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a b s t r a c t 

In this paper, based on the perturbed fluxes of all candidate fluxes used in the traditional fifth- 

order WENO scheme, a fifth-order accurate perturbational weighted essentially non-oscillatory (P-WENO) 

scheme is developed. First, a corollary about the accuracy of a kind of conservative schemes is gener- 

alized and proved. Then, based on the corollary and the idea of numerical perturbation, the perturbed 

fluxes, which are one order higher than the traditional candidate ones of the fifth-order WENO scheme, 

are obtained. Furthermore, we derive the necessary and sufficient conditions for the fifth-order conver- 

gence of the new weighted scheme constructed by using the new perturbed fluxes and find that they are 

one order lower than those derived by Henrick et al. for the traditional fifth-order WENO scheme. Thus, 

the new weighted scheme, which uses the same weights of the WENO-Z scheme and the perturbed 

fluxes, can meet the necessary and sufficient condition for fifth-order convergence even at critical points. 

The resulted P-WENO scheme actually provides a novel method to decrease the numerical dissipation 

of traditional WENO schemes. Numerical examples are presented to verify the accuracy, robustness and 

low-dissipation of the new scheme. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The weighted essentially non-oscillatory (WENO) schemes have

been widely used in solving compressible flows due to their uni-

formly high order accuracy in smooth regions and essentially non-

oscillatory (ENO) property near discontinuities. The first WENO

scheme was proposed by Liu et al. [1] . Subsequently, Jiang and Shu

[2] proposed a classical smoothness indicator and a general frame-

work of WENO schemes. Henrick et al. [3] provided a detailed anal-

ysis about the accuracy of the fifth-order WENO scheme of Jiang

and Shu (WENO-JS) and found that it fails to achieve the opti-

mal order at critical points where the first derivative of the so-

lution vanishes. Meanwhile, they derived the necessary and suf-

ficient conditions on the weights for fifth-order convergence and

developed a new fifth-order WENO scheme (WENO-M) which uti-

lizes a mapping function to revise the weights of WENO-JS scheme

to satisfy the sufficient condition (SC). After that, the SC was used

as a guidance to design the weights for improving WENO schemes.

In [4] , Borgers et al. proposed a high order global smoothness

indicator to calculate the weights (the WENO-Z scheme). Although

the WENO-Z scheme has low dissipation, its weights do not satisfy

the SC at critical points of smooth solution and its convergence
∗ Corresponding author. 
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rder is degraded to only fourth-order. Following the idea of the

ENO-Z scheme, Ha et al. [5] proposed a new sixth-order global

moothness indicator. Although the authors proved that the re-

ulted WENO scheme can meet the SC at critical points of smooth

olution, its numerical results rely on a user-tunable parameter [6] .

an et al. [7] developed several higher order global smoothness in-

icators (even up to eighth-order). It is clear that these indicators

an recover fifth-order even at critical points of smooth solution.

owever, numerical results showed that these higher order global

moothness indicators are prone to generating oscillations for solv-

ng problems with shock waves [8] . On the other hand, several

cholars [9–11] suggested that the parameter ε used to calculate

he weights of WENO schemes can be defined as a function of the

esh size �x to obtain the formal order at critical points. How-

ver, it is easy to recognize that the solutions of those resulted

ENO schemes lose the scale invariance property, particularly, if

he reference length takes a small value, then �x will be a large

alue, and hence this kind of scheme may generate numerical os-

illations. In order to achieve fifth-order accuracy at critical points

nd keep low dissipation and ENO property near discontinuities,

his paper considers another different way, i.e., how to construct a

eighted scheme to relax the restraints of fifth-order convergence.

The numerical perturbation method (NPM) was first proposed

y Gao [12] for solving convection-diffusion equation. The main

dea of the NPM is that, by multiplying a perturbational polynomial

https://doi.org/10.1016/j.compfluid.2018.07.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.07.003&domain=pdf
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a power-series of grid intervals), then eliminating the truncated

rror terms in the modified differential equation to get the corre-

ponding coefficients of the perturbational polynomial, and finally

he numerical perturbation method is obtained. The advantage of

he NPM is that it improves the accuracy of schemes without in-

reasing the total number of grid points. Based on the first-order

pwind scheme, Shen et al. [13] developed a second-order pertur-

ational finite difference scheme for hyperbolic conservation equa-

ion. Gao et al. [14] extended the idea of the NPM to the finite

olume method. Li et al. [15] developed a third-order scheme with

odified coefficients based on second-order ENO scheme. Recently,

u et al. [16] proposed a symplectic and phase error reducing per-

urbation finite-difference advection scheme. 

In this paper, based on the works [17,18] , a corollary about the

ccuracy of a conservative scheme is generalized and proved. And

hen, combining the NPM and the corollary, we use the perturbed

orms of the candidate fluxes used in the WENO scheme to con-

truct a new weighted scheme. We also prove that the new scheme

elaxes the sufficient condition for fifth-order convergence of a

fth-order WENO scheme, since the perturbed fluxes are one or-

er higher than their counterparts. Thus, using the weights of the

ENO-Z scheme and the perturbed fluxes, the resulted perturba-

ional WENO (P-WENO) scheme can achieve fifth-order accuracy in

mooth regions even at critical points. 

The rest of this paper is organized as follows: in Section 2 ,

he accuracy of a conservative scheme is discussed and a corol-

ary is proposed. In Section 3 , a perturbational WENO scheme is

onstructed by using the perturbed candidate fluxes. In Section 4 ,

everal numerical examples are presented to verify the robustness

nd low dissipation properties of the proposed scheme. Some con-

lusions of this paper are given in Section 5 . 

. The accuracy of conservative scheme 

The one-dimensional hyperbolic conservation laws is used as a

odel equation to describe the numerical method in this paper, 

∂u 

∂t 
+ 

∂ f (u ) 

∂x 
= 0 , t ∈ [0 , ∞ ] , x ∈ [ a, b] , (1)

here u ( x, t ) is the conservative variable, f ( u ) is the flux function. 

With an uniform grid spacing �x , the semi-discretization form

f Eq. (1) can be written as 

du i 

dt 
+ 

ˆ f i + 1 2 
− ˆ f i − 1 

2 

�x 
= 0 , (2) 

here u i is the numerical approximation of u at node x i , ˆ f i +1 / 2 

nd 

ˆ f i −1 / 2 are the numerical fluxes of f at cell interfaces x i +1 / 2 and

 i −1 / 2 , respectively. 

To calculate the numerical fluxes ˆ f i ±1 / 2 , a function h is implic-

tly defined as follows [19] 

f (x ) = 

1 

�x 

∫ x + �x 
2 

x − �x 
2 

h (ξ ) dξ . (3)

ifferentiating Eq. (3) with respect to x , we have 

∂ f 

∂x 

∣∣∣
x = x i 

= 

h i + 1 2 
− h i − 1 

2 

�x 
. (4) 

rom Eqs. (2) and (4) , we can see that the numerical fluxes ˆ f i ±1 / 2 

re the approximations of h i ± 1/2 . 

In [17] , Shu and Osher concluded that the existence of constants

 2 , a 4 , · · · , a 2 m −2 , · · · , such that if 

ˆ f i + 1 2 
= f i + 1 2 

+ 

m −1 ∑ 

l=1 

a 2 l �x 2 l 
∂ 2 l f 

∂x 2 l 

∣∣∣∣
i + 1 2 

+ O (�x 2 m +1 ) , (5)
c

hen the scheme would be (2 m )th order accuracy in space, for ex-

mple, a 2 = − 1 
24 , a 4 = 

7 
5760 , · · · . 

In [18] , Shui gave the relations of the coefficients a 2 l in Eq. (5) ,

k 
 

l=0 

a 2 l 
2 

2 k −2 l (2 k − 2 l + 1)! 
= 0 , a 0 = 1 , k = 1 , 2 , · · · , m − 1 , (6)

nd then proved the scheme is (2 m )th order accurate in space. 

The two works mentioned above only given the summarization

or even-order accuracy of the conservative scheme. Here, we fur-

her generalize them to form a corollary, which can also be applied

o construct our new scheme. 

orollary. For the numerical flux 

ˆ f i + 1 2 
= f i + 1 2 

+ 

m ∑ 

l=1 

a 2 l �x 2 l 
∂ 2 l f 

∂x 2 l 

∣∣∣∣
i + 1 2 

+ 

˜ A 

∂ 2 m +1 f 

∂x 2 m +1 

∣∣∣∣
i + 1 2 

�x 2 m +1 + O (�x 2 m +2 ) , (7) 

he coefficients a 2 l satisfy 

k 
 

l=0 

a 2 l 
2 

2 k −2 l (2 k − 2 l + 1)! 
= 0 , a 0 = 1 , k = 1 , 2 , · · · , m, (8)

• if ˜ A � = 0 , then the scheme is (2 m + 1) th order accuracy in space; 
• if ˜ A = 0 , then the scheme is at least (2 m + 2) th order accuracy in

space. 

The proof of the corollary is given in Appendix. 

. Fifth-order WENO schemes 

.1. The traditional fifth-order WENO schemes 

The numerical flux ˆ f i +1 / 2 of a fifth-order WENO scheme can be

ritten as 

ˆ f i + 1 2 
= 

2 ∑ 

k =0 

ω k ̂
 f k 
i + 1 2 

, (9) 

here ˆ f k 
i +1 / 2 

is the numerical flux on the sub-stencil S k =
(x i + k −2 , x i + k −1 , x i + k ) , 

ˆ f 0 
i + 1 2 

= 

1 

3 

f i −2 −
7 

6 

f i −1 + 

11 

6 

f i , 

ˆ f 1 
i + 1 2 

= −1 

6 

f i −1 + 

5 

6 

f i + 

1 

3 

f i +1 , 

ˆ f 2 
i + 1 2 

= 

1 

3 

f i + 

5 

6 

f i +1 −
1 

6 

f i +2 . (10) 

 k is the nonlinear weight. In [2] , ω k is calculated as 

 k = 

αk 

α0 + α1 + α2 

, αk = 

c k 
(IS k + ε) 2 

, k = 0 , 1 , 2 , (11)

here c 0 = 

1 
10 , c 1 = 

6 
10 , c 2 = 

3 
10 are the ideal weights; ε is a small

ositive number introduced to avoid the denominator becoming

ero. A detailed discussion of the magnitude and the role of ε can

e found in Refs. [2,3] . As suggested in [3] , ε = 10 −40 is used in this

aper. IS k is the smoothness indicator on the sub-stencil S k . A clas-

ical formula for IS k is proposed by Jiang and Shu [2] as 

S k = 

r−1 ∑ 

l=1 

∫ x 
i + 1 

2 

x 
i − 1 

2 

�x 2 l−1 
(

d l ˆ f k (x ) 

dx l 

)2 

dx. (12) 

he explicit form of IS k for the fifth-order WENO scheme ( r = 3 )

an be expressed as 
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IS 0 = 

13 

12 

( f i −2 − 2 f i −1 + f i ) 
2 + 

1 

4 

( f i −2 − 4 f i −1 + 3 f i ) 
2 , 

IS 1 = 

13 

12 

( f i −1 − 2 f i + f i +1 ) 
2 + 

1 

4 

( f i +1 − f i −1 ) 
2 , 

IS 2 = 

13 

12 

( f i − 2 f i +1 + f i +2 ) 
2 + 

1 

4 

(3 f i − 4 f i +1 + f i +2 ) 
2 . (13)

Henrick et al. [3] derived the necessary and sufficient conditions

for fifth-order convergence of a fifth-order WENO scheme as 

2 ∑ 

k =0 

A 

′ 
k (ω 

+ 
k 

− ω 

−
k 
) = O (�x 3 ) , (14a)

ω 

±
k 

− c k = O (�x 2 ) . (14b)

where A 

′ 
k 

= A k f 
′′′ 
i 

, and A k is the same as given in Eq. (18) ; the

superscripts ± correspond to the numerical fluxes ˆ f i ±1 / 2 , respec-

tively. And a simple sufficient condition 

ω 

±
k 

− c k = O (�x 3 ) , (15)

is usually used to guide the construction of a WENO scheme. 

Henrick et al. [3] also pointed out that the weights calculated

by Jiang and Shu’s method Eq. (11) fail to obtain the maximum

order at critical points, and they proposed a mapping function to

recover the optimal order of convergence. 

Borges et al. [4] proposed a different method to calculate the

weights by incorporating the higher order information about the

regularity of the numerical solution and they gave the formula of

the weights as follows 

ω k = 

αk 

α0 + α1 + α2 

, αk = c k 

(
1 + 

(
τ5 

IS k + ε 

)q )
, k = 0 , 1 , 2 , 

(16)

where, τ5 = | I S 0 − I S 2 | can be called as a global smoothness indi-

cator. 

The convergence order of the fifth-order WENO (WENO-Z)

scheme [4] at critical points is influenced by the power parameter

q in the definition of weights Eq. (16) , for example, the accuracy

is fourth- and fifth-order if the power q takes the value of 1 and

2, respectively. On the other hand, Borges et al. pointed out that,

for solutions containing the discontinuities, increasing q makes the

scheme more dissipative, hence q = 1 is suggested in [4] and used

in this paper, unless otherwise indicated. 

Later, in order to improve the accuracy of the WENO-Z scheme

and maintain low dissipation (means q = 1 ), several higher-order

global smoothness indicators are proposed, for example, two sixth-

order formulas [5,7] and two eighth-order formulas [7] . Although

those global smoothness indicators can make the weights with q =
1 meet the sufficient condition Eq. (15) in smooth regions even at

critical points, a user-tunable parameter in [5] and the oscillatory

solutions near discontinuities generated in [7] limit the application

of those resulted WENO schemes. Therefore, the issue of how to

improve the accuracy of the WENO-Z scheme and maintain low

dissipation and ENO property is still open. 

3.2. The new perturbational WENO scheme 

In this section, we introduce the numerical perturbation

method to construct a kind of new WENO scheme. The new

scheme can reduce the constraint of the sufficient condition from

third order to second order, i.e. 

± 2 
ω 

k 
= c k + O (�x ) . (17) 
.2.1. The construction of the perturbed fluxes 

Taylor expansions of Eq. (10) at x i +1 / 2 give 

ˆ f k 
i + 1 2 

= f i + 1 2 
− 1 

24 

∂ 2 f 

∂x 2 

∣∣∣∣
i + 1 2 

�x 2 + A k 

∂ 3 f 

∂x 3 

∣∣∣∣
i + 1 2 

�x 3 + O (�x 4 ) , (18)

here A 0 = − 1 
4 , A 1 = 

1 
12 , A 2 = − 1 

12 . 

According to the corollary, Eq. (18) reveals that the numerical

uxes ˆ f k 
i +1 / 2 

are third-order accurate. It is natural to think of that,

f all these candidate fluxes are improved to fourth order, whether

he requirements of the weights Eq. (14) can be relaxed or not.

ollowing this idea, we use a perturbational polynomial P k of the

rid spacing as 

 k = 1 + b k �x 3 + O (�x 4 ) , (19)

o multiply the candidate fluxes ˆ f k 
i +1 / 2 

, and then get the new fluxes

˜ f k 
i +1 / 2 

as 

˜ f k 
i + 1 2 

= P k ̂  f k 
i + 1 2 

. (20)

ccording to the corollary, if the following equation 

˜ f k 
i + 1 2 

= f i + 1 2 
− 1 

24 

∂ 2 f 

∂x 2 

∣∣∣
i + 1 2 

�x 2 + O (�x 4 ) , (21)

s satisfied, then 

˜ f k 
i +1 / 2 

is a fourth-order flux. Substituting Eqs. (18) ,

19) and (21) into Eq. (20) , there is 

1 + b k �x 3 + O (�x 4 ) 
)(

f i + 1 2 
− 1 

24 

∂ 2 f 

∂x 2 

∣∣∣i + 1 2 
�x 2 

+ A k 

∂ 3 f 

∂x 3 

∣∣∣∣
i + 1 2 

�x 3 + O (�x 4 ) 

) 

= 

( 

f i + 1 2 
− 1 

24 

∂ 2 f 

∂x 2 

∣∣∣∣
i + 1 2 

�x 2 + O (�x 4 ) 

) 

. (22)

o, it is theoretically possible (assuming f i +1 / 2 � = 0 ) to find that 

 k = −A k 

∂ 3 f 

∂x 3 

∣∣∣
i + 1 2 

/
f i + 1 2 

. (23)

onsidering ˆ f k 
i +1 / 2 

= f i +1 / 2 + O (�x 2 ) ( Eq. (18) ), a high order ap-

roximation of b k can be found as 

˜ 
 k = −A k 

∂ 3 f 

∂x 3 

∣∣∣
i + 1 2 

/
ˆ f k 
i + 1 2 

. (24)

learly, there is 

˜ 
 k = b k + O (�x 2 ) . (25)

ence, we obtain the perturbed fourth-order candidate fluxes as 

˜ f k 
i + 1 2 

= (1 + ̃

 b k �x 3 ) ̂  f k 
i + 1 2 

= 

ˆ f k 
i + 1 2 

− A k 

∂ 3 f 

∂x 3 

∣∣∣
i + 1 2 

�x 3 . (26)

n stencil S 5 = { x i −2 , x i −1 , · · · , x i +2 } , ∂ 3 f 
∂x 3 

∣∣
i +1 / 2 

can be discretized

s 

∂ 3 f 

∂x 3 

∣∣∣
i + 1 2 

= 

− f i −2 + 2 f i −1 − 2 f i +1 + f i +2 

2�x 3 
+ O (�x ) . (27)

ubstituting Eq. (27) into Eq. (26) , the explicit form of the per-

urbed fluxes can be written as 

˜ f k = 

ˆ f k − A (− f + 2 f − 2 f + f ) / 2 . (28)

i + 1 2 i + 1 2 

k i −2 i −1 i +1 i +2 
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.2.2. The weighted form of the perturbed fluxes 

Using the perturbed fluxes ˜ f k 
i +1 / 2 

Eq. (28) , the numerical flux of

 new weighted scheme can be written as 

˜ f i + 1 2 
= 

2 ∑ 

k =0 

ω k ̃
 f k 
i + 1 2 

= 

2 ∑ 

k =0 

ω k ̂
 f k 
i + 1 2 

+ 

(3 ω 0 − ω 1 + ω 2 ) 

24 

×
(

− f i −2 + 2 f i −1 − 2 f i +1 + f i +2 

)
, (29) 

here ω 0 , ω 1 , ω 2 are the same weights of the WENO-Z scheme in

q. (16) . 

Next, we derive the necessary and sufficient conditions for fifth-

rder convergence of Eq. (29) . Directly applying the expansion

orm of 
2 ∑ 

k =0 

ω k 
ˆ f k 
i ± 1 

2 

( Eqs. (15) –(17) in Ref. [4] ) given by Borges et al.,

e have 

˜ f i ± 1 
2 

= 

(
h i ± 1 

2 
+ B 

±�x 5 + O (�x 6 ) 
)

+ 

2 ∑ 

k =0 

(ω 

±
k 

− c k ) 

×
(

h i ± 1 
2 

+ A k 

∂ 3 f 

∂x 3 

∣∣∣
i ±1 / 2 

�x 3 + D k �x 4 + O (�x 5 ) 

)

+ 

(3 ω 

±
0 

− ω 

±
1 

+ ω 

±
2 
) 

12 

(
∂ 3 f 

∂x 3 

∣∣∣
i ± 1 

2 

�x 3 + O (�x 4 ) 

)

= 

(
h i ± 1 

2 
+ B 

±�x 5 + O (�x 6 ) 
)

+ 

2 ∑ 

k =0 

(ω 

±
k 

− c k ) 

×
(

h i ± 1 
2 

+ D k �x 4 + O (�x 5 ) 
)

+ 

(3 ω 

±
0 

− ω 

±
1 

+ ω 

±
2 
) 

12 

O (�x 4 ) , (30) 

here B + = B −, D 0 = 

347 
1152 

∂ 4 f 
∂x 4 

∣∣∣
i 
, D 1 = D 2 = − 37 

1152 
∂ 4 f 
∂x 4 

∣∣∣
i 
. 

Subtraction of the numerical fluxes in Eq. (30) gives 

˜ f i + 1 2 
− ˜ f i − 1 

2 

�x 
= f 

′ 
i + O (�x 5 ) + 

2 ∑ 

k =0 

(ω 

+ 
k 

− c k ) h i + 1 2 
−

2 ∑ 

k =0 

(ω 

−
k 

− c k ) h i − 1 
2 

�x 

+ 

2 ∑ 

k =0 

D k (ω 

+ 
k 

− ω 

−
k 
) O (�x 3 ) + 

2 ∑ 

k =0 

(ω 

+ 
k 

− c k ) O (�x 4 ) 

−
2 ∑ 

k =0 

(ω 

−
k 

− c k ) O (�x 4 ) 

+ 

3(ω 

+ 
0 

− ω 

−
0 
) − (ω 

+ 
1 

− ω 

−
1 
) + (ω 

+ 
2 

− ω 

−
2 
) 

12 
O (�x 3 ) . (31) 

rom Eq. (31) , we obtain the necessary and sufficient conditions

or the fifth-order convergence of the fifth-order weighted scheme

q. (29) as 

 

+ 
k 

− ω 

−
k 

= O (�x 2 ) , (32a) 

 

±
k 

− c k = O (�x ) . (32b) 

Comparing current necessary and sufficient conditions Eq. (32)

ith those of Eq. (14) derived from the traditional WENO schemes,

e can find that the current ones relax the requirements on the

eights by one order. 

Clearly, a sufficient condition for fifth-order convergence of the

ew weighted scheme Eq. (29) can be obtained as 

 

±
k 

= c k + O (�x 2 ) . (33)

.2.3. The flux of the new P-WENO scheme 

The form of Eq. (29) is constructed by following the weight-

ng process of the WENO scheme, however, since the term F (3) :=
∂ 3 f 
∂x 3 

∣∣
i +1 / 2 

�x 3 = (− f i −2 + 2 f i −1 − 2 f i +1 + f i +2 ) / 2 is used in all per-

urbed candidate fluxes, the scheme Eq. (29) loses the ENO prop-

rty. Fortunately, the term F (3) is independent of the traditional

ux ˆ f i +1 / 2 , hence it is easy to make the scheme have the ENO

roperty by limiting the influence of F (3) if a discontinuous solu-

ion is solved. This paper suggests using a tunable function ϕ to

lay this role. The final flux of the weighted scheme with ENO

roperty (P-WENO) is 

˜ f i + 1 2 
= 

2 ∑ 

k =0 

ω k ̂
 f k 
i + 1 2 

+ 

ϕ(3 ω 0 − ω 1 + ω 2 ) 

24 

× ( − f i −2 + 2 f i −1 − 2 f i +1 + f i +2 ) . (34) 

or the function ϕ, it is required that 

1) if the stencil S 5 = (x i −2 , x i −1 , · · · , x i +2 ) is a discontinuous sten-

cil, then ϕ is a small value; 

2) if the stencil S 5 is smooth, then ϕ does not affect the accuracy

convergence of Eq. (29) . 

According to Eq. (33) , a sufficient condition, which satisfies con-

ition 2), can be derived as 

 = 1 + O (�x 2 ) . (35)

In this paper, the function 

 = 1 −
(

τ5 

IS 0 + IS 2 + ε 

)2 

, (36) 

s suggested, where τ 5 is the global smoothness indicator of the

ENO-Z scheme; IS 0 , IS 2 are the local smoothness indicators in

q. (13) , ε is a small positive number introduced to avoid the de-

ominator becoming zero. It is easy to verify that the function ϕ
atisfies the designing requirements 1) and 2). 

It should be pointed out that, the scheme Eq. (34) is different to

he hybrid schemes, the second term in the right hand side is an

pproximation of the third derivative of the function f at i + 1 / 2 ,

ather than a numerical flux for discretizing the first derivative in

he traditional hybrid scheme, and it can be regarded as an anti-

issipation term. Hence, the new scheme actually provides a novel

ethod to decrease the numerical dissipation of traditional WENO

chemes. 

.3. The accuracy analysis of the P-WENO scheme 

Taylor expansions of Eq. (13) at x i give 

S k = 

{
f 

′ 2 
i 

�x 2 + O (�x 4 ) , f 
′ 
i 

� = 0 , 
13 
12 

f 
′′ 2 
i 

�x 4 + O (�x 5 ) , f 
′ 
i 

= 0 . 
(37) 

Then, we obtain 

5 = 

{∣∣ 13 
3 

f 
′′ 
i 

f 
′′′ 
i 

− f 
′ 
i 

f (4) 
i 

∣∣�x 5 + O (�x 7 ) , f 
′ 
i 

� = 0 , ∣∣ 13 
3 

f 
′′ 
i 

f 
′′′ 
i 

∣∣�x 5 + O (�x 7 ) , f 
′ 
i 

= 0 . 
(38) 

Similar to the analysis in [5] , substituting Eqs. (37) and (38) into

q. (16) , there is 

k = 

{
c k E �x 

(
1 + O (�x 5 ) 

)
, f 

′ 
i 

� = 0 , 

c k F �x 

(
1 + O (�x 2 ) 

)
, f 

′ 
i 

= 0 , 
(39) 

here 

 �x = 1 + 

∣∣13 

3 

f 
′′ 
i f 

′′′ 
i − f 

′ 
i f 

(4) 
i 

∣∣/ 

f 
′ 2 
i �x 3 , 

F �x = 1 + 4 

∣∣ f 
′′ 
i f 

′′′ 
i 

∣∣/ 

f 
′′ 2 
i �x. (40) 

learly, E �x and F �x are independent of k . Hence, we obtain 

 k = 

{
c k + O (�x 5 ) , f 

′ 
i 

� = 0 , 

c k + O (�x 2 ) , f 
′ 
i 

= 0 . 
(41) 



200 F. Zeng et al. / Computers and Fluids 172 (2018) 196–208 

Fig. 1. Dispersion and dissipation properties for different schemes. 
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Eq. (41) indicates, the sufficient condition Eq. (33) for fifth-

order convergence of the P-WENO scheme is satisfied. Hence, the

P-WENO scheme is fifth-order accurate even at critical points. 

It is worthy to point out that, there are several high order global

smoothness indicators (GSI) proposed for improving the WENO-

Z scheme, such as the sixth-order GSI ζ for WENO-NS [5] , η6 

for WENO-Z η [7] , τ 6 in Ref. [8] . Same as above analysis, using

these high order GSIs, the calculated weights can meet the suffi-

cient condition Eq. (15) at critical points, hence the corresponding

WENO-Z type schemes are the fifth-order accurate schemes. Even

so, the numerical results given in next section show that, the P-

ENO scheme ( Eqs. (34) and (36) ) with the high order GSIs men-

tioned above can further reduce the numerical dissipation. 

3.4. The spectral properties of the P-WENO scheme 

The spectral properties of a difference scheme can be obtained

by using the method proposed by Pirozzoli in [20] . For com-

paring, Fig. 1 gives these properties for the fifth-order upwind

scheme (UP5), WENO-Z, P-WENO, Hybrid+ ϕ, WENO-NS [5] ( ξ =
0 . 1 ), WENO-Z η6 [7] , WENO+ τ 6 and P-WENO+ τ 6 . Where, Hy-

brid+ ϕ denotes the hybrid scheme with the flux of ˆ f i +1 / 2 = (1 −
 ) ̂  f W ENO −Z 
i +1 / 2 

+ ϕ ̂

 f UP5 
i +1 / 2 

, which is used to demonstrate the difference

etween the P-WENO and hybrid scheme. And WENO+ τ 6 denotes

he WENO-Z scheme with the weights calculated by using τ 6 to

eplace τ 5 in Eq. (16) . τ 6 [8] is a sixth-order global smoothness

ndicator and given as 

τ6 = (| f (1) 
0 

| − | f (1) 
2 

| ) 2 + 

13 

12 

(| f (2) 
0 

| − | f (2) 
2 

| ) 2 , 
f (1) 
0 

= ( f i −2 − 4 f i −1 + 3 f i ) / 2 , f (1) 
2 

= (−3 f i + 4 f i +1 − f i +2 ) / 2 , 

f (2) 
0 

= ( f i −2 − 2 f i −1 + f i ) , f (2) 
2 

= ( f i − 2 f i +1 + f i +2 ) . (42)

rom Fig. 1 (a) and (b) , we can see that the P-WENO scheme shows

maller dispersion and dissipation than the WENO-Z scheme. Al-

hough the hybrid scheme shows better spectral properties than

-WENO, but for the solutions with discontinuities (for example,

ee Fig. 2 (a) and (b)), it is more dissipative than P-WENO. This

act demonstrates the anti-dissipation of P-WENO is effective for

oth smooth solution and discontinuous solution, while the hy-

rid scheme can only improve the accuracy of smooth solution.

ig. 1 (c) and (d) show that, with the sixth-order global smooth-

ess indicators, the P-WENO+ τ 6 scheme can still reduce the dis-

ersion and dissipation of the WENO+ τ 6 scheme in the region of

edium wavenumber, though the improvement is not so remark-
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Fig. 2. Numerical results of the linear advection problem with initial condition Eq. (44) at t = 6 , N = 200 . 
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W  
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c

ble as shown in the case with τ 5 . In the region of high wavenum-

er, WENO-Z η6 has less dispersion and dissipation than P-WENO,

ut it generates apparent asymmetry solution for the discontinu-

us problems (for example, the square wave and ellipse wave in

ig. 2 (e) and (f)). In addition, these schemes, including Hybrid+ ϕ,
ENO-NS, WENO-Z η6 , may generate oscillation for the problems

ith strong shock waves (for example, the 1D problem of inter-

cting blast waves in Section 4.3.2 ), and even cannot complete the

omputation. 
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Table 1 

Comparison of errors and convergence orders for different schemes. 

�x UP5 WENO-Z P-WENO Hybrid+ ϕ

Error order Error order Error order Error order 

1/160 0.159E −12 – 0.870E −08 – 0.804E −10 – 0.133E −10 –

1/320 0.497E −14 5.00 0.770E −09 3.50 0.219E −11 5.20 0.738E −13 7.50 

1/640 0.155E −15 5.00 0.559E −10 3.78 0.699E −13 4.97 0.366E −14 4.33 

1/1280 0.485E −17 5.00 0.375E −11 3.90 0.227E −14 4.95 0.796E −16 5.52 

�x WENO-NS WENO-Z η6 WENO+ τ 6 P-WENO+ τ 6 

1/160 0.145E −09 – 0.291E −10 – 0.311E −09 – 0.287E −11 –

1/320 0.570E −11 4.67 0.136E −11 4.42 0.145E −10 4.42 0.417E −13 6.10 

1/640 0.194E −12 4.87 0.496E −13 4.78 0.527E −12 4.78 0.568E −15 6.20 

1/1280 0.631E −14 4.94 0.166E −14 4.90 0.177E −13 4.90 0.641E −17 6.47 
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4. Numerical results 

In this section, several numerical examples are presented to

demonstrate the accuracy, robustness and resolution of the pro-

posed perturbational WENO scheme. The fourth-order Runge-Kutta

method [17] is used to approximate the time derivative, and the

CFL number is set to be 0.5 for all examples in this paper, unless

otherwise stated. 

4.1. The accuracy at critical point 

As used in Refs. [3,4] , the function f (x ) = x 3 + cos (x ) is also

used in this paper to measure the accuracy of the new scheme.

x = 0 is a critical point where f ′ (0) = 0 and f ′ ′ ′ (0) � = 0. Table 1

gives the errors and convergence orders of different schemes. We

can see that, the original WENO-Z scheme is only fourth order,

and the P-WENO scheme achieves fifth-order accuracy. It is worthy

to point out that, for the smooth solution, the errors of the Hy-

brid+ ϕ scheme is close to those of the fifth-order upwind scheme

(UP5). However, for a solution containing complex structures, the

hybrid scheme behaves even worse than the WENO-Z scheme, see

the next case. It can also be seen that, with the sixth-order global

smoothness indicators, the WENO-NS, WENO-Z η6 and WENO+ τ 6 

schemes are fifth-order accurate, but the errors of P-WENO+ τ 6 are

at least one order of magnitude (some of them are even three or-

ders) lower than the three schemes. 

Compared with the hybrid scheme, the P-WENO+ τ 6 scheme

still reduces the errors with one order of magnitude in the cases

with refined meshes. Another main advantage over the hybrid

scheme is that the P-WENO scheme can effectively reduce the dis-

sipation for the problems with shock waves, as analyzed in previ-

ous section and numerically shown in the next example. 

4.2. One-dimensional linear advection problem 

The governing equation of linear advection problem is given

by {
∂u 
∂t 

+ 

∂u 
∂x 

= 0 , x ∈ [ −1 , 1] 

u (x, 0) = u 0 (x ) , periodic boundary 
(43)

The initial condition of the first case, which contains a Gaussian,

a square-wave, a triangle and a semi-ellipse wave, is given by 

u (x, 0) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 
6 
(G (x, β, z − δ) + G (x, β, z + δ) + 4 G (x, β, z)) , −0 . 8

1 , −0 . 4
1 − | 10(x − 0 . 1) | , 0 � 

1 
6 
(F (x, α, a − δ) + F (x, α, a + δ) + 4 F (x, α, a )) , 0 . 4 �

0 , othe

where G (x, β, z) = e −β(x −z) 2 , F (x, α, a ) = 

√ 

max (1 − α2 (x − a ) 2 , 0) ,

a = 0 . 5 , z = −0 . 7 , δ = 0 . 005 , α = 10 and β = log2 / 36 δ2 .
 ≤ −0 . 6 

 ≤ −0 . 2 

 . 2 

0 . 6 

e 

(44)

ig. 2 gives the numerical results of different schemes with

 = 200 at t = 6 . Although the hybrid scheme behaves well for

 smooth solution as shown in the previous case, it is even

orse than the WENO-Z scheme in this case. This is possibly

aused by frequent switches of different numerical fluxes. The

-WENO scheme behaves best for four kinds of waves. As shown

n Fig. 2 (c) and (d), for discontinuous problems, the WENO-Z2

with the power q = 2 ) scheme increases the dissipation of the

ENO-Z scheme, but the P-WENO-2 scheme (the P-WENO scheme

ith q = 2 ) shows similar dissipation as the WENO-Z ( q = 1 )

cheme. Fig. 2 (e) and (e) show that, the WENO-Z η6 and WENO-NS

 ξ = 0 . 4 ) schemes generate apparent asymmetry for the square

ave and the semi-ellipse wave, while the P-WENO+ τ 6 scheme

ot only improves the resolution near discontinuities over the

thers, but also keeps the wave shape well. 

The initial condition of the second case is given by 

 (x, 0) = sin 

(
πx − sin (πx ) 

π

)
. (45)

his solution has two critical points, where f 
′ = 0 and f 

′′′ � = 0 .

s in Refs. [2,5] , the time step is set to �x 5/4 . The program

ith quadruple precision is performed on Intel Xeon E5-2640 v3.

able 2 gives the errors, convergence orders and CPU time of dif-

erent schemes at t = 2 . The L ∞ 

norm of the error is computed by

 ∞ 

= max | u i − u exact,i | , for i = 1 , · · · N. (46)

t can be seen that the convergence orders of the WENO-Z scheme

radually decrease to fourth order with refined grids, while the

ther schemes have almost the same errors and fifth-order con-

ergence orders. Fig. 3 shows the computational efficiency. It can

e seen that, P-WENO and Hybrid+ ϕ cost about 20% and 15% CPU

ime more than WENO-Z, respectively. However, if the high accu-

acy (for example, L ∞ 

< 1 × 10 −9 for this case) is required, both

wo schemes are more efficient than the WENO-Z scheme. With

he sixth-order global smoothness indicators ( Fig. 3 (b)), since all

he four schemes (WENO-NS ( ξ = 0 . 1 ), WENO-Z η6 , WENO+ τ 6 , P-

ENO+ τ 6 ) are of fifth-order, P-WENO+ τ 6 cannot improve the effi-

iency for a simple smooth solution. 
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Table 2 

Comparison of errors, convergence orders and CPU time (in seconds) for different schemes. 

N UP5 WENO-Z P-WENO Hybrid+ ϕ

L ∞ (order) CPU time L ∞ (order) CPU time L ∞ (order) CPU time L ∞ (order) CPU time 

160 0.21E −06(–) 1.4E −01 0.21E −06(–) 7.2E −01 0.21E −06 (–) 8.6E −01 0.21E −06 (–) 8.2E −01 

320 0.66E −08(5.00) 6.6E −01 0.78E −08(4.76) 3.3E + 00 0.66E −08(5.00) 4.0E + 00 0.66E −08(5.00) 3.8E + 00 

640 0.20E −09(5.00) 3.1E + 00 0.36E −09(4.44) 1.6E + 01 0.20E −09(5.00) 1.9E + 01 0.20E −09(5.00) 1.8E + 01 

1280 0.64E −11(5.00) 1.5E + 01 0.17E −10(4.37) 7.3E + 01 0.64E −11(5.00) 8.9E + 01 0.64E −11(5.00) 8.5E + 01 

2560 0.20E −12(5.00) 6.9E + 01 0.82E −12(4.39) 3.4E + 02 0.20E −12(5.00) 4.2E + 02 0.20E −12(5.00) 4.0E + 02 

N WENO-NS WENO-Z η6 WENO+ τ 6 P-WENO+ τ 6 

160 0.21E −06(–) 7.8E −01 0.21E −06(–) 9.2E −01 0.21E −06 (–) 8.1E −01 0.21E −06 (–) 9.6E −01 

320 0.66E −08(5.00) 3.6E −00 0.66E −08(5.00) 4.2E + 00 0.66E −08(5.00) 3.8E + 00 0.66E −08(5.00) 4.5E + 00 

640 0.20E −09(5.00) 1.7E + 01 0.20E −09(5.00) 2.0E + 01 0.20E −09(5.00) 1.8E + 01 0.20E −09(5.00) 2.1E + 01 

1280 0.64E −11(5.00) 7.9E + 01 0.64E −11(5.00) 9.3E + 01 0.64E −11(5.00) 8.4E + 01 0.64E −11(5.00) 9.9E + 01 

2560 0.20E −12(5.00) 3.7E + 02 0.20E −12(5.00) 4.4E + 02 0.20E −12(5.00) 4.0E + 02 0.20E −12(5.00) 4.7E + 02 

Fig. 3. Comparisons of computational efficiency. 
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.3. One-dimensional Euler problems 

The governing equation of one-dimensional Euler problems is

iven by 

∂U 

∂t 
+ 

∂F (U) 

∂x 
= 0 , (47) 

here U = (ρ, ρu, E) T , F (U) = 

(
ρu, ρu 2 + p, u (E + p) 

)T 
; ρ , u, E, p

enote the density, velocity, total energy and pressure, respectively.

or ideal gas, E = 

p 
γ −1 + 

1 
2 ρu 2 . γ = 1 . 4 is the ratio of specific heat.

he global LF flux-splitting method is used and the reconstruction

s carried out in local characteristic fields. 

.3.1. Shock entropy wave interaction 

The initial conditions of this problem are 

(ρ, u, p) = 

{
(3 . 857143 , 2 . 629369 , 31 / 3) , −5 ≤ x < −4 

(1 + 0 . 2 sin (5 x ) , 0 , 1) , −4 ≤ x ≤ 5 

(48) 

his problem describes the interaction of a Mach 3 shock wave

ith sine waves and is often used to evaluate the accuracy and

umerical dissipation of a scheme. Fig. 4 gives the comparison

f numerical results with N = 200 at t = 1 . 8 . The reference solu-

ion is computed by the WENO-Z scheme with refined grids. As

hown in Fig. 4 (a), both the P-WENO and Hybrid+ ϕ schemes are

ore accurate than the WENO-Z scheme. Similarly, with the sixth-

rder global smoothness indicators ( Fig. 4 (b)), the three schemes
WENO-Z η6 , WENO-NS ( ξ = 0 . 4 ) and P-WENO+ τ 6 ) seem better

han WENO+ τ 6 . However, further comparisons show that, if these

chemes are applied to solve the problems with strong shock

aves (for example, the next case of Section 4.3.2 ), the numer-

cal dissipation of these schemes, such as Hybrid+ ϕ, WENO-Z η6 ,

ENO-NS and P-WENO+ τ 6 , is not enough to suppress the spuri-

us oscillation. 

.3.2. Interacting blast waves 

The initial conditions of this problem are 

( ρ, u, p ) = 

⎧ ⎨ 

⎩ 

( 1 , 0 , 10 0 0 ) , 0 ≤ x < 0 . 1 

( 1 , 0 , 0 . 01 ) , 0 . 1 ≤ x < 0 . 9 

( 1 , 0 , 100 ) , 0 . 9 ≤ x ≤ 1 

(49) 

he initial pressure gradients generate two interacting density

hock waves. It is usually used to test the robustness and the capa-

ility of shock-capturing of schemes. For this case, only the three

chemes (WENO-Z, P-WENO and WENO+ τ 6 ) can obtain the results

t t = 0 . 038 (see Fig. 5 ), and the other schemes can not complete

he computation. The reason is that their numerical dissipation

s not enough to suppress the spurious oscillation. Fig. 5 shows

hat P-WENO and WENO+ τ 6 obtain nearly overlapped solution,

nd they improve the solution of the WENO-Z scheme near ex-

reme points. 

The comprehensive comparisons, such as accuracy at critical

oint ( Table 1 shows P-WENO is more accurate than WENO-Z
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Fig. 4. Shock entropy wave interaction, t = 1 . 8 , N = 200 . 

Fig. 5. Interacting blast waves, t = 0 . 038 , N = 400 . 
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and WENO+ τ 6 ), the accuracy order (P-WENO and WENO+ τ 6 ob-

tain identical results, they are more accurate than WENO-Z, see

Table 2 ), the resolution of complex wave structure ( Fig. 2 shows

P-WENO is better than WENO-Z and WENO+ τ 6 ), and the almost

same robustness for solving the problems with strong shock waves

(the problem of interacting blast waves, i.e. Fig. 5 . Except WENO-Z,

WENO+ τ 6 and P-WENO, the other schemes even cannot complete

the computation), show that P-WENO is a beneficial scheme for

simulating complex flows. Hence, in the rest of the examples in

this paper, only the P-WENO and WENO-Z schemes are compared

to demonstrate the advantages of the P-WENO scheme. 

4.4. Two-dimensional Euler problems 

The governing equation of two-dimensional Euler problems is

given by 

∂U 

∂t 
+ 

∂F (U) 

∂x 
+ 

∂G (U) 

∂y 
= 0 , (50)
s

here 

U = (ρ, ρu, ρv , E) T , 

F (U) = (ρu, ρu 

2 + p, ρu v , (E + p) u ) T , 

 (U) = (ρv , ρu v , ρv 2 + p, (E + p) v ) T . (51)

he specific total energy E is given by 

 = 

p 

(γ − 1) 
+ 

1 

2 

ρ(u 

2 + v 2 ) . (52)

he Steger–Warming [21] flux splitting method is used for the in-

iscid convective fluxes. The time step is taken as [22] 

�t = CF L 
�t x �t y 

�t x + �t y 
, with �t x = 

�x 

max 
i, j 

(| u i, j | + c i, j ) 
and 

t y = 

�y 

max 
i, j 

(| v i, j | + c i, j ) 
, (53)

here c is the speed of sound. 

.4.1. Two-dimensional vortex evolution problem 

The two-dimensional vortex evolution problem is often used to

valuate the dissipation property of a scheme. It describes an isen-

ropic vortex moves across the computational domain periodically.

he initial conditions of this problem are 

 

 

 

 

 

 

 

u = 0 . 5 − εe (1 −r 2 ) / 2 

2 π (y − 5) , 

v = 

εe (1 −r 2 ) / 2 

2 π (x − 5) , 

T = 1 − (γ −1) ε 2 e (1 −r 2 ) 

8 γπ2 , 

S = 1 . 

(54)

he temperature T and entropy S are defined as follows 

 = 

p 

ρ
, S = 

p 

ργ
. 

here r 2 = (x − 5) 2 + (y − 5) 2 , and vortex strength ε is 0.5. The

omputational domain is [0, 10] × [0, 10]. Periodic boundary con-

itions are set for all boundaries. Figs. 6 and 7 give the pressure

ontours and integrated kinetic energy ( E k = 

∑ 

i, j ρi, j (u 2 
i, j 

+ v 2 
i, j 

) / 2 )

volution with N x × N y = 50 × 50 at t = 800 , respectively. It can be

een that, the P-WENO scheme is less dissipative than the WENO-

 scheme, its results are close to those of the fifth-order upstream

cheme (UP5). 



F. Zeng et al. / Computers and Fluids 172 (2018) 196–208 205 

Fig. 6. Pressure contours of the vortex evolution problem, t = 800 , 30 contours 

from 0.9905 to 0.9998. 
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Fig. 7. Integrated kinetic energy versus time. 

Fig. 8. Density contours of Rayleigh-Taylor instability, N x × N y = 240 × 960 . 
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s  
.4.2. Rayleigh–Taylor instability 
The initial conditions of this problem are 

(ρ, u, v , p) = 

⎧ ⎨ 

⎩ 

(2 , 0 , −0 . 025 

√ 

5 p 
3 ρ cos (8 πx ) , 2 y + 1) , 0 ≤ y < 0 . 5 

(1 , 0 , −0 . 025 

√ 

5 p 
3 ρ cos (8 πx ) , y + 

3 
2 
) , 0 . 5 ≤ y ≤ 1 

(55) 

his problem describes the interface instability between fluids

ith different densities when an acceleration is directed from the

eavy fluid to the light one, and it is often used to test the numer-

cal dissipation of a high-order scheme [23,24] . The computational

omain is [0, 0.25] × [0, 1]. The top and bottom boundaries are set

s (ρ, u, v , p) = (1 , 0 , 0 , 2 . 5) and (ρ, u, v , p) = (2 , 0 , 0 , 1) , respec-

ively. The reflective boundary conditions are set for the left and

ight boundaries. The gravitational effect is introduced by adding

and ρv to the right hand side of the y-momentum and the en-

rgy equations, respectively, i.e., the source term S = (0 , 0 , ρ, ρv ) T 
s added to the right-hand side of the Euler equations Eq. (50) . The

ensity contours with N x × N y = 240 × 960 at t = 1 . 95 is shown

n Fig. 8 . It can be seen that, both the WENO-Z and P-WENO

chemes maintain symmetry of the flow structure well. Since the

nviscid Euler equations are solved, the details of the complex in-

table structures are related to the numerical dissipation of the

sed scheme [25] . The richer instable structures obtained by the

-WENO scheme indicate that the P-WENO scheme is less dissipa-

ive than the original WENO-Z scheme. 

.4.3. Two-dimensional Riemann problem 

The initial conditions of this problem are 

(ρ, u, v , p) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(1 . 5 , 0 , 0 , 1 . 5) , 0 . 8 ≤ x ≤ 1 , 0
(0 . 5323 , 1 . 206 , 0 , 0 . 3) , 0 ≤ x < 0 . 8 , 0
(0 . 138 , 1 . 206 , 1 . 206 , 0 . 029) , 0 ≤ x < 0 . 8 , 0
(0 . 5323 , 0 , 1 . 206 , 0 . 3) , 0 . 8 ≤ x ≤ 1 , 0

his problem is proposed by Schulz-Rinne et al. [26] and usually

sed to test the capability for capturing different structures, such

s reflection shocks, contact discontinuities and the instability in-

erfaces. The computational domain is [0, 1] × [0, 1] and divided

nto four quadrants by two lines x = 0 . 8 and y = 0 . 8 . Fig. 9 gives

he density contours with N x × N y = 400 × 400 at t = 0 . 8 . Both of

he WENO-Z and P-WENO schemes obtain basically similar so-

ution structures in the region where shocks interact with each

ther and can capture shocks well. Careful comparison of this fig-

re, especially the region of [1.35, 1.65] × [0.35, 0.65], it can be

ound that the present scheme generates richer structures caused
y ≤ 1 

< 0 . 8 

< 0 . 8 

(56) 

y Kelvin-Helmholtz instabilities than the WENO-Z scheme. The

nti-dissipation term in the P-WENO scheme plays a key role. 

.5. Decaying isotropic turbulence [27] 

The final case is that of decaying isotropic turbulence with eddy

hocklets. The governing equation of this problem is the three-
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Fig. 9. Density contours of two-dimensional Riemann problem, N x × N y = 400 × 400 , 30 contours from 0.2 to 1.85. 

Fig. 10. Temporal evolution of normalized average kinetic energy. 

Fig. 11. Energy spectrum at t/τ = 1 for decaying isotropic turbulence. 
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s  
imensional Navier-Stokes equations and is given by 

∂U 

∂t 
+ 

∂F 

∂x 
+ 

∂G 

∂y 
+ 

∂H 

∂z 
= 

1 

Re 

(
∂F v 

∂x 
+ 

∂G v 

∂y 
+ 

∂H v 

∂z 

)
, (57)

here U is the conservative variables, F, G, H and F v , G v , H v are

he viscous and inviscid fluxes in x −, y − and z− directions, Re is

eynolds number. γ = 1 . 4 and P r = 0 . 7 . The computational domain

s [0, 2 π ] 3 and periodic boundary conditions are set for all bound-

ries. The initial conditions of the thermodynamic quantity use the

ame conditions as those of the IC 4 proposed by Samtaney et al.

n [28] , i.e., with constant pressure, density and temperature fields.

nd the initial velocity field satisfies a specified energy spectrum

nd given by 

(k ) = Ak 4 exp(−2 k 2 /k 2 0 ) , (58)

here k is the wave number, k 0 is the wave number at which

he spectrum peaks, and A is a constant chosen to get a specified

nitial kinetic energy. We set A = 0 . 0 0 013 and k 0 = 8 . The turbu-

ent Mach number M t and Taylor Reynolds number Re λ, the defi-

itions of which are defined in the Ref. [28] , are set to be 0.3 and

2, respectively. The viscous terms are discretized with the sixth-

rder central difference scheme. The third-order TVD Runge-Kutta

ethod [17] with the time step �t = 0 . 001 is used for time ad-

ancing. Fig. 10 gives the temporal evolution of average kinetic en-

rgy K ( t ) normalised by the initial kinetic energy K 0 = 

3 A 
64 

√ 

2 πk 5 
0 

ith 64 3 and 128 3 grids for different schemes. Meanwhile, the en-

rgy spectrum at t/τ = 1 ( τ = 

√ 

32 
A 

(2 π) 
1 
4 k 

− 7 
2 

0 
is the initial large-

ddy-turnover time) on the two grids is plotted in Fig. 11 . The

 

−5 / 3 law is used as a reference for the energy spectrum. As shown

n these figures, the results of the P-WENO scheme is always lo-

ated between the UP5 and WENO-Z schemes. Hence, P-WENO

s less dissipative than WENO-Z for the simulation of decaying

sotropic turbulence. 

. Conclusions 

This paper proposes a perturbational weighted essentially non-

scillatory (P-WENO) scheme by weighting the perturbed candi-

ate fluxes. The perturbed fluxes are one order higher than the

nes used in the traditional fifth-order WENO schemes. The nec-

ssary and sufficient conditions for the fifth-order convergence of

he P-WENO scheme are derived. They are one order lower than

hose derived by Henrick et al. for the traditional fifth-order WENO

cheme. Theoretical analysis and numerical results show that the
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-WENO scheme can recover fifth-order at the critical points by

sing the same weights as used in the WENO-Z scheme. The sec-

nd term in the P-WENO scheme plays the role of anti-dissipation,

ence, using the same weights, whether they satisfy the suffi-

ient condition of fifth-order convergence or not, the P-WENO-type

chemes are less dissipative than the counterparts with traditional

andidate fluxes. Various examples demonstrate that the P-WENO

cheme is robust and low dissipative. 

This paper presents a different method to develop high-order

ow-dissipation WENO schemes. The method can be easily ex-

ended to develop third order and higher-order (higher than fifth-

rder) perturbational WENO schemes. 
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ppendix. Proof of Corollary 

Taylor expansions of ∂ 2 l f 

∂x 2 l 

∣∣∣
i +1 / 2 

and 

∂ 2 l f 

∂x 2 l 

∣∣∣
i −1 / 2 

at x i can be writ-

en as 

∂ 2 l f 

∂x 2 l 

∣∣∣
i + 1 2 

= 

2(m −l+1) ∑ 

k =0 

1 

k ! 

(
�x 

2 

)k 
∂ 2 l+ k f 
∂x 2 l+ k 

∣∣∣
i 

+ O (�x k +1 ) , 

∂ 2 l f 

∂x 2 l 

∣∣∣
i − 1 

2 

= 

2(m −l+1) ∑ 

k =0 

1 

k ! 

(
−�x 

2 

)k 
∂ 2 l+ k f 
∂x 2 l+ k 

∣∣∣
i 

+ O (�x k +1 ) . (59) 

1) ˜ A � = 0 

Substituting Eq. (59) into Eq. (7) , we have 

ˆ f i + 1 2 
− ˆ f i − 1 

2 
= 

m ∑ 

l=0 

a 2 l �x 2 l 
[ 
∂ 2 l f 

∂x 2 l 

∣∣∣∣
i + 1 2 

− ∂ 2 l f 

∂x 2 l 

∣∣∣∣
i − 1 

2 

] 

+ 

(
˜ A 

∂ 2 m +1 f 

∂x 2 m +1 

∣∣∣
i + 1 2 

− ˜ A 

∂ 2 m +1 f 

∂x 2 m +1 

∣∣∣
i − 1 

2 

)
�x 2 m +1 

+ O (�x 2 m +2 ) 

= 

m ∑ 

l=0 

m −l ∑ 

s =0 

a 2 l 
�x 2 s +2 l+1 

2 

2 s (2 s + 1)! 

∂ 2 s +2 l+1 f 

∂x 2 s +2 l+1 

∣∣∣∣
i 

+ O (�x 2 m +2 ) + O (�x 2 m +3 ) 

= 

m ∑ 

l=0 

m ∑ 

k = l 
a 2 l 

�x 2 k +1 

2 

2 k −2 l (2 k − 2 l + 1)! 

∂ 2 k +1 f 

∂x 2 k +1 

∣∣∣∣
i 

+ O (�x 2 m +2 ) 

= 

m ∑ 

k =0 

k ∑ 

l=0 

a 2 l 
�x 2 k +1 

2 

2 k −2 l (2 k − 2 l + 1)! 

∂ 2 k +1 f 

∂x 2 k +1 

∣∣∣∣
i 

+ O (�x 2 m +2 ) . (60) 

If the coefficients a 2 l satisfy Eq. (8) , then the last formula of the

right hand side of Eq. (60) is a 0 
∂ f 
∂x 

∣∣∣
i 
�x + O (�x 2 m +2 ) , thus 

ˆ f i + 1 2 
− ˆ f i − 1 

2 

�x 
= 

∂ f 

∂x 

∣∣∣
i 
+ O (�x 2 m +1 ) . (61)

Therefore, the scheme is (2 m + 1) th order accurate. 

2) ˜ A = 0 

Let 

ˆ f i ± 1 
2 

= 

m ∑ 

l=0 

a 2 l �x 2 l 
∂ 2 l f 

∂x 2 l 

∣∣∣
i ± 1 

2 

+ 

˜ B 

∂ 2 m +2 f 

∂x 2 m +2 

∣∣∣
i ± 1 

2 

�x 2 m +2 

+ O (�x 2 m +3 ) , (62) 
where ˜ B is a non-zero constant. 

Substituting Eq. (59) into Eq. (62) , we have 

ˆ f i + 1 2 
− ˆ f i − 1 

2 
= 

m ∑ 

l=0 

a 2 l �x 2 l 
[ 
∂ 2 l f 

∂x 2 l 

∣∣∣∣
i + 1 2 

− ∂ 2 l f 

∂x 2 l 

∣∣∣∣
i − 1 

2 

] 

+ 

(
˜ B 

∂ 2 m +2 f 

∂x 2 m +2 

∣∣∣
i + 1 2 

− ˜ B 

∂ 2 m +2 f 

∂x 2 m +2 

∣∣∣
i − 1 

2 

)
�x 2 m +2 

+ O (�x 2 m +3 ) 

= 

m ∑ 

l=0 

m −l ∑ 

s =0 

a 2 l 
�x 2 s +2 l+1 

2 

2 s (2 s + 1)! 

∂ 2 s +2 l+1 f 

∂x 2 s +2 l+1 

∣∣∣∣
i 

+ O (�x 2 m +3 ) 

= 

m ∑ 

l=0 

m ∑ 

k = l 
a 2 l 

�x 2 k +1 

2 

2 k −2 l (2 k − 2 l + 1)! 

∂ 2 k +1 f 

∂x 2 k +1 

∣∣∣∣
i 

+ O (�x 2 m +3 ) 

= 

m ∑ 

k =0 

k ∑ 

l=0 

a 2 l 
�x 2 k +1 

2 

2 k −2 l (2 k − 2 l + 1)! 

∂ 2 k +1 f 

∂x 2 k +1 

∣∣∣∣
i 

+ O (�x 2 m +3 ) . (63) 

If the coefficients a 2 l satisfy the Eq. (8) , then the last formula of

the right hand side of Eq. (63) is a 0 
∂ f 
∂x 

∣∣∣
i 
�x + O (�x 2 m +3 ) , thus

ˆ f i + 1 2 
− ˆ f i − 1 

2 

�x 
= 

∂ f 

∂x 

∣∣∣
i 
+ O (�x 2 m +2 ) . (64)

Therefore, the scheme is (2 m + 2) th order accurate. 
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