
Contents lists available at ScienceDirect

European Journal of Mechanics / A Solids

journal homepage: www.elsevier.com/locate/ejmsol

Response of an infinite beam on a bilinear elastic foundation: Bridging the
gap between the Winkler and tensionless foundation models

Yin Zhanga,b,∗, Xiaoming Liua,b, Yujie Weia,b

a State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
b School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

A R T I C L E I N F O

Keywords:
Beam
Winkler foundation
Tensionless foundation
Bilinear foundation

A B S T R A C T

The response of an infinite beam on an elastic foundation depends on the property/modeling of the foundation.
There is a qualitative difference between the responses of a beam when it is on the Winkler foundation and on
the tensionless foundation. A bilinear elastic foundation model, which describes the different behaviors of the
elastic foundation in the tensile and compressive zones with two different foundation moduli, is proposed and a
straightforward computational method is also formulated. The Winkler and tensionless foundations are shown to
be the two special cases of the bilinear elastic foundation model. With this bilinear elastic foundation model, a
more general method of modeling an elastic foundation is provided, which can be of some help to the modeling
of the support of the ballastless high-speed railway.

1. Introduction

Fig. 1(a) shows an infinite beam on an elastic foundation subjected
to a concentrated load, which, for many years, has been an important
model to analyze the deflections and stresses of a railroad track (Ang
and Dai, 2013; Bian et al., 2014; Choros and Adams, 1979; Hetényi,
1946; Kerr, 1972, 1974; 1976; Lancioni and Lenci, 2010; Lin and
Adams, 1987; Tran et al., 2014). In a regular ballasted railroad, the rail-
tie frame is laid on a layer of crushed stone called ballast (Kerr, 1974).
The rail actually lifts off its ballast in front of, and behind a moving
train (Choros and Adams, 1979; Lin and Adams, 1987). Once the lift-off
occurs, the ballast layer as an elastic foundation cannot exert any
(tensile) force on the rail (Choros and Adams, 1979; Lin and Adams,
1987). While, the Winkler foundation model assumes that there is only
one foundation modulus, which physically means that the Winkler
foundation reacts the same in tension as in compression. Although
nowadays the Winkler foundation model is still widely used to analyze
the rail system (Ang and Dai, 2013; Tran et al., 2014), its usage is
motivated more by the desire for mathematical simplicity than by
physical reality (Lin and Adams, 1987). Therefore, the tensionless
foundation model is more appropriate and often applied to study the
contact between the rail and ballast (Choros and Adams, 1979; Lancioni
and Lenci, 2010; Lin and Adams, 1987). The tensionless foundation is
also called the foundation that reacts in compression only (Weitsman,
1970) or the unilateral springs/supports/foundation (Bhattiprolu et al.,
2013, 2014; 2016; Dempsey et al., 1984; Lancioni and Lenci, 2010).

Because there is no bonding force between a structure and the ten-
sionless foundation, their contact is referred to as the unbonded contact
(Weitsman, 1969); because a structure can separate/lift off the ten-
sionless foundation, which results in a decreasing contact area, their
contact is also referred to as the receding contact (Keer et al., 1972).
However, when the tensionless foundation model is applied to the
ballastless track system, which has been extensively used in the high-
speed railway, a serious problem may arise: The ballastless railway
support can take some tension (Bian et al., 2014). A ballastless high-
speed railway consists of the following two parts (Bian et al., 2014): (1)
the track superstructure (rail, fastener, track slab, cement asphalt
mortar (CAM) layer and concrete base) and (2) the geotechnical sub-
structure (roadbed, subgrade and subsoil). A major difference between
the ballastless and ballasted tracks is the concrete track slabs replacing
the ballast layer (Bian et al., 2014). The fasteners tightly bond the rail
with track slab and the CAM layer bonds the track slab with the con-
crete base, which makes the rail separation from its support extremely
difficult if there is any. Furthermore, the support capability of bearing
tensile stress may become substantial because of the tight bondings
between the rail/track slab, track slab/CAM and CAM/concrete base,
etc. Actually, tensile stress was indeed detected by the sensors em-
bedded in the roadbed layer underneath the concrete base (Bian et al.,
2014). Recent elasticity analyses show that even for a homogeneous
elastic continuum modeled as an elastic half-space, its surface responses
to tension and compression are intrinsically different (Zhuo and Zhang,
2015a, 2015b). This asymmetric response to tension and compression is
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also the mechanism responsible for the period-doubling behavior of the
perfectly bonded film/substrate system in a post-buckling region (Brau
et al., 2011). A bilinear elastic foundation model with two different
foundation moduli of k1 and k2 as shown in Fig. 1(a) is thus proposed to
model the different behaviors in the tensile and compressive zones. The
bilinear behavior of the ballastless railway support is expected because
of its heterogeneous multilayer structure and the interface properties.
In this bilinear model, the Winkler foundation and the tensionless
foundation are the two special cases of =k k/ 12 1 and =k k/ 02 1 , respec-
tively.

The contact mechanics of a beam on the tensionless foundation has
been intensively studied for many years and various solution methods
have also been developed. Although the Lagrange multiplier or penalty-
based algorithms in several finite element analysis (FEA) commercial
softwares are capable of modeling the unilateral constraint, the com-
putational costs are very expensive in both storage and CPU time
(Silveira et al., 2008). Furthermore, the complexity of the tools required
to perform a comprehensive study or analyses such as design optimi-
zation, feedback control or stability etc can be infeasible for a full-scale
FEA simulation (Attar et al., 2016; Silveira et al., 2008). There have
always been interests to develope the methods to reduce the compu-
tational cost in an extensive parametric study of tensionless contact
(Attar et al., 2016). A major difficulty in the tensionless contact pro-
blem is the unknown property of contact area, which makes the pro-
blem nonlinear and extremely difficult to be solved in some scenarios.
Therefore, recent studies have been focusing on developing efficient
methods of determining the contact area (Attar et al., 2016; Bhattiprolu
et al., 2013, 2014; 2016; Ma et al., 2009a, 2009b; 2011; Nobili, 2013;

Silveira et al., 2008). The incremental-iterative methods (Attar et al.,
2016; Bhattiprolu et al., 2013; Silveira et al., 2008) update the gov-
erning equation/stiffness matrices in each iteration by tracking the
structure deflections and continue until the convergence, which can still
involve significant computation efforts. For example, a large number of
modes (up to 20) in the Galerkin method are required to achieve a
satisfying accuracy (Bhattiprolu et al., 2013). The transfer displacement
function method (Ma et al., 2009a) reduces the computation by solving
the contact/noncontact zones and deflections one by one. Besides, the
tensionless contact properties can also be utilized to reduce the com-
putational efforts. For example, there is an outstanding characteristics
in the beam tensionless contact subjected to a concentrated load: Only
one contact area exists for both the infinite (Tsai and Westmann, 1967;
Weitsman, 1970, 1972) and finite (Zhang, 2008; Zhang and Murphy,
2004, 2013) beams. Even in the contact dynamics with a moving con-
centrated load, the one contact area conclusion still holds as far as the
moving speed of the concentrated load is less than the critical speed of

EIk m4 /1
24 (EI , m are the beam bending stiffness and mass per unit

length) (Weitsman, 1971). It needs to keep in mind that under complex
loads, the scenario of multiple contact areas can occur (Ma et al.,
2009a, 2009b; 2011; Nobili, 2013). The zero points as called by Hetényi
(1946) and shown in Fig. 1(b) are the points at which the beam de-
flection is zero. For the tensionless contact, the zero points are also the
lift-off/separation points demarcating the contact areas (Weitsman,
1970). For an infinite beam, by reducing the two zero points to one via
the symmetry property, the analytical (Weitsman, 1970) or approx-
imate analytical solution (Weitsman, 1972) can be derived.

Compared with the abundant literature of the tensionless contact,

Fig. 1. (a) Schematic diagram of an infinite beam on a bilinear elastic foundation subjected to a concentrated load P. When the beam bends downwards/upwards, the
foundation is with compression/tension and the corresponding foundation modulus is k1/k2. When =k 02 , the foundation is the tensionless foundation; when =k k2 1,
it is the Winkler foundation. (b) The coordinate system and deflection areas. The zero points (ξi), which demarcate the areas, are marked with circles. Area I is the
downward compressive deflection area with the concentrated load P and in comparison, area III is the other downward compressive deflection areas with no P. Area
II are the upward tensile deflection areas.
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the studies on the bilinear foundation are few (Farshad and Shahinpoor,
1972; Shahwan and Waas, 1994). For the perturbation method devel-
oped by Farshad and Shahinpoor (1972) to work, the two foundation
moduli, k1 and k2 must be close to each other. As the result, their per-
turbation method can only handle a very small k k/2 1 range around

=k k/ 12 1 . Shahwan and Waas (1994) defined a force (f)-displacement
(w) relation for a bilinear foundation as =f k wΨ( )1 and

= −w w λwΨ( ) [1/2(1 tanh( )]. Here λ is the so-called foundation at-
tachment coefficient; = ∞λ corresponds to the fully unattached, i.e.,
tensionless foundation; when =λ 0, =w wΨ( ) 1/2 and this 1/2 factor
needs to be replaced by 1, which thus corresponds to the fully attached,
i.e., Winkler foundation. However, firstly, the physical meaning of λ is
not clear and it will be difficult to experimentally determine such a
parameter. Secondly, large λ can cause “numerical difficulties” and
unphysical results are thus obtained (Shahwan and Waas, 1994).

In contrast to the tensionless case, the zero point number of an in-
finite beam on the Winkler foundation is infinite (Hetényi, 1946).
Therefore, before we can begin to determine the positions of the zero
points, we firstly encounter the problem: How many zero points are
there in a bilinear elastic foundation with a varying k k/2 1? Besides the
tensionless foundation property of one contact area as mentioned
above, the Winkler foundation property of a rapid deflection decay
from the concentrated load (Hetényi, 1946) is also noticed. In con-
junction with these two properties, a computation method with the
assumption of a few zero points is proposed, which can sufficiently
capture the beam deflection around the loading point. Compared with
the previous studies (Farshad and Shahinpoor, 1972; Shahwan and
Waas, 1994), the computation proposed in this study is straightforward
and capable of handling all the cases of k k/2 1 varying from 0 to ∞. Its
accuracy is also demonstrated. The zero points of the bilinear, Winkler
and tensionless foundations are all shown to be independent on the
magnitude of the concentrated load. The zero points are determined by
the beam bending stiffness and foundation moduli only. The magnitude
of the concentrated load only changes the deflection amplitude, which
essentially means that only one computation is needed for the con-
centrated load scenario. This unique property can be of a significant
help to the various stress and deflection analyses related with the
wheel-track contact load, which is modeled as a concentrated load (Ang
and Dai, 2013; Choros and Adams, 1979; Hetényi, 1946; Kerr, 1972;
Lancioni and Lenci, 2010; Lin and Adams, 1987; Tran et al., 2014).

2. Model development

The governing equation for an infinite beam on the Winkler foun-
dation subjected to a concentrated load is given as follows (Hetényi,
1946)

+ =EI d y
dx

k y Pδ x( )
4

4 1 (1)

Where y, E and I are the beam deflection, Young's modulus and area
moment of inertia, respectively. As seen in Fig. 1, P is the concentrated
load acting on =x 0; δ x( ) is the Dirac delta function and k1 is the
foundation modulus. As the beam bends upwards and downwards, the
Winkler foundation assumes that the foundation is firmly attached to
the beam. As a result, the foundation experiences the tensile and
compressive forces in different zones. The Winkler foundation model
also assumes that the same foundation modulus, k1, applies to both
tensile and compressive zones. Furthermore, there is only normal
pressure in the Winkler foundation. In order to include the effect of
shear stress, the Pasternak foundation (Ebrahimi and Barati, 2017;
Ebrahimi and Shaffiei, 2017) or the Reissner foundation (Kerr, 1964)
model should be used.

The governing equation for the tensionless foundation is the fol-
lowing
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The governing domains of the above two equations are demarcated
by x1, at which the beam lifts-off, or say, separates from the foundation.
Unlike the Winkler foundation, the tensionless foundation can only
exert compressive force on the beam; once the beam bends upwards,
the force exerted by the foundation becomes zero, which is the physical
meaning of the two equations in Eq. (2).

For the bilinear foundation, the governing equation becomes the
following three
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In Eq. (3), there are two foundation moduli of k1 and k2, which in-
dicate the different responses of bilinear foundation in the compressive
and tensile zones. Physically, when =k k1 2, the bilinear foundation
becomes the Winkler foundation and it becomes the tensionless foun-
dation when =k 02 . The governing domains of the three equations are
defined as area I, II and III as seen in Fig. 1(b).

The following quantities are introduced to nondimensionalize the
above equations (Weitsman, 1970)

= = = = = = =ξ βx ξ βx Y βy Y βy F P
β EI

R k
k

β k
EI

, , , ,
4

, ,
4

.i i i i 2
2

1

1
4 4

(4)

Where −β 1 is called “fundamental length” (Biot, 1937), which char-
acterizes the important features of both the statics (Hetényi, 1946) and
dynamics (Kerr, 1972) of a beam on an elastic foundation. As seen in
Fig. 1(b), ξi s are the dimensionless zero points, which separate the
tensile and compressive zones. Eqs. (1)–(3) are now non-
dimensionalized as follows

′ + =′′′Y Y Fδ ξ1
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and
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Here ′ =′′′ d dξ() /4 4. The analytical solution to Eq. (5) of the Winkler
foundation was derived by Hetényi (1946), which is a symmetric one
and the ≥ξ 0 part solution is given as follows

= + ≥−Y ξ F e ξ ξ ξ( )
2

(sin cos ), 0.ξ
(8)

Several characteristics can be summarized from the above solution
form: (1) =→∞Y ξlim ( ) 0ξ . (2) It has the features of damped waves
decaying with −e ξ . As defined in Eq. (4), =ξ βx and this length −β 1 is
thus often referred to as the (spatial) damping factor (Hetényi, 1946).
(3) There are infinite zero points as determined by + =ξ ξsin cos 0,
which leads to = + −ξ π i π3 /4 ( 1)i . (4) The concentrated load (F) has
no impact on the zero points. (5) The maximum beam deflection is

=Y F(0) /2.
The solution form to Eq. (6) of the tensionless foundation was given
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by Weitsman (1970) as follows:
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The first two terms of Y1 are the homogeneous solution and the last
two are the particular solution. It is noticed that all four terms are even
functions, which physically keep the solution symmetric. In the
homogeneous solution, there are two other terms associated with the

ξ ξcosh sin and ξ ξcosh sin , which are thrown away because they are odd
functions and thus violate the symmetry (Weitsman, 1970). Here A1, B1,
A2, B2, C2 and D2 are the six constants to be determined. Besides these
six unknown constants, the zero point ξ1, which is variously referred to
as the separation point (Weitsman, 1970), lift-off point (Zhang and
Murphy, 2004) or touch-down point (Lancioni and Lenci, 2010), is also
unknown. Although the two governing equations in Eq. (2) are in-
dividually linear, the tensionless contact problem as a whole is a non-
linear one because of the unknown property of the separation point(s),
which is also the major computation difficulty encountered in various
tensionless contact problems. At ξ1, the transversality conditions (Kerr,
1976), which are also called the matching conditions (Zhang and
Murphy, 2004) or the continuity conditions (Bhattiprolu et al., 2014,
2016), yield the following four equations:

= ′ = ′ ′ = ′ ′ = ′′ ′ ′′ ′′Y ξ Y ξ Y ξ Y ξ Y ξ Y ξ Y ξ Y ξ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ).1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1

(10)

Physically, the above transversality conditions ensure the continuity
of the beam deflection, slope, moment and shear force at =ξ ξ1 (Zhang
and Murphy, 2004). The boundary conditions require the vanishing
deflection, moment and shear force at =ξ ξ1 (Weitsman, 1970), which
gives the following three equations:

= ′ = ′ =′ ′′Y ξ Y ξ Y ξ( ) 0, ( ) 0, ( ) 0.1 1 1 1 1 1 (11)

Because of Eq. (10), the above boundary conditions can also be
equivalently written as = ′ = ′ =′ ′′Y ξ Y ξ Y ξ( ) ( ) ( ) 02 1 2 1 2 1 . Eqs. (10) and (11)
provide seven equations in total to solve the seven unknowns of A1, B1,
A2, B2, C2, D2 and ξ1. For brevity, the lengthy derivation is omitted here
and the solution is given as follows:
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The above solution is also a symmetric one. Similarly, several
characteristics about the tensionless contact are summarized as follows:
(1) = ∞→∞Y ξlim ( )ξ 2 in contrast to ∞ =Y ( ) 0 of the Winkler founda-
tion. (2) The beam deflection of the detachment part is linear, which
means that the beam bending generates no moment and force.
Therefore, this linear beam deflection of the detachment, which can be
infinitely large, actually does not violate the equilibrium. The con-
centrated load is balanced by the contact area alone. It is emphasized
that only the infinite beam has this linear deflection of the detachment
part. For a finite beam, only the free-free finite beam resembles this
scenario and all other do not (Zhang and Murphy, 2004). (3) There are
only two zero points of ± =ξ π/21 and therefore, there is only one
contact area of − ≤ ≤π ξ π/2 /2. Compared with that of the Winkler
foundation, ξ1 of the tensionless foundation is 33.3% smaller. (5) The
concentrated load (F) has no impact on the zero point. (6) The max-
imum beam deflection is = ≈Y F π F(0) coth( /2)/2 1.09 /21 , which is 9%
larger than that of the Winkler foundation. The above characteristics of
the Winkler and tensionless foundations are also graphically illustrated
in Fig. 2.

The solutions to Eq. (7) of the bilinear foundation are also sym-
metric. Therefore, only the solution forms of the >ξ 0 part are given as
follows:
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There are three domains of I, II and III for the three governing
equations. Physically, area I is a special compressive zone within which
the concentrated load is located and all other compressive zones are III;
area II is the tensile zones. Here Y i2 and Y i3 are the solutions of area IIi
and area IIIi, which are the ith tensile and compressive zones. For ex-
ample, in Fig. 1(b) II1 is the area of ≤ ≤ξ ξ ξ1 2 and III1 is that of

≤ ≤ξ ξ ξ2 3.
Although the above solution forms are available for the bilinear

foundation, the problem is still difficult because the positions of zero
points and even their number are unknown. For the time being, we
assume that there are only three zero points in the >ξ 0 region. From
Eq. (13), we have the following:
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Notice that in the last equation of Eq. (14), area II2 governs the
infinite region of ≥ξ ξ3 because only three zero points are assumed. In
order to have =→∞Y ξlim ( ) 0ξ 22 , the other two terms of C e Rξsin( )Rξ

22

and D e Rξcos( )Rξ
22 are discarded because either of them can make the

beam deflection infinitely large. Now A1, B1, A21, B21, C21, D21, A31, B31,
C31, D31, A22 and B22 plus the three zero points of ξ1, ξ2 and ξ3 are fifteen
unknowns in total. At each zero point, the same four transversality
conditions as those in Eq. (10) are given. Therefore, the following
twelve equations in total are given for three zero points
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(15)

There are also three constraint conditions defining the zero points
(Zhang and Murphy, 2004), which are given as follows

= = =Y ξ Y ξ Y ξ( ) 0, ( ) 0, ( ) 0.1 1 21 2 31 3 (16)

Eqs. (15) and (16) provide fifteen equations in total. By substituting
Eq. (14) into these fifteen equations, the fifteen unknowns can be solved
by the Newton-Rhapson method (Press et al., 1986).

The previous tensionless contact study assumes only one contact
area and thus only one zero point (Zhang and Murphy, 2004). In
comparison, arbitrarily more zero points can be easily and system-
atically incorporated into the above computation formulation. For ex-
ample, for the case of four zero points, Eq. (14) becomes the following
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Compared with Eq. (14) of three zero-point case, there are five more
unknowns: C22, D22, A32, B32 and ξ4. Therefore, there are twenty un-
knowns in total. The fifteen equations provided by Eqs. (15) and (16)
are still applicable. At =ξ ξ4, there are four more transversality con-
ditions and one more constraint condition given as follows:

= = =

= =

Y ξ Y ξ Y ξ Y ξ Y ξ Y ξ Y ξ

Y ξ Y ξ

( ) ( ), ( ) ( ), ( ) ( ), ( )

( ); ( ) 0.
22 4 32 4 22

'
4 32

'
4 22

''
4 32

''
4 22

'''
4

32
'''

4 22 4 (18)

Similarly, by substituting Eq. (17) into the twenty equations of Eqs.
(15), (16) and (18), the twenty unknowns can be solved by the Newton-
Rhapson method. However, as discussed later in details, adding more
zero points into the computation does not necessarily improve the ac-
curacy. Fig. 3 shows the comparison between the analytical and nu-
merical solutions for the Winkler foundation. The analytical solution is
Eq. (8) and the numerical solution is Eq. (14) of three zero-point case by
taking =R 1. The two curves almost overlap and their difference is
extremely small. In the Winkler foundation case, though there are in-
finite zero points as seen in Eq. (8), the beam deflection decreases ra-
pidly with an exponential decay of −e ξ . As a result, the beam deflection
away from the concentrated load is very small and thus has little con-
tribution to the equilibrium. Therefore, the three zero-point

configuration of the beam deflection can achieve a very accurate result
because it captures the major deformations around the concentrated
load.

3. Results and discussion

Before the results are presented, an important computational issue
needs to be addressed. For Eq. (14) to be solved by the Newton-Rhapson
method, an initial guess for the fifteen unknowns needs to be supplied
for the program to start. A poor initial guess may result in the unwanted
results or even no result at all for the Newton-Rhapson method (Press
et al., 1986). By setting =R 1, the bilinear foundation starts with the
Winkler foundation and the analytical solution of Eq. (8) can serve as a
good guideline for a proper initial guess of the fifteen unknowns. By
gradually changing R and using the previous computational results as
the initial guess, the Newton-Rhapson method can smoothly run
through a very large range of R. In the previous discussion, we reach the
following conclusion: The concentrated load (F) has no influence on the
zero points for both the Winkler foundation of Eq. (8) and the ten-
sionless foundation of Eq. (12); the concentrated load acts as an am-
plification factor which modifies the deflection amplitude only. The
above conclusion also applies to a finite beam on a tensionless foun-
dation. Even the finite beam is subjected to an asymmetric concentrated
load and with different boundary conditions, this conclusion holds as
far as the beam length is relatively large (Zhang, 2008; Zhang and
Murphy, 2004). For the bilinear foundation, our computations show
that the same conclusion still applies. In all our computations, =F 1 is
set.

Fig. 4 shows the three beam deflections with =k k/ 12 1 , =k k/ 102 1

and =k k/ 271022 1 . Here the =k k/ 12 1 case is the Winkler foundation.
Their corresponding zero points of ξ1s increase monotonically from π3 /4
to 2.63 and to 3.06 as k k/2 1 increases. Even with the significant variation
of k k/2 1, there is little change of the beam deflections around the center
of area I. The major deflection changes occur around the edge of area I
and in the tensile area of II1. Rapid decreases of the beam (upward)

Fig. 2. Comparison of the beam deflections on the Winkler and tensionless foundations. For the tensionless foundation model, there is only one (downward) contact
area and thus one zero point of =ξ π/21 when >ξ 0. For the Winkler foundation model, there are infinite zero points given as = + −ξ π i π3 /4 ( 1)i . At =ξ 0, the beam
maximum deflections are F1.09 /2 and F/2 for the tensionless and Winkler foundation models, respectively.
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bending in area II1 are clearly seen in Fig. 4. Fig. 5 shows the three
beam deflections with =k k/ 02 1 , = −k k/ 102 1

4 and = −k k/ 102 1
2. The

=k k/ 02 1 case is the tensionless foundation. Their corresponding zero
points of ξ1s increase monotonically from π/2 to 1.67 and to 1.88 as
k k/2 1 increases. Similarly, the changes of three beam deflections are
rather small around the area I center. Again, around the I edge and

especially in the tensile area of II1, the differences of the three beam
deflections are very significant. A smaller k k/2 1 corresponds to a much
larger defection. Computationally, we can easily reduce k k/2 1 to, for
example, −10 6, to be closer to the limit case of =k k/ 02 1 . However, the
large deflection difference in the (tensile) area of II1 between the bi-
linear foundation and the tensionless foundation models can only be

Fig. 3. Comparison of the analytical and numerical solutions of Eqs. (8) and (14) to the beam deflections on the Winkler foundation subjected to a concentrated load.
The two solutions are almost identical.

Fig. 4. The beam deflections with =k k/ 12 1 , 10 and 27102, respectively. The corresponding first zero points are =ξ π3 /41 , 2.63 ≈ π( 0.84 ) and 3.06 ≈ π( 0.97 ), which
increase monotonically with the increasing k k/2 1.
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mildly reduced. For the tensionless foundation of Eq. (12), there is only
one contact area and the beam deflection of the detachment part in-
creases linearly to infinity. In contrast, the bilinear foundation with
three zero-point assumption, =→∞Y ξlim ( ) 0ξ 22 as seen in Eq. (14).
Therefore, the assumed beam deflection by Eq. (14) is irreconcilable
with that of the tensionless foundation, which is mainly responsible for
the deflection difference in area II1. As the result, adding more zero
points can only make the assumed beam deflection to deviate more
from that of the tensionless foundation. The following computation is
carried out by assuming one zero point and allowing the beam deflec-
tion to reach infinity, which mimics the beam deflection on the ten-
sionless foundation to see if the problem can be mitigated. Now with
only one zero point, the solution form to the bilinear foundations model
becomes the following

⎧

⎨
⎪

⎩
⎪

= + − +

≤ ≤
= + ≥

Y A ξ ξ B ξ ξ ξ ξ ξ ξ

ξ ξ
Y C e Rξ D e Rξ ξ ξ

I

II

sinh sin cosh cos sinh cos cosh sin ,

: 0
sin( ) cos( ), :

F F

Rξ Rξ

1 1 1 2 2

1

21 21 21 1 1

(19)

Notice that Y21 can reach infinity. Again, the five unknowns of A1, B1,
C21, D21 and ξ1 can be solved by the four transversality conditions and
one constraint condition at ξ1. Fig. 6 shows the three beam deflections
with =k k/ 02 1 , = −k k/ 102 1

6 and = −k k/ 102 1
4. The three corresponding ξ1s

are now π/2, 1.54 and 1.47. In comparison with Fig. 5, as we the further
reduce the k k/2 1 ratio to −10 6, its corresponding =ξ 1.541 is also closer to
the limit case of π/2. However, the beam deflection with = −k k/ 102 1

6 is
still significantly different from that of the tensionless foundation.
Mathematically, for the bilinear foundation,

= +Y C e Rξ D e Rξsin( ) cos( )Rξ Rξ
21 21 21 of Eq. (19) is an oscillating func-
tion; for the tensionless foundation, = − +Y F π ξ π/sinh( /2)( /2)2 of Eq.
(12) is a monotonically decreasing linear function. Physically, ′ ≠′Y 021
and ′ ≠′′Y 021 means that the beam bending moment and shear are not
zero. Therefore, Y21 can not approach infinity without oscillation.
Otherwise, the equilibrium cannot be satisfied. However, this bizarre
and unphysical behavior of the beam deflection reaching infinity can

never happen if the beam weight is considered (Weitsman, 1972).
Furthermore, in the tensionless contact researches, the focuses are on
the contact area rather than the deflection of the detachment parts
(Weitsman, 1969, 1970, 1972). In that sense, as seen in both Figs. 5 and
6, our bilinear model has accurately captured the features of the ten-
sionless contact inside area I when the k k/2 1 is very small.

Fig. 7 shows the variations of the first three zero points as the
functions of k k/2 1, which is set in logarithmic scale. It is noticed that ξ1 is
a monotonically increasing function of k k/2 1. At =k klg( / ) 02 1 , =ξ π3 /41
corresponds to the Winkler foundation. As → −∞k klg( / )2 1 , ξ1 ap-
proaches π/2 of the tensionless foundation; as → ∞k klg( / )2 1 , ξ1 ap-
proaches π. It is interesting to notice that when k k/2 1 approaches ± ∞,
the corresponding ξ1 is π/4 more/less than that of Winkler foundation.
Both ξ2 and ξ3 are monotonically decreasing functions of k k/2 1. Fig. 8
examines the above results from a different angle. As seen in Fig. 1(b),
the contact lengths of area I, II1 and III1 are defined as ξ2 1, −ξ ξ2 1 and

−ξ ξ3 2, respectively. These three contact lengths as the functions of k k/2 1
are plotted in Fig. 8. The contact length of ξ2 1 monotonically increases.
In contrast, the II1 contact length of −ξ ξ2 1 monotonically decreases,
which approaches zero as → ∞k klg( / )2 1 . As → ∞k klg( / )2 1 , the k2 spring
acts as a rigid constraint to prevent the beam from bending upwards to
form a tensile zone. This can also be clearly seen in Fig. 4: There is very
little beam upward deflections in both the =k k/ 102 1 and =k k/ 271022 1

cases. When k klg( / )2 1 is small, −ξ ξ2 1 is very large, which is also seen in
Figs. 5 and 6. For the limit case of the tensionless foundation which
corresponds to = −∞k klg( / )2 1 , −ξ ξ2 1 becomes infinite and therefore,
there is only one contact area.

4. Conclusion

For an infinite beam on a bilinear elastic foundation subjected to a
concentrated load, a straightforward computational method is for-
mulated. The computational method starts with assuming the number
of zero points, giving the solution form to each area divided by the zero
points and then solving them numerically by the Newton-Rhapson
method. An arbitrary number of zero points, which also determines the

Fig. 5. The beam deflections with =k k/ 02 1 , −10 4 and −10 2, respectively. The corresponding first zero points are =ξ π/21 , 1.67 ≈ π( 0.53 ) and 1.88 ≈ π( 0.6 ), which also
increase monotonically.
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number of the unknowns, can be incorporated in the computational
method. With a large number of the unknowns, the computation can be
very time-consuming. The computations with the assumption of three
zero points are shown to be very accurate when the ratio of two
foundation moduli varies in a very large range. The physical me-
chanism for this accuracy is that the major deformations of both the

elastic foundation and beam are in a small region around the con-
centrated load. The Winkler and tensionless foundations are the two
special cases of this bilinear foundation: One reacts symmetrically to
both tension and compression and the other reacts to compression only.
With the bilinear elastic foundation model and the computational
method developed in this study, a more general elastic foundation,

Fig. 6. The beam deflections with =k k/ 02 1 , −10 6 and −10 4, respectively. Compared with those in Fig. 5, there is only one zero point in the >ξ 0 area and
= −∞→∞Y ξlim ( )ξ . The corresponding first zero points are =ξ π/21 , 1.54 ≈ π( 0.49 ) and 1.47 ≈ π( 0.47 ), which decrease monotonically.

Fig. 7. The three zero points (ξ1, ξ2 and ξ3) as the functions of k klg( / )2 1 . Here the zero points as seen in Fig. 1(b) are the locations at which the beam deflection is zero.
=→ ξ πlim /2k k2/ 1 0 1 is the limit case of the tensionless foundation and in comparison, =→∞ξ πlimk k2/ 1 1 . For the Winkler foundation of =k k/ 12 1 , =ξ π3 /41 .
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which reacts asymmetrically to tension and compression, can be effi-
ciently handled. The independence of contact area(s) on a concentrated
load is a benchmark property. The presence of a concentrated load only
modifies the beam deflection. This independence property can be very
helpful to the analysis and computation of the track deflection sub-
jected to a concentrated load of track-wheel contact.
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