRPC) [2]. The vibration mode at the upper edge of the first band gap
[Fig. 3(b)] entails an outward motion of the four straight beams,
causing bending deformation of the cant beams. The adjacent cell then
becomes larger at the star-shaped connection point. The whole cell
maintains a dynamic balance similar to the monopole vibration mode
and thus can be regarded as a rotation of the points of the star.

The vibration mode at the lower edge of the second band gap
[Fig. 3(c)] involves two straight beams bending while the other two
straight beams move in the same direction along the extension line of
the beams. Although the cant beams emerge bent, the center of mass of

the cant beams moves relative to that of the straight beams. Hence this
vibration mode is similar to the vibration mode of a dipole. The vi-
bration mode at the upper edge of the second band gap [Fig. 3(d)]
entails the four straight beams bending considerably while the cant
beam deform less.

These vibration modes of the star-shaped structure are quite dif-
ferent from traditional LRPCs. At the cutoff frequency, their deforma-
tions mainly feature bending, which for beams allows monopoles, di-
poles, and rotational resonances to form easily with concomitant band
gaps.

3.2. Equivalent medium parameters of the star-shaped structure and
formation mechanism of double-negative properties

The slope of the eighth dispersion curve of the star-shaped structure
(Fig. 2) is negative along the ΓΧ direction, implying a negative group
velocity in this frequency range. According to the equivalent medium
theory of acoustic metamaterials [15], negative group velocity means
negative refraction; that is, both the equivalent mass density and
equivalent modulus of the star-shaped structure in this range are ne-
gative. To further confirm the double-negative properties, we calcu-
lated the equivalent medium parameters for the star-shaped structure
with L1= 0.5 cm, L2= 1 cm, and θ=60°. With a lattice constant of
about 2.5 cm, the wavelength is about six times that of the lattice
constant in the frequency band of 8400–9400 Hz, and the wave char-
acteristics can be described by effective parameters. From the disper-
sion curve, the equivalent mass density, the equivalent bulk modulus,
and the equivalent shear modulus of the eighth curve along the ΓX
direction [Fig. 4(a)–(d)], the dispersion-curve frequencies between
8400 Hz and 9400 Hz show anomalous behavior: they show negative
slopes, and all three equivalent medium parameters of the eighth curve
are negative, corresponding to double-negative properties.

To study the formation mechanism of the double-negative char-
acteristics, we generated a vibration mode at the midpoint of the ΓX
direction of the eighth dispersion curve (Fig. 5). This mode mainly in-
volves beam bending, which can be decomposed into translational
motion along the horizontal straight beams and bending of the other
beams. The translational motion of the horizontally straight beams is
similar to the vibration mode of an LRPC at the lower edge of the band
gap, as for a dipole vibration [4], which can produce negative effective
mass density. Meanwhile, the bending of the other beams is equivalent
to rotational deformation of the four points of the star, which provides
the negative effective modulus. We find that the double-negative
properties of the star-shaped structures can be produced by a hybrid
state that consists of a dipole resonance and a rotating state arising from
bending. In contrast to traditional hybrid double-negative acoustic
metamaterials, the star-shaped structure is simpler, being made from
just a single-phase material. Moreover, the six-pointed star structure
will have similar wave characteristics due to its similar structural fea-
tures. However, the frequency position of the band gap and the negative
parameter will be very different because the structure has different
symmetry.

Based on effective medium theory, the longitudinal wave velocity is
an imaginary number if either κeff+ μeff or ρeff is negative, creating a
wave that attenuates exponentially but cannot propagate through the
structure. Equally, when either μeff or ρeff is negative, a transverse wave
attenuates rapidly but also cannot propagate. For the star-shaped
structure, all three parameters—κeff, μeff, and ρeff—are negative in the
eighth dispersion curve, and both longitudinal and transverse waves
propagate with negative refraction. In the frequency range of
9400–19,204 Hz, ρeff is positive but κeff and μeff are negative because of
the rotating resonators. Moreover, the longitudinal and transverse
waves cannot propagate, forming the band gap.

To further verify these results, we used FEM to calculate the
transmission characteristics of the star-shaped structure (Fig. 6). In this
simulation, four finite units were configured in the horizontal direction.

Fig. 2. Band structure of the star-shaped auxetic structure (θ=60°).
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As shown in the transmission characteristic curve of the star-shaped
structure [Fig. 6(b)] for frequencies up to 20,000 Hz along the ΓΧ di-
rection, significant vibration attenuation appears in the frequency
ranges of 4750–6500 Hz and 9500–19,200 Hz. For acoustic metama-
terials, when either effective mass density or effective modulus is ne-
gative, the wave velocity is an imaginary number, and the wave will
decay rapidly in the structure and then form the band gaps. In the
frequency range of the double-negative parameters, the wave can
propagate [15]. A band gap forms in the two frequency ranges con-
sistent with the calculated band gap structure and equivalent medium
parameters. Note also that the star-shaped structure can provide
wideband isolation of an elastic wave at low frequencies, which may be
useful in designing new filters and sound insulators.

3.3. Influence of concave angle on band-gap structure and double-negative
properties of star-shaped structure

The star-shaped structure has many structural parameters, including
the concave angle θ in the joint, the length of the straight beams L1, the

length of the cant beam L2, and the thickness of beams t. Changing these
parameters can change the mechanical properties and the shape of the
band structure. Previous work has suggested that changing the concave
angle θ changes Poisson’s ratio and the effective static elastic modulus.
To study how the concave angle affects the characteristics of the star-
shaped structure, we calculated the band structure of the star-shaped
structure for θ of 50–120°, letting us analyze how it affected the width
and position of the band gap. In these calculations, L1 and L2 are con-
stant. Fig. 7 shows the angular dependence of the cutoff frequency for
the first and second band gaps.

We find that only star-shaped structures with concave angles of
50–70° generate a first band gap (Fig. 7). At 70°, the band gap widens
slightly for the upper edge frequencies. Recalling Fig. 2, the first band
gap tends to appear between the fourth and fifth dispersion curves, and
the cutoff frequency is at the M point. To further reveal the formation
mechanism of the first band gap, we calculated the vibration modes at
the M point of the fourth and fifth dispersion curves at different concave
angles (Fig. 8).

For the fourth dispersion curve, the vibration modes at different

9253.8Hz

5780Hz 6433.7Hz

19204Hz

(b)(a)

(d)(c)

Fig. 3. Vibration mode at the edges of band gaps with θ=60°, (a) vibration mode at the lower edge of the first band gap (5780 Hz), (b) vibration mode at the upper
edge of the first band gap (6433.7 Hz), (c) vibration mode at the lower edge of the second band gap (9253.8 Hz), (d) vibration mode at the upper edge of the second
band gap (19,204 Hz).
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angles are similar; specifically, the opposite straight beams and cant
beams bend while the other two connecting beams stay fixed. In con-
trast, for the M point of the fifth dispersion curve, the vibration modes
are quite different. If the concave angle is 80° or more, the vibration
modes are similar to those of the fourth dispersion curve, but with a
different change in the direction of vibration. Hence, the first band gap
disappears with these opposing modes from the fourth and fifth

dispersion curves. If the concave angle is 50–70°, the vibration mode
entails outward deformation or bending of the four straight beams,
accompanied by bending of the by the cant beams. The whole structure
then shows a rotational resonance state that produces a large difference
in the vibration mode at the Μ point of the fourth dispersion curve.
Hence the band gap appears because the degenerate state is suppressed.
The first band gap is correlated with that at the M point of the fifth

Fig. 4. (a) Dispersion curve, (b) equivalent mass density, (c) equivalent volume modulus, and (d) equivalent shear modulus of the eighth curve along the ΓX
direction.

Fig. 5. (a) Vibration mode and (b) simplified vibration at the midpoint of the eighth band slope in the ΓX direction.
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dispersion curve. At angles of 50–70°, the fourth and the fifth dispersion
curves separate because of the bending rotational resonance state at the
M point, producing a low-frequency band gap.

As shown by the dependence on angle of the cutoff frequency for the
second band gap (Fig. 7), the lower-edge frequencies decrease initially
and then increase gradually, while the upper-edge frequencies increase

initially and then decrease gradually. The maximum band gap width is
at 60°. For the second band gap, the width of the band gap mainly
depends on the position of the M point of the eighth band curve. At a
concave angle of 50°, the M point of the eighth dispersion curve is lo-
cated above the Γ point, producing a narrow second band gap. Above
50°, the M point of the eighth dispersion curve is located below the Γ
point, producing a wide band gap.

As shown by the vibration modes at the M point of the eighth band
curve (Fig. 9), the unit cell deformations are similar at various concave
angles. Four straight beams move outward, opening the concave angle.
For concave angles of 60°, 70°, and 80°, the structure mainly bends and
undergoes overall rotation. These results show that bending is better for
generating a broad band gap at the M point of the eighth band curve at
concave angles of 60–80°. The band structure is quite different at var-
ious concave angles, revealing that varying the concave angle can ef-
fectively control the band structure.

4. Conclusions

By using FEM, we investigated the band-gap formation mechanisms
and effective parameters of a four-pointed star structure. This auxetic
metamaterial can generate two broad band gaps at low frequency,
which arise from the abundant resonance modes generated by bending
the beams. Calculated parameters verified that the single-phase star-

Fig. 6. (a) Mode used to calculate the transmission characteristics, and (b) transmission characteristic curves in the ΓΧ direction for the 60° star-shaped structure. The
transmissions for the longitudinal and transverse waves are denoted as p and s, respectively.

Fig. 7. Dependence of the cutoff frequency for the band gaps on concave angle.
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shaped structure could achieve double-negative properties owing to the
hybrid state formed under bending. Moreover, we could adjust the
position and width of the band gap by varying the concave angle and
other structural parameters. These results show that the double-nega-
tive property and a lower band gap can be produced in a single-phase
material in a simple, lightweight structure. This metamaterial provides
a new way to produce a lightweight acoustic lens and to achieve sub-
wavelength sound focusing and super-resolution imaging.
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Fig. 8. Vibration-mode dependence on concave angle at the M point of the fourth and fifth dispersion curves.

Fig. 9. Vibration modes at the M point of the eighth dispersion curve with different concave angles.
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