
International Journal of Solids and Structures 147 (2018) 29–39 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Micro-crack damage in strip of fracture process zone 

Wang Limin 

a , Li Xia 

a , Xu Shilang 

b , ∗, Wang Haiying 

c , Zhang Zhaojun 

a 

a Science School, Qingdao University of Technology, Qingdao Shandong 266033 China 
b College of Civil Engineering and Architecture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 China 
c LNM of the Institute of Mechanics, Chinese Academy Sciences, Beijing 100190, China 

a r t i c l e i n f o 

Article history: 

Received 24 October 2017 

Revised 12 March 2018 

Available online 18 April 2018 

Keywords: 

Quasi-brittle materials 

Micro-crack 

Damage factor 

Fracture process zone 

Multi-scale mechanics 

Cohesive crack model 

a b s t r a c t 

Damage and fracture of quasi-brittle materials are non-reversible processes of micro-defects and micro- 

cracks, often accompanied by a strip of micro-crack damage along the end of the macro-crack or gap. 

In this work, the micro-crack damage parameters in the strip are calculated, and a mechanics model 

is proposed to analyze the relation between deformation and force. The mechanics parameters are also 

determined using meso-mechanics homogenization of the damage zone of the micro-crack strip. Then, 

calculations of the deformation and stress in the damage strip are introduced, and the damage factor is 

estimated using a cohesive crack model. Finally, the relationship between the micro-crack and macro- 

fracture zone is correlated to electron microscopy data of a cast iron specimen and numerical results. For 

the damage factor, damage density, and geometrical factors of micro-cracks, the meso-mechanics scale is 

correlated to macro-mechanics in the damage fracture process zone by combining the homogenization 

method and cohesive crack model of nonlinear fracture. 

© 2018 Elsevier Ltd. All rights reserved. 

1

 

e  

e  

i  

1  

t  

f  

v  

f  

e  

t  

a  

2  

i  

C

 

f  

n  

c  

f  

t  

s

m  

e  

t  

(  

a  

2  

p  

d  

c  

g  

o  

e  

t  

u  

F  

m  

s  

b  

K

 

q  

a  

c  

h

0

. Introduction 

The failure of engineering materials is affected by many factors,

specially the strength and durability of the material. Therefore,

valuation of the stress and deformation, structural bearing capac-

ty, and damage fracture are critical ( Roth et al., 2014; Hertzberg,

996 ) . With the gradual improvement of modern characterization

ools, the visual resolution of material deformation as a function of

orce can now be finely tuned. The meso-mechanics theories de-

eloped over the past dozens of years have laid a solid foundation

or the study of material behavior ( Yang and Lee,1993; Carpinteri

t al., 2006; Zhou and Li, 2015 ) . With improvements of computa-

ional equipment and methods, mechanical analysis of the material

nd structure failure has become increasingly accurate ( Yao et al.,

015 ) . In addition, a series of discussions on the fracture of var-

ous metals was recently held, which is the “The Sandia Fracture

hallenge” ( Boyce et al., 2014 ). 

Quasi-brittle materials, which release a small strain energy be-

ore failure, are generally thought to contain microscopic defects or

umerous micro-cracks. Thus, the deformation mechanism of mi-

roscopic defects is of particular concern in these materials. The

racture mechanics that addresses geometrical cracks of solids and

he micro-damage mechanics based on the theory of continuous
∗ Corresponding author. 
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edium theory have been well developed in recent decades. For

xample, the mechanism of a plastic strain gradient was used in

he analysis of a steady-state crack growth in response to fracture

 Wei et al., 2004 ). The nucleation of micro-cracks and crack prop-

gation have also been analyzed for thermal shock ( Cyron et al.,

014 ). An analysis of the interactions of multiple micro-cracks was

resented by Zhan et al. (1999) . Nanotechnology was also intro-

uced in solid mechanics by Li (1998) . The effects of the micro-

rack density on the flexibility and damage tensor were investi-

ated in a micro-cracked medium, and the mechanical behavior

f hybrid materials was also investigated ( Krajcinovic,1984; Huang

t al., 2016; Feng and Yu, 2002 ). However, certain problems related

o material damage have not yet been addressed because of the

nknown relationship between micro-cracks and damage variables.

ew studies on the organic connection of macroscopic fracture and

icroscopic defect damage have been reported. Thus, the multi-

cale issue, including micro-crack damage to macro-fracture, has

een one of the long-term research interests of the Chinese State

ey Laboratory of Nonlinear Mechanics. 

Compared with ductile materials that are pure and integrated,

uasi-brittle materials more likely contain impurities and defects

s well as micro-cracks or tiny pores. Material defects and micro-

racks can easily expand when the media is loaded with stress or

eformation. As a crack forms in the high-stress area of materi-

ls, the local bearing capacity will be reduced after crack nucle-

tion ( Pichler and Hellmich, 2010; Gao, 1989 ). A damage strip or

racture process zone often appears at the tip of a smooth crack.

https://doi.org/10.1016/j.ijsolstr.2018.04.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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Fig. 1. Schematic stress–strain curve for the loading process. 
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Hillerborg et al. (1976) used a virtual crack model to study the

fracture properties of concrete. In addition, Xu et al. (1999) per-

formed cracking experiments and fracture criterion analysis of con-

crete to establish a double-K fracture model. For cast iron, a strip

of micro-cracks was found at the tip of macroscopic crack ( Wang

et al., 2008; Shackelford, 2000 ). In this work, an approach is pro-

posed to connect micro-crack damage with the macro-fracture pro-

cess using a combination of a meso-mechanics approach and non-

linear fracture model. 

2. Damage and fracture of solid with applied stress 

2.1. Damage factor 

To explain the deformation of a material with force and its

inner micro-structural changes, Kachanov and Rabotnov first pre-

sented the damage factor using an analytical method of contin-

uum plasticity and creep deformation. The definition of the dam-

age factor was correlated to the effective section area bearing load

( Krajcinovic, 1984; Feng and Yu, 2002 ). If the initial section area

of some solid or undamaged section is A , the effective area is ˜ A in

some state. When the material is damaged by stress, the damage

factor D can be calculated as follows: 

D = 1 −
˜ A 

A 

(1)

where, ˜ A = A and D = 0 for the undamaged material, ˜ A = 0 and

D = 1 for the completely damaged material. When micro-cracks ap-

pear in the cross section and the bearing area is reduced, the dam-

age variable D is usually between 0 and 1. In the state of single-

axis tensile stress for a quasi-brittle material, only one peak ap-

pears in the stress σ vs strain ε curve, as shown in Fig. 1 . The

values of ( σ , ε) are set according to the initial configuration. For

the purpose of objectivity for force F , the equivalent stress ˜ σ is in-

troduced: 

F = ˜ σ ˜ A = σA (2)

The stress–strain relationship is specified by 

σ = E ′ A (3)

Where E ′ is the nominal elastic (Young’s) modulus. If the initial

undamaged elastic modulus of the media is E 0 , the ratio E ′ / E 0 rep-

resents the damage of the material. Without loss of generality, the

material state is considered at point “M,” with coordinates ( ε, σ ),
s shown in Fig. 1 . In addition, the total strain ε is the sum of the

lastic strain εe and the non-elastic strain εc : 

 = ε e + ε c (4)

Here, εe = σ / E 0 for the line segment “PQ.” The total strain ε can

e correlated to the effective stress ˜ σ (defined as the vertical co-

rdinate of point “H” in Fig. 1 ) using the following equation: 

˜ = E 0 ε (5)

Substituting Eqs. (3) and (5) into Eq. (2) , the damage variable D

an be written as 

 = 1 −
˜ A 

A 

= 1 − σ

˜ σ
= 1 − E ′ 

E 0 
(6)

When the initial strain does not exceed the elastic limit, E ′ = E 0 
nd D = 0. When the strain exceeds the elastic limit, the value

f the nominal elastic modulus E ′ gradually decreases and ap-

roaches zero. The material fails or breaks when E ′ = 0and D = 1.

ig. 1 shows that triangle “QPM” is similar to triangle “QOH.” Tak-

ng Eq. (4) into account, 

 = 1 − σ

˜ σ
= 1 − ε e 

ε 
= 

ε c 

ε 
(7)

hich indicates that the damage variable can be calculated based

n the inelastic strain and total strain. This equation is similar to

he expression of equivalent strain or stress about damage factor

 Lemaitre, and Chaboche,1990; Shen, 1995 ). 

.2. Damage strip of a fracture process zone 

Unlike a ductile material, micro-cracks and defects are often

bserved in a quasi-brittle material under stress and deformation

efore structure failure. The damage zone contains many types of

efects or micro-cracks. In fracture mechanics, the damage zone

s simplified as a virtual cohesive crack ( Hillerborg et al., 1976;

ouvard et al., 2009 ). The cohesive force along this virtual crack

eveals the existence of medium interaction in the damage zone.

ig. 2 presents a schematic diagram of the mechanics model. The

icro-cracks appear in the damage zone at the end of a macro-

rack. It is different from the analysis model of a penny-shaped co-

esive micro-crack proposed by Pichler and Dormieux (20 07,20 09) .

or the reason of simplicity, the cohesive segment at each micro-

rack tip is not involved in this proposed damage strip model. 

Regarding the fictitious cohesive crack model (FCCM) at the tip

f a macro smooth crack, as shown in Fig. 2 , the strip length of the

amage zone � is simplified into a cohesive crack segment with

ome stress distribution ( ̂  σyy ). When the damage zone length is not

oo long with respect to the length of the smooth macro-crack, the

ohesive stress and fictitious crack opening displacement ( δ) dis-

ributed along the virtual crack segment can be estimated based

n the stress intensity factor K I of the macro-crack with far loading

eld. According to the principle of solid mechanics and the solu-

ion of integral equation ( Wang et al., 2006; Shen, 2002; Polyanin

nd Manzhirov, 1998 ), the FCOD can be written as a polynomial

f different power exponents for the distance of the position from

he macro-crack tip. On the basis of the solution of the integral

quation of the opening displacement and cohesion stress, alge-

raic equations for determining the coefficients were obtained us-

ng a variational method. However, there was only one non-zero

erm for the first two terms, and the third and higher terms were

ot convenient ( Smith, 1994; Zhang et al., 2012 ). In the Appendix

f this paper, the following expression for δ with its cohesive stress

s derived: 
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Fig. 2. Schematic diagram of a micro-crack damage strip at the tip of a macroscopic crack. 
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( ξ ) = 

16 K I 

3 E 

√ 

�

2 π

(
ξ

�

)3 / 2 

; ˆ σ ( ξ ) 

= 

K I 

√ 

2 √ 

π�

√ 

� − ξ

�
; ( 0 ≤ ξ ≤ b ) (8a,b) 

Here, ξ is the distance from any point in the damage zone to

he smooth crack tip point, as illustrated in Figs. A1 and 2. The K I is

he stress intensity factor (SIF) of tension loaded far from the crack

ip. The opening displacement and stress distribution of cohesive

rack model Eq. (8) is correlated to the observation of mortar FPZ

y laser speckle technique ( Horii and Ichinomiya, 1991 ). As shown

n Fig. A2 , it can be known that the analysis model is validated for

uasi-brittle materials. 

If value of K I in Eqs. (8a,b) is between the initiation SIF and in-

tability SIF, as K 

ini 
Ic 

≤ K I ≤ K 

un 
Ic 

, the propagation of macro crack is

uasi static, according to the double-K model of concrete fracture

roposed by Xu and Reinhardt (1999) . In other words, the crack is

ot extending if the SIF of far load is less or equal to the resis-

ance SIF ( K I ≤ K R ). In this sense, the K I may be the resistance SIF

 K R ) for some stability statue, and it must be less than the fracture

oughness of its material structure. As the extending of FPZ length

ear a macro-crack tip, the value of K R is increasing usually, but

t is limited. So the quasi static development of K I is an alternate

rocess of equilibrium or non-equilibrium for K I and K R . Then, the

alue of K I should be less than its fracture toughness ( K 

un 
Ic 

). 

By the way, if ξ → 0 in Eq. (8b) , the cohesive stress should ap-

roach to the material ultimate tension strength, as ˆ σ ≤ f t . Some

elation can be worked out among the damage length ( �), SIF and

 t . The relationship may be concerned with crack development,

hen ˆ σ ≥ f t or the value of far loaded K I is more than K R . Prob-

bly, the fracture toughness can be calculated by the maximum

alue of K R for some quasi-brittle material, and no too discussion

s concerned in the paper. Now, let us investigate the damage issue

entioned before with regard to FPZ. 

Using modern optical equipment, the opening displacement

istribution of a virtual crack segment (FPZ) at the macro-crack

nd of concrete can be measured using the laser speckle technique,

s described by Horii and Ichinomiya (1991) . For another quasi-

rittle material, cast iron, the fracture process was examined using

 digital image correlation approach in a laser facility, and both

COD and the strain distribution were presented in the damage

trip at the pre-crack tip ( Dai et al., 2013 ). For the FCCM frame-

ork, the width of the damage strip is not considered; however,

he damage strip width is actually non-zero. 

On the basis of the homogenization method, the displacement

between both sides of the virtual crack can be considered as the

eformation of the damage strip at the end of a smooth macro-

rack . If elastic deformation is ignored, the displacement of the

amage strip in the vertical direction of the smooth macro-crack
ine would be the sum of the deformation across the high-strain

and of the non-elastic area. The inelastic deformation of the frac-

ure process zone includes cavity expansion, initiation of micro-

rack growth, and plastic deformation. The area around the dam-

ge strip is surrounded by elastic media. In the vertical direction of

he macro-crack line, if the width of the damage band is as h , the

verage strain of the damage band is εc .The relationship between

hese parameters can be expressed as 

( ξ ) = ε c h ( ξ ) (9) 

Here, the damage strip width h ( ξ ) varies with the distance from

he macro-crack tip. 

Substituting Eqs. (8) and (9) into Eqs. (6 ) and (7) , we obtain the

ollowing expression for the damage factor: 

 = 

ε c 

ε 
= 

δ( ξ ) /h ( ξ ) 

ˆ σ ( ξ ) /E ′ = 

δ(ξ ) E 0 (1 − D ) 
� 

σ (ξ ) h (ξ ) 
(10) 

Therefore, the damage factor can be written as 

 (ξ ) = 

δ(ξ ) E 0 
� 

σ (ξ ) h (ξ ) + δ(ξ ) E 0 
(11) 

It is apparent that D → 0 as δ approaches zero. In the damage

one, when the cohesive stress approaches zero ( ̂  σ → 0 ), the dam-

ge factor of the position function approaches 1 ( D → 1). This for-

ula reveals that the damage factor D of the fracture process strip

s related not only to the virtual crack opening displacement and

ohesive stress but also to the width of the damage zone h ( ξ ). 

.3. Damage factor for ultimate tensile stress 

If ˜ A is the effective area of the damage zone, f t is the ultimate

ensile stress, A is the lossless or initial area, and the force ap-

lied to the effective area is F ′ = Aσ = 

˜ A f t . The force F ′ in the non-

amage area A can be expressed as F t = f t A , if it is in a state of ulti-

ate tensile stress. When the effective area ˜ A takes the maximum

ensile stress f t , the damage factor can be written as 

 = 1 −
˜ A 

A 

= 1 − σ

f t 
(12)

The damage variable is only correlated to the stress of the as-

ociated area. The trend of the damage factor in the fracture pro-

ess zone is consistent with those described in Eqs. (1) and (6) .

n addition, it should be emphasized that the stress in Eq. (12) is

pplicable in the damaged area. 

. Stress and deformation of micro-cracks 

The macroscopic mechanics parameters of stress, strain, and

isplacement are the result of homogenization of the internal force
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and deformation of certain units. The analysis of the relationship

between micro-defects or micro-cracks and macro-mechanics pa-

rameters has promoted the development of the field of meso-

mechanics in solid mechanics ( Feng and Yu, 2002; Zhang and

Zhang, 2008; Pichler, Hellmich, 2010 ). With loading, the media me-

chanical response to one or more micro-cracks or defects is an

important focus of the analysis of micro-mechanics on a repre-

sentative volume element (RVE). To understand the deformation

near a micro-crack in the damage zone, an analytical model can

be established for a single micro-crack or multiple cracks in a solid

medium, as shown in the right part of Fig. 2 . 

3.1. Stress and deformation around a single crack 

For a single micro-crack, the coordinates parallel and perpen-

dicular to the crack axial direction are ( x ′ , y ′ ), respectively, and the

corresponding displacements are ( u ′ , v ′ ) at a certain point near the

crack. The normal stress and shear stress near a single micro-crack

are signed in the right field of Fig. 2 for ( σ ′ , τ ′ ), respectively, and

either far-field stress (σ∞ 

yy , τ
∞ 

xy ) direction is perpendicular or paral-

lel to the axis of the macro-crack. If the micro-crack of the damage

zone is not parallel to the axes of the macro-crack, the angle θ is

between the micro-crack and macro-crack axes, as shown in the

right of Fig. 2 . Coordinate transformation, including sin θ or cos

θ , is needed for plane problems of micro-cracks. In addition, the

stress and displacement fields of a crack can be divided into type I

and II in fracture mechanics. 

For a center crack of length 2 a , when a uniaxial tensile stress is

applied perpendicular to its axes and the shear stress is zero about

the crack θ = 0. The stress and displacement fields can be de-

termined using Westergard’s stress function � = 

¯̄Z I (z) + y Im ̄Z I (z) ,

if the bi-harmonic equation ∇ 

4 �= 0 is satisfied by the far-field

boundary conditions of the crack ( Tada et al., 20 0 0 ). Here, Z̄ I (z)

and 

¯̄Z I (z) are, respectively, the one-time or two-time integral of

the analytical function. If the analytical function of a type-I crack is

Z I (z) = σ.z/ 
√ 

z 2 − a 2 under uniaxial tension σ , the displacements

in the x and y direction are ( u, v ), respectively. This situation is

expressed in the plane-stress condition as 

u I = 

[
(1 − ν) Re ̄Z I − (1 + ν) y ImZ I 

]
/E (13a)

v I = 

[
2 Im ̄Z I − (1 + ν) y ReZ I 

]
/E (13b)

In addition, the field of a type-II crack in the plane-strain state

formed by shear stress τ can be expressed as follows: 

u II = 

[
(1 + ν) [2(1 − ν) Im ̄Z II − y ReZ II 

]
/E (13c)

v II = 

[
(1 + ν) [ − (1 − 2 ν) Re ̄Z II − y ImZ II 

]
/E (13d)

Here, Z II (z) = τ.z/ 
√ 

z 2 − a 2 is an analytical function of a type II

crack that satisfies the bi-harmonic equation and boundary con-

ditions, and E is the Young’s modulus. The deformation field of

a single crack can be determined using the integral or derivative

of a complex analytical function in polar coordinates. On the ba-

sis of the above formula, it is not difficult to determine the dis-

placement or deformation distribution near a crack under various

loading conditions. 

3.2. Macro strain calculation for damage zone with micro-cracks 

For the analysis of material behavior from the microscopic to

macroscopic view, the homogenization method of solid mechanics

is an effective mean approach. The material under the macro-frame

can be considered as a mixture of micro-elements. On the ba-

sis of the universal relation criterion of force and energy, scholars
ave established different analytical methods, including the self-

onsistent scheme, variational approach, differential method, and

ori–Tanaka method ( Zhang and Zhang 2008; Hashin and Shtrik-

an, 1962 ). For the micro-crack damage of quasi-brittle materi-

ls, the effect of micro-crack propagation on macroscopic flexibility

as investigated by Krajcinovic (1984) . Micro-cracks are not uni-

ormly distributed in the damage zone of actual materials. In ad-

ition, a tiny crack is formed after the local stress reaches a cer-

ain value. Therefore, the density of micro-cracks varies with lo-

ation and stress. In the damage zone, as illustrated in Fig. 2 , the

eformation of a position near a micro-crack clearly changes with

istance from the macro-crack tip. The coordinate indexes are re-

laced with numbers as x 1 ↔ x, x 2 ↔ y,x 3 ↔ z .The average strain of

amage to the local volume element can be divided into the elas-

ic strain ε̄ e 
i j 

in the matrix and the non-elastic strain ε̄ c 
i j 

caused by

he material defect deformation: 

¯ i j = ε̄ e i j + ε̄ c i j . (14)

The matrix elastic strain ε̄ e 
i j 

can be calculated based on the con-

titutive relationship of stress and strain in the undamaged zone.

he strain ε̄ c 
i j 

of a volume element with many micro-cracks (with

otal N α) can be calculated using the micro-mechanics method

 Feng and Yu, 2002 ): 

¯ c i j = 

1 

V 

N α∑ 

α=1 

(
n i b j + n j b i 

2 

)(α) 

d S α (15)

here V is the volume of the representative element and S α is the

urface area of order α micro-crack. Because of the non-uniform

istribution of micro-cracks, the selection of the volume and po-

ition of the RVE clearly affects the strain value. The deformation

f a medium near the crack ( α)involves the size and orientation

f the crack and the corresponding coordinate transformation ( n j ).

he displacement of a crack surface ( b k ) depends on its geometry

nd the stress around the crack, and the deformation of the dam-

ge zone is closely related to the density of local micro-cracks. 

. Parameters of fracture damage process zone mechanics 

.1. Shape of fracture process zone 

The shape of the damage zone near a macro-crack is generally

ot very regular. Probably, the contour of the damaged area is re-

ated to the properties of some materials. Thus, many geometric

hapes should be assumed to discuss the deformation and strain

f the micro-crack zone. For example, on the basis of the experi-

ental observations by Wang et al. (2008) , the width of the dam-

ge zone can be designated as a linear distribution with the dis-

ance from the macro-crack endpoint, or the damage strip has a

emi-elliptical shape. Be based concrete photo-elastic coating ex-

eriment by Xu and Reinhardt (1999) , and iron specimen strain by

ai et al. (2013) , the inelastic region outline before a prefabricated

acro crack, is between straight line and ellipse curve. As shown

n Fig. B1 , that is 

 (ξ ) = h 0 ξ/ �, (0 ≤ ξ ≤ �) (16)

 (ξ ) = h 0 

√ 

1 − (ξ − �) 
2 
/ �2 , (0 ≤ ξ ≤ �) (17)

Here, h 0 is the maximum width of the damage zone and is gen-

rally found at the junction of the macroscopic smooth crack and

amage zone. Therefore, δ can be estimated by combining Eqs. (9) ,

15) and (16) or (17) . 
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.2. Parameters of micro-crack damage zone 

For the fracture process zone, the RVE can be assumed to be a

ube body with characteristic length 

ˆ l , width h , and thickness B for

he damage strip. For Eq. (15) , micro-cracks should be considered

s penetrating-type cracks with thickness B in the plane problem.

hen, the inelastic strain of the damage zone in the direction per-

endicular to the axis of the damage strip should be the projection

f ε̄ c 
i j 

onto the y -direction: 

¯ c 22 = 

1 

ˆ l Bh (ξ ) 

N α∑ 

α=1 

∫ 
S α

(
n i b j + n j b i 

2 

)(α) 

y 

d(B a α) 

= 

1 

h (ξ ) ̂ l 

N α∑ 

α=1 

∫ 
S α

( n 2 b 2 ) 
(α) 

d( a α) (18) 

here a α is the perimeter of the intersection curve of the penetra-

ion crack and plate plane; ˆ l is the length of the volume element in

he x -direction, which is longer than the average length ( 2 ̂  a ) of a

icro-crack; b 2 is two times the opening displacement of one side

urface of a micro-crack; and “n 2 ” is the direction cosine of a crack

n the y-direction. Considering Eq. (13) and Fig. 2 , the characteristic

rea A 

∗ can be calculated based on the upper and lower opening

isplacements of a single crack. For a center crack with length 2 a

nder uniaxial tension field σ , the area can be determined using

he following equation: 

 

∗ = 

∫ a 

−a 

2 . v I (x, o) dx = 

σ2 πa 2 

E ∗
(19)

Here, E ∗ = E and E ∗ = E /(1 −ν2 ) correspond to the plane-stress

nd plane-strain states, respectively. Then, the following equation

an be obtained: 

N α∑ 

=1 

∫ 
S α

( n 2 b 2 ) 
(α) 

d( a α) = 

ˆ A 

∗N 

′ (20) 

here the number of equivalent cracks is denoted by N 

′ . Therefore,

here is an equivalent characteristic area ˆ A 

∗ = 2 πσ. a 2 / E ∗ . In the

acroscopic framework, the formula for the FCOD of the damage

one can be derived as follows, referring to Eq. (9) : 

(ξ ) = h (ξ ) ̄ε c 22 = 

ˆ A 

∗N 

′ (ξ ) 

ˆ l 
= σ (ξ ) 

2 π ˆ a 2 

E ∗ ˆ l 
N 

′ (ξ ) (21)

Here, ˆ a is the half-length of an equivalent crack. Eq. (21) clearly

emonstrates that the FCOD is related to the size and density of

icro-cracks. 

.3. Estimation of damage factor and micro-crack density 

As shown in Fig. 1 , εe = σ / E 0 , which is only confined to the

lane-stress state in this paper. Accounting for the interaction of

icro-cracks with each other, the Young’s modulus of the dam-

ge zone with micro-cracks is that for the damage state. That is,

 

∗ = E 0 (1–D ) . If the stress of a point in the fracture process zone is

esignated as ˆ σ (ξ ) = σ , inputting Eq. (21) into Eq. (11) would give

he following equation for D : 

 (ξ ) = 

δ(ξ ) E 0 
� 

σ (ξ ) h (ξ ) + δ(ξ ) E 0 
= 

2 π ˆ a 2 N 

′ ( ξ ) 

( 1 − D ) ̂ l h (ξ ) + 2 π ˆ a 2 N 

′ (ξ ) 
(22) 

In addition, for the RVE with damage, the number of effective

icro-cracks N 

′ ( ξ ) can be calculated using the formula for D . Thus,

he solution is 

 ’ ( ξ ) = 

ˆ l h (ξ ) 

2 π ˆ a 2 
D (ξ ) (23) 
In turn, D can be expressed as 

 ( ξ ) = 

2 π ˆ a 2 (ξ ) 

ˆ l h (ξ ) 
N 

′ (ξ ) (24) 

As shown in Eqs. (23) and (24) , the distribution of micro-cracks

n the fracture process zone is related not only to the damage vari-

ble but also to the geometric parameters of the micro-crack. The

eometric parameters include the average micro-crack length 2 ̂  a ,

he width of the damage zone h , and the character length 

ˆ l of the

VE. Because the equivalent crack length may vary with position,

ˆ  = ˆ a (ξ ) , in the above formulae. However, using Taylor’s compos-

te media method, the interaction of components can be neglected;

hus, the zone near a micro-crack can be considered as an undam-

ged medium. Assuming E ∗ = E 0 in Eq. (21) and inputting this ex-

ression into Eq. (11) , the number of equivalent continuous micro-

racks can be determined: 

 

′′ (ξ ) = 

ˆ l h (ξ ) D 

2 π ˆ a 2 (1 − D ) 
(25) 

There is a singularity for N 

′ ′ in Eq. (25) , when D → 1, which is

rrational. Regarding the above formula and Eq. (22) , there is one

ore multiplier (1/(1 − D )) in Eq. (25) than in Eq. (23) . 

If the equivalent number of micro-cracks is divided by the unit

olume of the RVE body, the micro-crack density per unit volume

f the damaged zone can be estimated as follows: 

 (ξ ) = 

N 

′ (ξ ) 

ˆ l h (ξ ) B 

= 

D (ξ ) 

2 πB ̂

 a 2 
(26a) 

r D (ξ ) = 2 πB ̂

 a 2 (ξ ) q (ξ ) (26b)

From Eqs. (26a,b) , it can be observed that the micro-crack den-

ity of the damage zone q ( ξ ) is proportional to the damage factor

 ( ξ ), but inversely proportional to the square of the average micro-

rack length ( ̂  a 2 ). 

For Eqs (26a,b) , if there is a row of micro crack in some seg-

ent of damage strip, two micro cracks with same length ˆ a is sub-

tituted for a micro-crack with 2 ̂  a length, the damage factor should

e became to twice of that. It can be known that micro-crack

xtension is more dangerous than new micro-crack emerging. No

atter the occurrence of micro-cracks or micro-crack growth, they

re related to the encircling stress. The occurrence of a micro-crack

s often associated with some initial defect in material, and SIF of

 micro-crack is proportion to its surrounding stress ˆ σ . If some

icro-crack extension is hindered when its stress increasing, the

amage factor should be limited. Or, when the damage width h ( ξ )

s increasing with loading, while the micro-crack density of dam-

ge strip is not increasing, and probably increasing the materials

oughness. So, the Eqs. (26a,b) can be applied analyzing materials

tructure failure. 

. Experimental observations and calculation example 

.1. Observation of micro-cracks generated during fracture process 

ith loading 

Cast iron was selected as the experimental material, as it is a

ommonly used quasi-brittle material in engineering applications.

he material was cut into tensile test specimens of 12-mm length,

–6-mm width, and 1–2-mm thickness, as shown in Fig. 3 (a). A

ap with a length of 0.5–2 mm was made on one side of the mid-

le of each specimen perpendicular to the tensile direction using a

ine-cutting machine. The notched crack width was approximately

.2 mm. After grinding and polishing the specimen surface, a strain

age with specifications of approximately 1 mm was pasted in the

iddle of the bottom of the test piece. Then, the specimen was
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Fig. 3. (a) Schematic illustration of the tensile test specimen. SEM images of cast iron for tensile forces of (b) 0, (c)200, (d) 294, (e)–(g) 356, (h)–(j) 360, (k)–(m) 372, (n)–(o) 

394, and (p) 404 N. 
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placed into a scanning electron microscope (SEM, S570) for obser-

vation during a tensile test. During the tensile loading, the SEM

operation was controlled by implementation of displacement, and

the tensile force and strain were read on a computer screen. When

the load or strain reached a certain value, the load was maintained,

and multiple images were captured. The corresponding location of

the materials differed in the images, and the SEM magnification
as not constant. For the measurement of the material deforma-

ion under different loads and states, the SEM images were printed

ut for comparison with an image of the unloaded state with the

ssistance of the photo-size scale in the microscopy system. 

Fig. 3 presents 15 SEM images with tensile forces ranging from

 to 404 N. The images were captured at the ligament of a prefab-

icated crack or in the damage process zone. In Fig. 3 , the dam-
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Table 1 

Data of SEM Experiment for the tension of iron specimen with cast crack. 

Force ( N ) 200 262 287 294 356 360 372 394 404 

FPZ length (mm) 0 0.35 1.32 7.2 13.2 13.6 14.3 18.7 19.8 

Fig. 4. Experimental data of the loading process. (i) Curves of tensile loading, damage zone length, and SIF as a function of strain. (ii) Curves of FCOD as a function of the 

distance of the damage zone from the crack tip. 
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ge of the micro-crack first appeared close to the prefabricated

ap, and the damage area formed a strip. The deformation of the

raphite sheet defect was gentle when the tensile force was less

han 300 N. The damage zone was nearly vertical to the tensile di-

ection, and the length of the damage strip increased with increas-

ng tensile loading. The SEM images demonstrate that micro-cracks

ften appeared on some graphite impurity of the stress concen-

ration. In the low-stress region of the specimen, the deformation

ear graphite defects was very small, and no micro-cracks were

etected. On the stretching process of iron plate with prefabricated

rack, the tension force loaded on the specimen and damage length

t the crack tip are listed in Table 1 . Where, both of FPZ length and

ension force are increasing monotonously, and more test data or

alculated parameters are shown in Fig. 4 . 

Fig. 4 presents plots of the tensile force and damage zone de-

ormation of a specimen as a function of strain. In Fig. 4 (i), the

orizontal coordinate is the micro-strain (10 −6 or u), and the left

ertical coordinate is the “tensile force (N)” (or damage length

mm) ×100). The strain and damage zone length of the specimen

enerally showed a monotonic increase with increasing tension

train. 

t

In Fig. 4 (ii), the horizontal axis is the distance from the damage

one to the prefabricated crack tip. On the left vertical ordinate,

he relative displacement of both sides in the damage strip or the

COD under different loadings is presented. In Fig. 4 (ii), five tensile

orce states are shown. Because the micro-crack deformation was

ot regular when the specimen was near fracture, such as for the

ensile force of 404 N, the corresponding curve is not presented.

egardless of the force, the relative displacement of both sides of

he damage band gradually decreased with increasing distance of

he damage zone from the pre-notched crack tip. 

.2. Fracture parameters under different loading states 

For the numerical calculation example, as shown in Fig. 3 (a),

he limited width plate was loaded with the uniaxial tensile force

 T ) with width w , thickness b , and crack length a on one side of

he plate. The cut crack was perpendicular to the tensile direction.

hen the stretching stress is σ (equal to T /( wb )), the stress inten-

ity factor (SIF) of a type-I crack in plate can be determined using

he following equation ( Tada et al., 20 0 0 ): 
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Fig. 5. Distribution of damage factor and micro-crack density of RVE with distance 

from the fabricated crack tip in the damage zone. 
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K I = σ
√ 

πa 
[
0 . 265 (1 − a/w ) 

4 

+ (0 . 857 + 0 . 265 a/w ) / (1 − a/w ) 
3 / 2 

]
(27)

When the damage strip expands in front of the incision, the

length of a in the SIF equation should be the total length of

the initial crack length and the damage extension length. Fig. 4 (i)

presents a curve of the change in SIF with varying deformation.

The SIF value has units of MPa.m 

0.5 or “Mpa.m ̂ 0.5 ′′ and is ex-

pressed along the right vertical coordinate of the diagram. SIF

monotonically increased with increasing load. 

Without loss of generality, the specimen was loaded into

a state, e.g., tensile force = 372 N, which resulted in SIF = 22.85

(Mpa.m ̂ 0.5) and a damage zone length of approximately 1.43 mm.

In addition, the elastic modulus without damage was E 0 = 87.Mpa.

These parameters were substituted into Eqs. (8a,b) ; then, the FCOD

and cohesive stress of the damage zone were determined, as

marked by the continuous dotted line in Fig. 4 (ii). The FCOD is

plotted on the left vertical coordinate (labeled as “CCM-372N”),

and the “cohesive stress” is plotted on the right vertical coordi-

nate as “stress (MPa).” Compared with the opening displacement

of the test data shown as discrete “triangle” symbols in Fig. 4 (ii),

the numerical calculation results in Eqs. (8a,b) are generally con-

sistent with the experimental data obtained using SEM. The co-

hesive stress distribution in the cutting mouth was almost zero,

and the maximum stress of 487 MPa appeared at the end of the

damaged zone. The maximum stress was much greater than the

tensile strength of general cast iron and was generally close to

the ultimate tensile stress of low-carbon steel without damage

( Ashby et al., 2008 ). 

5.3. Damage variable and micro-crack density 

As the degree of damage in the fracture process zone varies

with position, some parameters of the specimen with a tensile

force of 372 N could be used to calculate the damage factor in

Eq. (11) . A value of E 0 = 87Mpa was used for the Young’s modu-

lus of the material, and the thickness of the damage zone h ( ξ ) was

determined using Eq. (16) or (17) . The cohesion stress ˆ σ (ξ ) and

fictitious crack opening displacement δ( ξ ) were calculated using

Eqs. (8a) and (8b), respectively. The resulting D ( ξ ) values are plot-

ted in Fig. 5 , where the left coordinate shows the damage factor

D ( ξ ). “D for h-linear” represents the value of h ( ξ ) obtained using

Eq. (16) , and “D for h-nonlinear” corresponds to the data obtained

using Eq. (17) . 
In Fig. 5 , the solid points for “D for Force 372 N” represent the

amage factor calculated using Eq. (11) , and the displacement de-

ermined using SEM, and h ( ξ ) was calculated using Eq. (17) . To fa-

ilitate comparison, the value of the damage factor calculated using

q. (12) , which was based on the ultimate stress of the material, is

resented along the left vertical axis of Fig. 5 with the legend “D

or ft.” Fig. 5 clearly shows that the experimental data and results

btained using Eq. (17) were closer to the test data and differed

rom the “D for ft” data in terms of the ultimate tensile stress.

herefore, it is not appropriate to calculate the damage variable

or cast iron material using the ultimate tensile stress. The damage

actor always decreased with increasing distance from the prefab-

icated crack tip, gradually changing from close to 1 to 0. As shown

n Fig. 5 , at macro crack tip, the damage factor equal to 1 meaning

hat the material is completely disconnected, so the disconnection

rder can be expected by the curves of damage factor. 

From Eqs. (26a,b) , it is clear that the change of the micro-

rack density q varies with the damage factor in the fracture pro-

ess zone. As shown in Fig. C1 , the length of micro crack is vari-

ble in the damage strip of iron tension specimen. The maximum

nd minimum lengths are 0.135(mm) and 0.241(mm) respectively,

ut the lengths of some micro crack are randomly distribution

s Fig. C1 (a,b). If 2 ̂  a = 170 (um) and h 0 = 0.456 mm are assumed,

he density of the micro-crack of RVE can be determined using

q. (26a) , and the result is shown as the right vertical coordinate

f Fig. 5 . The curves of the micro-crack density in Fig. 5 are labeled

q for a’ = 85 um”. As observed in this figure, there may be twenty

r more micro-cracks per mm 

3 . The micro-crack density was small

ear the no damage zone. However, this type of continuity func-

ion obtained using the homogenization method only reflects the

elative relationship between the density of micro-crack, and dam-

ge variable. 

. Discussion and conclusion 

For quasi-brittle materials, the relationship between the stress

nd deformation of micro-cracks in the damage process zone in

ront of a macroscopic gap can be evaluated by combining the ho-

ogenization method in meso-mechanics and the cohesive crack

odel of nonlinear fracture. By Eqs. (8a,b) , the cohesive stress and

pening displacement of a damage strip are calculated with giv-

ng the materials elastic modulus, length of the damage strip and

he SIF of far loaded. When the cracked material structure is in the

tate of balance, the SIF is also the resistance SIF. So, the SIF is less

r equal to the instability toughness of its materials ( K 

un 
Ic 

). 

On the basis of the damage factor defined from the concept of

n effective bearing cross section and a function of the mechan-

cs parameters in the damage zone, the damage degree can be ex-

ressed as a function of position in the fracture process zone. The

amage factor variable is closely related to the width distribution

f the fracture process zone with micro-cracks. Eqs. (26a,b) express

hat damage factor is proportional to the density of micro-crack in

amage zone, and is also proportional to the square of micro-crack

ength. As the damage factor ( D ) is between 0 and 1, and for D = 1

r D = D c (criterion damage factor) display a statue of complete

racture or failure, then, damage factor is related to fracture tough-

ess. So, it is known that the damage degree in the damage strip is

elated not only to the density of micro-cracks, the cohesive stress

istribution, but also to the geometrical factors of micro-cracks in

he FPZ strip. 
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ppendix A. Analytical solution of the cohesive crack model 

1. Integral solution of the cohesive crack model 

As shown in Fig. A1 , as a non-elastic band is located at the end

f a smooth crack, the segment is regarded as a fictitious crack or

ohesive crack segment. The non-elastic area is surrounded by an

lastic area with deformation and stress in the area for a type-I

racture problem. If the fracture mechanics concept of a smooth

rack is adopted here, cohesive stress and fictitious crack opening

isplacement occur along the cohesive crack. The FCOD distribu-

ion is expressed as a polynomial with different powers of the dis-

ance from the cohesive end ( Wang et al., 2006 ): 

= 

4�

Eπ

N ∑ 

n =1 

C n 

(
ξ

�

)n −1 / 2 

, ( 0 ≤ ξ ≤ �) . (A1) 

In fact, the FCOD is formed by the stress K field and crack co-

esion stress. On the basis of the superposition principle of solid

echanics, δ = δK + δσ as shown in the following equations: 

K = 

8 K I 

E 

√ 

ξ

2 π
, ( 0 ≤ ξ ≤ �) , (A2a) 

σ = 

4 

Eπ

∫ �

0 

σ ( η) ln 

∣∣∣∣∣
√ 

ξ + 

√ 

η√ 

ξ−√ 

η

∣∣∣∣∣d η, ( 0 ≤ ξ ≤ �) . (A2b) 

In addition, this equation can be reduced to a Fredholm-type

ntegral equation. If χ = ξ / �, we obtain 
Fig. A1. Schematic diagram of the cohesive crack model. 

C

A

A

 

f

C

 

t  

a

 1 

0 

σ (θ ) ln 

∣∣∣∣
√ 

χ + 

√ 

θ
√ 

χ −
√ 

θ

∣∣∣∣dθ

= K I 

√ 

2 πχ

�
−

N ∑ 

i =1 

C i (χ ) 
i −1 / 2 

, ( 0 ≤ √ 

χ ≤ 1 ) . (A3) 

The cohesive stress solution to the above equation is: 

( ξ ) = 

1 √ 

2 π

K I √ 

� − ξ

+ 

N ∑ 

n=1 

−C n 

2 π�

√ 

�

� − ξ

( 

n −1 ∑ 

r=0 

2 

−2 r (2 r)! 

(r!) 
2 

(
ξ

�

)n −r−1 
) 

+ 

N ∑ 

n =2 

C n 

π

√ 

1 − ξ

�

( 

n −2 ∑ 

r=0 

2 

−2 r (n − r − 1)(2 r)! 

(r!) 
2 

(
ξ

�

)n −r−2 
) 

( 0 ≤ ξ ≤ �) , (A4) 

Where, C n ( n = 1, 2,... N ) are undetermined parameters. 

2. Elimination of stress singularity and calculation of undetermined 

arameters 

For the distribution of cohesive stress, there are stress singu-

arities at the two ends of the cohesive crack segment. To elim-

nate the stress singularities, it is required that σ
√ 

ξ → 0 when

→ 0 and σ
√ 

� − ξ → 0 when ξ → �. Using the Lagrange multi-

lier method, two equations for the elimination of stress singular-

ties are introduced in the energy functional of the cohesive crack.

n the basis of the variational principle, 

� = 

N+2 ∑ 

j=1 

∂�

∂ C j 
δC j . (A5) 

Regarding the undetermined parameters C j of the FCOD distri-

ution, the following set of algebraic equations can be obtained:

N 
 

i =1 

A i j C i + C N+1 + A j0 C N+2 = A 1 j K I 

√ 

2 π

�
, ( j = 1 , 2 , . . . , N ) , (A6a)

 1 + 

3 

2 

C 2 + 

15 

8 

C 3 + . . . + 

N−1 ∑ 

r=0 

2 

−2 r (2 r)! 

(r!) 
2 

C N + 0 . C N+1 

+ 0 . C N+2 = K I 

√ 

2 π

�
, ( j = N + 1 ) , (A6b) 

 10 C 1 + A 20 C 2 + ... + A N0 C N + 0 . C N+1 + 0 . C N+2 

= [2 A 10 − 1] K I 

√ 

2 π

�
, ( j = N + 2 ) . (A6c) 

Wang et al. (2006) had determined A ij using calculus: 

 10 = 1 / 2 , A 11 = 1 / 4 , A 20 = A 30 = ... = 0 , A 12 = A 21 = A 22 

= 3 / 16 , A 23 = A 32 = A 33 

= 45 / 256 , and A 1 ( N+1 ) = 1 , ...... 

Using Eq. (A6c) , we can obtainC 1 /2 = 0. Referring to Eq. (A6b) ,

or N = 2, we have 

 1 = 0 ; C 2 = 

2 K I 

3 

√ 

2 π

�
. (A7a,b) 

When inputting Eq. (A7) into Eqs. (A1 ), ( A4 ), (8a,b) in the main

ext are obtained. For N = 3, the relation curves of FCOD and stress

re not smooth and contain oscillations ( Zhang et al., 2012 ). 

http://dx.doi.org/10.13039/501100001809
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Fig. A2. The distribution of COD and Stress in cohesive crack model is correlated to 

the observation of FPZ by laser speckle technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B1. The width of damage strip for concrete and iron. 
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A3. The opening displacement and stress of cohesive crack model 

correlated to test date 

Consulting Eqs. (A1) , (A4) and (A7a,b) above, the COD and stress

of cohesive crack model can be worked out by Eqs. (8a,b) in

the text, if the FPZ length ( �), SIF of far loaded ( K I ), and elastic

modules ( E ) are given. By laser speckle technique, Horii and Ichi-

nomiya (1991) got the opening displacement of cohesive crack in

tension specimen of mortar or concrete. From Fig. 7 in the refer-

ence for mortar, the data of COD is shown in the left vertical axis

of Fig. A2 in this paper. For �= 0.68(mm), K 1 = 1.092Mpa(m) ∧ 0.5,

E = 32.6Mpa, the COD(um) and Stress (Mpa) can be calculated by

Eqs. (8a,b) , and are shown in Fig. A2 for continuous curves. Where,

the horizontal axis indicates the distance from the macro crack tip,

and cohesive stress is shown in the right vertical axis. 

From Fig. A2 , it is known that the opening displacement curve

is basically consistent with the curve profile of test data by laser

speckle technique. The maximum value of cohesive stress distribu-

tion is approached to the ultimate tensile strength ( f t ∼= 

3.4Mpa).

By comparing the calculation results of Eqs. (8a,b) with tested data

( Horii and Ichinomiya, 1991 ), it shows that the theoretical model is

valid. 
Fig. C1. The micro crack length in the damage strip of iron specimen, it is per
ppendix B. Width of damage strip contour at the tip of a 

acro crack 

It is all known that the contour of fracture process zone is

 long strip for quasi-brittle materials as concrete and iron. By

hoto-elastic coating, Xu and Reinhardt (1999) obtained the distri-

utions of principal strain on concrete. For the contours of strain

noted 0.45) of concrete, in Ref. Fig. 16, for P = 0.704 P max and

 = 0.859 P max, the width of FPZ is expressed in Fig. B1 . The hori-

ontal axis indicates the distance from the macro crack tip, with

mm’ unit, and the contour width is shown in the vertical axis

f Fig. B1 . As to iron material, Dai et al. (2013) obtained the con-

our of damage strip. By multiplied by pixel conversion coefficient

 

′ , the contour data from Fig. 15 of reference, is also expressed in

ig. B1 of this paper. 

The distribution of damage strip width can be calculated for pa-

ameters h 0 and �, by Eqs. (16) and (17) . As to concrete material,

 0 = 31(mm), 24(mm); � = 140(mm), 100(mm) are set respectively,

nd the calculation curves are shown in Fig. B1 . For the iron mate-

ial, the reference parameters h ’ 0 f 
′ = 7(mm) and �’ f ′ = 60(mm) are

et, and the contour curves of line and ellipse are also shown in

he same figure. 

From Fig. B1 , it is known that the points of experiment data are

etween the curves of ellipse and straight ling, especially for data
pendicular to the tension direction of specimen at tension force 372(N). 



W. Limin et al. / International Journal of Solids and Structures 147 (2018) 29–39 39 

w  

a  

E

A

 

c  

s  

s  

l  

l  

(

R

A  

B  

 

B  

C  

 

C  

 

D  

 

F  

G  

H  

H  

H  

 

H  

 

H  

 

K
L  

L  

P  

P  

P  

 

P  

R  

S  

S  

S  

S  

T  

W  

 

W  

W  

 

X  

Y  

Y  

Z  

 

Z  

Z  

Z  
ith “P = 0.859Pmax” and “Iron-test ∗f ′ ”. This is reason the ellipse

nd straight line are supposed as the contours of damage zone, for

qs. (16 ) and (17) . 

ppendix C. The length of micro-crack of iron in damage strip 

For the photos of Fig. 3 (l,m) in this text, the lengths of micro

racks are measured by the photo ruler. The length is the dimen-

ion in perpendicular to the tension direction of iron specimen. As

hown in Fig. C1 , six cracks length are got respectively. There are,

 1 = 136(um), l 2 = 241(um), l 3 = 135(um), l 4 = 199(um), l 5 = 174(um),

 6 = 136 (um). The average value of equivalent crack length is 170

um), or its half is a’ = 85(um). 
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