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a b s t r a c t 

Surface effect in three different axisymmetric Hertzian contact models is investigated in this paper with 

a recently developed elastic theory for nanostructured materials, including a Boussinesq problem, con- 

tact problem between a rigid flat-ended cylindrical indenter and an elastic half space as well as contact 

problem between a rigid spherical indenter and an elastic half space. With the help of the Love’s strain 

function method and Hankel integral transformation, closed-form solutions of the stress and displace- 

ment fields at the surface of an elastic half space subjected to a concentrated force are achieved, based 

on which the interface tractions and displacements in the three different axisymmetric contact problems 

can be further obtained. It is found that surface effect in these contact problems can be characterized 

only by an intrinsic length, i.e., the ratio of the bulk surface energy density to the bulk shear modulus 

of the indented material. When the contact radius is comparable with the intrinsic length, surface ef- 

fect is much obvious, leading to a serious deviation between the two solutions predicted respectively by 

the theoretical model developed for nanomaterials and the classical contact model. A more interesting 

phenomenon is about surface effect on the indentation hardness, which is found to increase with the 

reduction of the indenter radius when the external load is fixed, or to increase with the decrease of the 

external load when the indenter radius keeps unchanged. All the results in this paper should be help- 

ful not only for deep understanding of the surface effect on nano-contact behaviors but also for further 

revealing the nature of surface effect of nano-indentation hardness. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nano-materials, as an important and integral part in the devel-

pment of nanoscience and nanotechnology, have been widely ap-

lied in many frontiers, for example, electrochemistry ( Chan et al.,

007 ), stretchable electronics ( Rogers et al., 2010 ) and nano-

lectro-mechanical systems ( Poncharal et al., 1999 ), due to their

xcellent physical and mechanical properties as compared to bulk

aterials. Numerous experimental evidences have illustrated that

any important properties, including the melting temperature

 Qi and Wang, 2004 ), elastic modulus ( Jing et al., 2006 ), resonant

requency ( Cuenot et al., 2004 ), yield strength ( Zhang et al., 2010 )

nd indentation hardness ( Gerberich et al., 1999; Wei et al., 2004 ),

re size dependent when the characteristic length of materials or

he indentation depth is on the order of nanoscale. Therefore, how
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o predict and explain the distinct size-dependent material proper-

ies becomes a key issue for the application of nanomaterials. 

Size effect in nano-materials is essentially due to the large ratio

f surface/interface to volume, which is also addressed as surface

r interface effect ( Gerberich et al., 2002; Zhang and Xu, 2002 ).

rom the atomic point of view, atoms at or near the free sur-

ace of a material would experience a discrepant local environ-

ent as compared to those in the bulk, which leads to an ex-

ess energy of each atom at or near the surface. When the char-

cteristic length of a material shrinks to nanometers, the influ-

nce of the excess energy on the material properties would be-

ome significant. From the continuum viewpoint, the total ex-

ess energy can be described by the surface free energy and sur-

ace stress ( Gibbs, 1906; Shuttleworth, 1950 ). Gurtin and Mur-

och (1975,1978 ) formulated a rigorous surface elastic theory (G-M

odel) to account for the surface effect in nanomaterials, in which

urface elastic constants are introduced due to the elastic surface

onstitutive relation. Such a model was then extensively studied.

ingreville et al. (2005) and Dingreville and Qu (2008) developed

 framework incorporating the surface free energy, the interfa-

ial excess energy and excess stress into the continuum theory.
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Fig. 1. Schematic of a surface unit cell and the corresponding lattice lengths in two principal directions in the initial (reference), relaxed and current configurations, respec- 

tively. 

Fig. 2. Schematic of the axisymmetric contact model of an elastic half space sub- 

jected to an axisymmetric but non-uniform pressure p ( r ) at a circular area of radius 

a . 
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Steigmann and Ogden (1997,1999 ) and Chhapadia et al. (2011) fur-

ther investigated the influence of curvature-dependent surface en-

ergy on the effective elastic modulus of nanomaterials. Huang and

Wang (2006,2010 ), Huang and Sun (2007) and Huang (2010) estab-

lished a hyperelastic theoretical framework, in which the interface

energy and the residual elastic field induced by the interface en-

ergy were taken into account. Both the curvature-dependent inter-

face energy and the interface and bulk residual elastic fields were

considered by Gao et al. (2014,2017) . 

The G-M theoretical framework and its extensions have been

widely adopted to predict the size-dependent elastic properties of

many nanostructured materials, from simple nanowires, nanofilms,

nanoparticles to relatively complex nanocomposites and elastic

media with nano-cracks ( Cammarata, 1994; Streitz et al., 1994;

Sharma et al., 2003; He et al., 2004; Duan et al., 2005; Wang and

Feng, 2007b; He and Lilley, 2008; Wolfer, 2011; Huang and Wang,

2013; Nguyen et al., 2015; Nguyen et al., 2016; Takrori and Ayyad,

2017 ). 

Recently, surface effect in contact mechanics attracts many in-

terests, including the Boussinesq problem ( Gao et al., 2013; Zhou

and Gao, 2013 ), the Cerruti problem ( Chen and Zhang, 2010; Zhou

and Gao, 2014 ) and the plane strain or axisymmetric model of in-

denters with different shapes contacting an elastic substrate or a

layer-substrate system ( Long et al., 2012; Long and Wang, 2013;

Pinyochotiwong et al., 2013; Zhou and Gao, 2013; Rungamornrat

et al., 2016; Tirapat et al., 2017 ). Compared with the classical con-

tact model ( Johnson, 1987 ), additional surface-induced tractions

as a function of surface stress are introduced at the contact sur-

face, which depends not only on the surface residual stress re-

sulted from surface relaxation but also on the surface deformation

yielded by the external load, i.e., σs = τ 0 I + C s : ε s . Here, σs , τ 0 , I, C s

and ε s denote the surface stress tensor, surface residual stress, unit

tensor, surface elastic tensor and surface strain tensor, respectively.
From the way of surface treatment, the existing contact models

an be categorized into three classes. In the first one, the surface

tress equals to a constant surface residual stress and the effect

f surface elasticity is neglected ( Hajji, 1978; He and Lim, 2006;

ang and Feng, 2007a; Long et al., 2012; Long and Wang, 2013 ).

n the second one, only the effect of surface elasticity is included

ithout considering the surface residual stress induced by surface

elaxation ( Zhao and Rajapakse, 2009 ). In the last one, both ef-

ects of the surface residual stress and surface elasticity are in-

olved ( Koguchi, 2008; Chen and Zhang, 2010; Gao et al., 2013;

inyochotiwong et al., 2013; Zhou and Gao, 2013; Zhou and Gao,

014; Vasu and Bhandakkar, 2016 ). The common conclusion is that

he normal traction and displacement at the contact surface would

e mainly influenced by the surface residual stress, while the sur-

ace elasticity, as a dominant factor, would mainly affect the tan-

ential traction at the contact surface. 

Almost all the above contact models are based on G-M model

r its extensions. Both values of the involved surface residual stress

nd surface elastic constants are difficult to determine. The for-

er induced by surface relaxation is always assumed to be a con-

tant, which should be influenced by the characteristic length of

anomaterials or nanostructures ( Zhang et al., 2014 ). The latter is

ainly determined with the help of molecular dynamics (MD) sim-

lations ( Miller and Shenoy, 20 0 0; Shenoy, 20 05; Mi et al., 20 08 ).

owever, many factors would influence the numerical values, for

xample, the chosen atomic potential, size of the numerical model

nd the truncation of atom layers regarded as the surface of nano-

aterials. Consequently, some questions still remain open: How

an the surface elastic constants be accurately determined and

hat thickness should be chosen to describe the surface layer in

D simulations? Are the values of the surface constants sensitive

o the scales of a nanomaterial in the atomistic model? And is the

hysical definition of elastic constants the same in MD simulations

s in existing theoretical models? 

In order to avoid the above thorny problems, Chen and

ao (2014) developed a new elastic theory for nanomaterials,

hich is based on the atomic lattice model ( Nix and Gao, 1998 ).

urface energy density, as a typical parameter, is adopted to de-

cribe surface effect in nanomaterials. Both the effect of surface

elaxation and that of the external load on the surface energy

ensity of nanomaterials are included. Furthermore, the residual

train induced by surface relaxation and the strain yielded by the

xternal load can be well defined based on the atomic lattice

odel, which would show influence on the surface energy den-

ity of nanomaterials. Surface effect induced tractions as a func-

ion of surface energy density directly affect the stress bound-

ry conditions of nanomaterials, as compared with the classical

lasticity theory. Only two kinds of material parameters are in-

olved in the new theory to characterize the surface effect, i.e.,

he bulk surface energy density (surface energy density of the

orresponding bulk material) and the surface relaxation parame-

er, both of which have clearly physical meanings and are easy to
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Fig. 3. The elastic fcc metallic half space with a (100) surface, where (1,2) denotes 

a local coordinate system on the surface and ( r , θ , z ) is a global cylindrical one. 

Fig. 4. Schematic of a circular loading area, where point B is an arbitrary one on the 

surface inside or outside the circular loading area and a concentrated force p ( t ) td θdt 

acts on an infinitesimal surface element C . 

Fig. 5. The model of an elastic half space subjected to an axisymmetric and uniform 

pressure p 0 at an area of radius a . 

Fig. 6. The model a rigid flat-ended cylindrical indenter indenting an elastic half 

space, where the radius of the cylindrical indenter is a and δ is the indenting depth. 

Fig. 7. The model a rigid spherical indenter indenting an elastic half space, where 

the radius of the spherical indenter is a and δ is the indenting depth. 
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nd in material handbooks or simple MD simulations. Recently, a

imilar methodology is extended to investigate the interface effect

n nanocomposites ( Yao et al., 2017 ). Analysis of several typical

roblems has already verified the reasonability and feasibility of

uch a novel elastic theory, including surface effect in nanowires

r nanobeams ( Yao and Chen, 2015, 2016a,b; Jia et al., 2017b,c ),

anoparticles ( Yao et al., 2015 ), nanocomposites ( Yao et al., 2017 )

nd nano-indentation of plane strain contact problems ( Jia et al.,

017a ). Especially, with regard to the Hertzian contact problem

onsidering surface effect, the normal pressure at the contact area

ould not obey the classically elliptical expressions any more

 Johnson, 1987 ) due to the modified boundary conditions by the

urface-induced tractions. Some work ignored such an issue ( Gao

t al., 2013; Zhou and Gao, 2013 ). More precise results have been

chieved by Jia et al. (2017a ) with the elastic theory developed by

hen and Yao (2014) . 

In this paper, the more realistic three-dimensional contact

roblem considering surface effect is investigated, in which three

ypical axisymmetric contact models are analyzed theoretically, in-

luding the Boussinesq problem, contact problem between a rigid

at-ended cylindrical indenter and an elastic half space as well as

ontact problem between a rigid spherical indenter and an elastic

alf space. Organization of the present paper is as follows. A brief

ntroduction of the elastic theory using surface energy density to

haracterize surface effect of nanomaterials is given in Section 2 .

 generalized axisymmetric problem, i.e., an elastic half space sub-

ected to an axisymmetric but non-uniform pressure, is analyzed in

ection 3 . Three typical axisymmetric contact problems are further

nalyzed respectively in Section 4 . Results and discussion are given
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Fig. 8. Distributions of the stress and displacement at the contact surface in the model of an elastic half space subjected to a uniformly distributed pressure in a circular 

region. (a) For the non-dimensional radial stress σ̄r ; (b) For the non-dimensional circumferential stress σ̄θ ; (c) For the non-dimensional normal stress σ̄z ; (d) For the non- 

dimensional shear stress τ̄rz ; (e) For the non-dimensional radial displacement ū r ; (f) For the non-dimensional normal displacement ū z . 
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in Section 5 , where the classical contact results are also given for

comparison and the size-dependent nano-indentation hardness is

further discussed. Conclusions are made finally. 

2. Brief introduction of the surface energy density-based 

elastic theory 

Based on the atomic lattice model ( Nix and Gao, 1998 ), an elas-

tic theory for nanomaterials was proposed by Chen and Yao (2014) ,

in which the surface effect is characterized by surface energy den-

sity. 
The equilibrium equation and stress boundary conditions can

e derived as 
 

 

 

 

 

σ · ∇ + f = 0( in V − S) 
n · σ · n = p · n − φ0 ( n · ∇ s ) / J s ( on S ) 
( I − n � n ) · σ · n = ( I − n � n ) · p + φ0 ( ∇ s J s ) / J 2 s 

−( ∇ s φ0 ) / J s ( on S ) 

(1)

here σ is the bulk Cauchy stress tensor inside the volume of the

ano-solid V , ∇ denotes a spatial gradient operator in the current

onfiguration of deformed nanomaterials, n is the unit normal vec-

or perpendicular to the boundary surface S of the nano-solid and I

s a unit tensor. f and p represent the body force and external sur-

ace traction, respectively. φ denotes the Lagrangian surface en-
0 
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Fig. 9. Distribution of the non-dimensional contact pressure in the contact region 

of a rigid flat-ended cylindrical indenter indenting an elastic half space. 

e

i  

f

 

a  

i  

a  

φ  

p  

e  

a  

a  

i

φ

w  

s  

w  

n  

p

i  

t  

s  

a  

t

a  

n  

ε  

n  

b  

a  

Y

 

s  

λ  

h  

M

3

n

 

t  

a  

f  

o  

a  

fl  

t  

t

3

 

a  

 

w  

s  

p

 

s  

m  

ε  

w  

t

 

l

σ

w  

t

 

d  

t  

s{
w  

t

γ

 

i  

(  

t  

r  

e  

s  

a  

f  

a  
rgy density of nanomaterials. ∇ s is a surface gradient operator. J s 
s a Jacobean determinant characterizing the surface deformation

rom a reference configuration to a current one. 

Comparing to the classical elasticity theory, the stress bound-

ry conditions in the elastic model for nanomaterials include the

nfluence of the surface energy density, which is adopted to char-

cterize the surface effect. The Lagrangian surface energy density

0 in the reference configuration can be further divided into two

arts. One is a structural part φstru 
0 

related to the surface strain

nergy induced by the residual strain leaded by surface relaxation

nd the surface strain yielded by the external loadings. The other is

 chemical part φchem 

0 
related to the surface dangling-bond energy

nduced by the unsaturated coordination. 

φ0 = φstru 
0 + φchem 

0 

φstru 
0 = 

E b 
2 sin β

2 ∑ 

i =1 

a 0 i ηi 

{[
3 + ( λi + λi ε si ) 

−m − 3 ( λi + λi ε si ) 
]

×
[
λ2 

i ε 
2 
si + ( λi − 1 ) 

2 + 2 λi ( λi − 1 ) ε si 

]}
chem 

0 = φ0 b 

(
1 − w 1 

D 0 

D 

)
, η1 = a 01 / a 02 , η2 = a 02 / a 01 (2) 

here φ0 b is the bulk surface energy density, D 0 is a critical

ize ( D 0 = 3 d a for nanoparticles, nanowires and 2 d a for nanofilms,

here d a is the atomic diameter). D is a characteristic scale of

anostructured materials (e.g., thickness, diameter, etc.). w 1 is a

arameter governing the size-dependent behavior of φchem 

0 
. E b 

s the bulk Young’s modulus. a 01 , a 02 represent the initial lat-

ice lengths of surface atoms in the two principal directions, re-

pectively. β denotes an angle between the two basic vectors

s shown in Fig. 1 . The lattice lengths become a r 1 and a r 2 af-

er spontaneous surface relaxation, and subsequently become a 1 
nd a 2 in the current configuration when subjected to an exter-

al loading. λi = a ri / a 0 i denotes the surface relaxation parameter,

si = ( a i − a ri )/ a ri is the surface strain induced only by the exter-

al loading and m is a parameter describing the dependence of

ond lengths on the binding energy ( m = 4 for alloys or compounds

nd m = 1 for pure metals). Details can be found in Chen and

ao (2014) . 

It can be found that only two material parameters, i.e., the bulk

urface energy density φ0 b and the surface relaxation parameter

i , are involved to characterize the surface effect, both of which

ave clearly physical meanings and are very easy to find through

aterial Handbooks and simple MD simulations. 
. An elastic half space subjected to an axisymmetrically 

on-uniform pressure 

As a fundamental model in contact mechanics ( Johnson, 1987 ),

he Boussinesq problem with surface effect is considered firstly. An

xisymmetric but non-uniform pressure p ( r ) is added on the sur-

ace of the elastic half space as shown in Fig. 2 . A cylindrical co-

rdinate system ( r , θ , z ) with origin O at the center of the loading

rea is attached on the surface, where r -axis is along the initially

at surface and z -axis is perpendicular to the surface. a denotes

he radius of loading area. Surfaces beyond the loading area are

raction-free. 

.1. Governing equations and boundary conditions 

In the absence of a body force, the equilibrium equation of the

xisymmetric indenting problem shown in Fig. 2 can be written as

∂ σr 

∂r 
+ 

∂ τzr 

∂z 
+ 

σr − σθ

r 
= 0 , 

∂ τrz 

∂r 
+ 

∂ σz 

∂z 
+ 

τrz 

r 
= 0 (3)

here σ r , σθ , σ z denote the radial, circumferential and normal

tresses, respectively. τ rz is the only non-zero shear stress com-

onent. 

With an assumption of infinitesimal deformation, the non-zero

train components, including the radial, circumferential and nor-

al strains ε r , ε θ , ε z , and the shear strain γ rz can be expressed as

 r = 

∂ u r 

∂r 
, ε θ = 

u r 

r 
, ε z = 

∂ u z 

∂z 
, γrz = 

∂ u r 

∂z 
+ 

∂ u z 

∂r 
(4)

here u r and u z are the radial and normal displacements, respec-

ively. 

The elastic half space is assumed to abide by the linear Hooke’s

aw, 

σr = 2 μ
[ 

ν

1 − 2 ν
( ε r + ε θ + ε z ) + ε r 

] 
, 

θ = 2 μ
[ 

ν

1 − 2 ν
( ε r + ε θ + ε z ) + ε θ

] 
, 

σz = 2 μ
[ 

ν

1 − 2 ν
( ε r + ε θ + ε z ) + ε z 

] 
, τzr = μγzr (5) 

here μ and ν are the bulk shear modulus and Poisson’s ratio of

he elastic half space, respectively. 

Different from the classical contact theory ( Johnson, 1987 ), ad-

itional tractions would be induced by the surface effect besides

he external normal pressure p ( r ) ( Chen and Yao, 2014 ). Thus, the

tress boundary conditions at z = 0 can be expressed as, 

σz | z=0 + p ( r ) = −γn 

τrz | z=0 = γr 
(6) 

here γ n and γ r denote the normal and radial surface-induced

ractions, respectively. 

According to Chen and Yao (2014) , we have 

n = 

φ0 

J s 

(
∂ 2 u z 

∂ r 2 
+ 

1 

r 

∂ u z 

∂r 

)∣∣∣∣
z=0 

, γr = 

1 

J s 

∂ φ0 

∂r 
− φ0 

J 2 s 

∂ J s 
∂r 

∣∣∣∣
z=0 

(7) 

For simplicity, the initial configuration of the elastic half space

s assumed to be an un-deformed fcc metallic substrate with

100) surface as shown in Fig. 3 , where a local coordinate sys-

em (1, 2) coincides with a global Cartesian one ( x, y, z ). As a

esult, in the structural part φstru 
0 

of the Lagrangian surface en-

rgy density φ0 , we have m = 1, β = 90 ° and an equal atomic

pacing in both bond directions, i.e., a 01 = a 02 = 

√ 

2 a 0 / 2 , where

 0 denotes the lattice constant of the bulk material. The sur-

ace relaxation in both bond directions would be neglected for

n elastic half space, i.e., λ = λ ≈ 1 ( Zhang and Xu, 2002 ).
1 2 
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Fig. 10. Distributions of the stress and displacement at the contact surface in the model of a rigid flat-ended cylindrical indenter indenting an elastic half space. (a) For the 

non-dimensional normal stress σ̄z ; (b) For the non-dimensional shear stress τ̄rz ; (c) For the non-dimensional normal displacement ū z . 
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(  
According to the relationship between the local coordinate sys-

tem (1, 2) and the global cylindrical one ( r , θ , z ) as shown in

Fig. 3 , the surface strain εsi ( i = 1, 2) in two bond directions

can be obtained as ε s 1 = [ ( ε r + ε θ ) + ( ε r − ε θ ) cos 2 θ] / 2 | z=0 and

ε s 2 = [ ( ε r + ε θ ) − ( ε r − ε θ ) cos 2 θ] / 2 | z=0 ( Timoshenko and Good-

ier, 1951 ). The chemical part φchem 

0 
of the Lagrangian surface en-

ergy density φ0 should equal to the bulk surface energy density

φ0 b due to the large characteristic length D , i.e., φchem 

0 
= φ0 b . Thus,

the Lagrangian surface energy density φ0 of an elastic half space

can be expressed as 

φ0 ≈ φ0 b + 

√ 

2 E b a 0 
8 

[
( ε r + ε θ ) 

2 + ( ε r − ε θ ) 
2 cos 2 ( 2 θ ) 

]∣∣∣∣
z=0 

(8)

For an axisymmetric model, we approximately have 

φ0 ≈ φ0 b + 

√ 

2 E b a 0 
4 

(
ε 2 r + ε 2 θ

)∣∣∣∣
z=0 

(9)

Combining Eqs. (7) , (9) and noting that J s = 1 + εr + εθ , the

stress boundary conditions in Eq. (6) can be rewritten as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

σz | z=0 + p ( r ) = −φ0 b ( 1 − ε r − ε θ ) 

(
∂ 2 u z 

∂ r 2 
+ 

1 

r 

∂ u z 

∂r 

)∣∣∣∣
z=0 

τrz | z=0 = −φ0 b 

[
( 1 − χε r − 2 ε θ ) 

∂ 2 u r 

∂ r 2 

+ ( 1 − χε θ − 2 ε r ) 

(
1 

r 

∂ u r 

∂r 
− u r 

r 2 

)]∣∣∣∣
z=0 

(10)

where χ = 

√ 

2 E b a 0 / ( 8 φ0 b ) + 2 is a dimensionless parameter re-

lated to the material properties. Under an infinitesimal deforma-

tion condition, the radial and circumferential strains εr and εθ are
uch less than 1. It suggests that the high-order terms in Eq. (10) ,

.g., the product of strain components with the partial derivatives

f u r , can be reasonable neglected. Moreover, when the surface ef-

ect is considered, the strain components should be significantly

maller than the classical counterparts ( Gao et al., 2013; Long and

ang, 2013 ), while the latter ones are already very small quanti-

ies (much less than 0.1) when the substrate is only subjected to

 normal pressure p ( r ) ( Johnson, 1987 ). Therefore, ε r and ε θ are

egligible and the stress boundary conditions in Eq. (10) can be

ewritten as 
 

σz | z=0 + p ( r ) = −φ0 b 

(
∂ 2 u z 
∂ r 2 

+ 

1 
r 

∂ u z 
∂r 

)∣∣∣
z=0 

τrz | z=0 = −φ0 b 

(
∂ 2 u r 
∂ r 2 

+ 

1 
r 

∂ u r 
∂r 

− u r 
r 2 

)∣∣
z=0 

(11)

Compared with the classical contact theory ( Johnson, 1987 ), the

tress boundary conditions with surface effect depend significantly

n the surface energy density of the indented bulk substrate φ0 b ,

hich, as a dominant parameter, characterizes the surface prop-

rty of an elastic half space in nano-contact models. The material

arameter χ related to the bulk Young’s modulus E b and the lattice

onstant of the bulk material a 0 is neglected with the high-order

erms. 

Thus, the governing equations for such an axisymmetric bound-

ry value problem considering surface effect are completely formu-

ated in Eqs. (3) –(5) with boundary conditions in Eq. (11) . 

.2. General solutions 

Similar to the classical axisymmetric contact problem

 Selvadurai, 20 0 0 ), a scalar Love’s strain function denoted by
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n  

a  

a  
( r, z ) is introduced, which should satisfy the biharmonic equa-

ion 

˜ ∇ 

2 ˜ ∇ 

2 �( r, z ) = 0 in the absence of body forces. Here, we have
˜ 
 

2 = ∂ 2 / ∂ r 2 + ( ∂ / ∂ r ) /r + ∂ 2 / ∂ z 2 in the cylindrical coordinate

ystem. Using Hankel integral transform method with respect

o r , the stress and displacement components can be expressed

s a function of the 0th-order Hankel transform of Love’s strain

unction 

˜ �( ξ , z ) , 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σr ( r, z ) = 

∫ ∞ 

0 ξ

[
ν
∂ 3 ˜ �

∂ z 3 
+ ( 1 − ν) ξ 2 ∂ 

˜ �

∂z 

]
J 0 ( ξ r ) dξ

− ∫ ∞ 

0 ξ 2 1 

r 

∂ ˜ �

∂z 
J 1 ( ξ r ) dξ

σθ ( r, z ) = 

∫ ∞ 

0 ξν

[
∂ 3 ˜ �

∂ z 3 
− ξ 2 ∂ 

˜ �

∂z 

]
J 0 ( ξ r ) dξ

+ 

∫ ∞ 

0 ξ 2 1 

r 

∂ ˜ �

∂z 
J 1 ( ξ r ) dξ

σz ( r, z ) = 

∫ ∞ 

0 ξ

[
( 1 − ν) 

∂ 3 ˜ �

∂ z 3 
− ( 2 − ν) ξ 2 ∂ 

˜ �

∂z 

]
J 0 ( ξ r ) dξ

τrz ( r, z ) = 

∫ ∞ 

0 ξ 2 

[
ν
∂ 2 ˜ �

∂ z 2 
+ ( 1 − ν) ξ 2 ˜ �

]
J 1 ( ξ r ) dξ

(12) 

nd 

 

 

 

u r ( r, z ) = 

1 

2 μ

∫ ∞ 

0 ξ 2 ∂ ̃  �
∂z 

J 1 ( ξ r ) dξ

u z ( r, z ) = 

1 
2 μ

∫ ∞ 

0 ξ
[ 
( 1 − 2 ν) ∂ 

2 ˜ �
∂ z 2 

− 2 ( 1 − ν) ξ 2 ˜ �
] 

J 0 ( ξ r ) dξ
(13) 

here J n ( ξ r ) denotes the nth Bessel function of the first kind.
˜ ( ξ , z ) satisfies the following form 

˜ ( ξ , z ) = ( A + Bz ) e −ξz (14) 

here A and B can be determined by the stress boundary condi-

ions. 

Substituting Eq. (14) into Eqs. (12) , (13) , and then further into

q. (11) yields 

 

 

 

 

 

A = − 2 ( lξ + 4 ν) 

ξ 3 ( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) 

B = − 2 ( lξ + 2 ) 

ξ 2 ( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) 

(15) 

here ˜ p (ξ ) denotes the 0th Hankel transformation of p ( r ) and is

xpressed as 

˜ p ( ξ ) = 

∫ ∞ 

0 

t p ( t ) J 0 ( ξ t ) dt (16) 

The parameter l in Eq. (15) is an intrinsic length characterizing

urface effect, which equals to the ratio of the bulk surface energy

ensity to the bulk shear modulus, 

 = 

φ0 b 

μ
(17) 

It is interesting to find that the intrinsic length in such an

xisymmetric model possesses the same expression as that in a

lane-strain contact problem with surface effect ( Jia et al., 2017a ).

n contrast to the work based on the G-M model ( Gao et al., 2013;

inyochotiwong et al., 2013; Zhou and Gao, 2013 ), only one in-

rinsic length characterizing the surface effect is involved in the

resent analysis. 
Substituting Eqs. (14) and (15) into Eq. (13) yields the stress and

isplacement components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σr = − ∫ ∞ 

0 

ξ [ 4 ( νlξ + 1 ) − 2 ( lξ + 2 ) ξz ] 

( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) e −ξz J 0 ( ξ r ) dξ

+ 

1 

r 

∫ ∞ 

0 

4 ( 1 − 2 ν) − 2 ( lξ + 2 ) ξz 

( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) e −ξz J 1 ( ξ r ) dξ

σθ = − ∫ ∞ 

0 

4 ξν( lξ + 2 ) 

( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) e −ξz J 0 ( ξ r ) dξ

−1 

r 

∫ ∞ 

0 

2 [ 2 ( 1 − 2 ν) − ( lξ + 2 ) ξz ] 

( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) e −ξz J 1 ( ξ r ) dξ

σz = − ∫ ∞ 

0 

ξ [ 4 ( 1 − ν) lξ + 4 + 2 ( lξ + 2 ) ξz ] 

( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) e −ξz J 0 ( ξ r ) dξ

τrz = − ∫ ∞ 

0 

ξ [ 2 ( 1 − 2 ν) l ξ + 2 ( l ξ + 2 ) ξz ] 

( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) e −ξz J 1 ( ξ r ) dξ

(18) 

nd 

 

 

 

 

 

 

 

u r = − 1 

2 μ

∫ ∞ 

0 

2 [ 2 ( 1 − 2 ν) − ( lξ + 2 ) ξz ] 

( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) e −ξz J 1 ( ξ r ) dξ

u z = 

1 

2 μ

∫ ∞ 

0 

2 [ ( 3 − 4 ν) lξ + 4 ( 1 − ν) + ( lξ + 2 ) ξz ] 

( lξ + 2 ) [ ( 3 − 4 ν) lξ + 2 ] 
˜ p ( ξ ) e −ξz J 0 ( ξ r ) dξ

(19) 

here the solutions tend to the classical ones ( Johnson, 1987; Sel-

adurai, 20 0 0 ) when the parameter l become zero. 
In order to facilitate the calculation, we further transform the

nfinite integral into an easy-solving form with a finite integral. As-
ume that the half space is subjected to a unit concentrated ver-
ical force p ( r ) = δ( r ) at the origin O . Then, Eq. (16) yields ˜ p (ξ ) =
 / ( 2 π) . Using the knowledge of Bessel integral Abramowitz and
tegun, 1964 ) and Eqs. (18) and (19) , the stress and displacement
elds at the surface (at z = 0) in the model of an elastic half space
ubjected to a unit concentrated force can be achieved as, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ̄ uc 
r = − 1 

2 π l 2 

[
4 νl 

( 3 − 4 ν) r 
+ 2 �01 ( r ) −

6 �02 ( r ) 

( 3 − 4 ν) 
2 

]
+ 

−�11 ( r ) + �12 ( r ) 

2 π lr 

σ̄ uc 
θ

= − 1 

2 π l 2 

[
4 νl 

( 3 − 4 ν) r 
− 8 ν�02 ( r ) 

( 3 − 4 ν) 
2 

]
− −�11 ( r ) + �12 ( r ) 

2 π lr 

σ̄ uc 
z = − 1 

2 π l 2 

[
4 ( 1 − ν) l 

( 3 − 4 ν) r 
− 2 �01 ( r ) −

2 �02 ( r ) 

( 3 − 4 ν) 
2 

]

τ̄ uc 
rz = − 1 

2 π l 2 

[
2 ( 1 − 2 ν) l 

( 3 − 4 ν) r 
− 2 �11 ( r ) + 

2 �12 ( r ) 

( 3 − 4 ν) 
2 

]
at z = 0 

(20) 

nd 

 

 

 

ū 

uc 
r = − 1 

4 πμl 
[ −�11 ( r ) + �12 ( r ) ] 

ū 

uc 
z = 

1 

4 μπ l 
[ �01 ( r ) + �02 ( r ) ] 

at z = 0 (21) 

here the superscript “uc” denotes “unit concentrated”. The bar “-”

mphasizes the solution at z = 0. Meanwhile, 

ˆ m ̂ s ( r ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

π

2 

[
H 0 

(
b ˆ s r 

l 

)
− Y 0 

(
b ˆ s r 

l 

)](
ˆ m = 0 

)
l 

b ˆ s r 
+ 1 − π

2 

[
H 1 

(
b ˆ s r 

l 

)
− Y 1 

(
b ˆ s r 

l 

)](
ˆ m = 1 

)
ˆ 
 = 1 or 2 , b 1 = 2 , b 2 = 2 / ( 3 − 4 ν) 

(22) 

Here, H n and Y n are the nth Struve function and the nth Bessel

unction of the second kind, respectively. 

When the elastic half space is subjected to an axisymmetric but

on-uniform pressure p ( r ), the stress and displacement fields at

ny point B on the surface inside or outside the circular loading

rea could be obtained by double integral of the result produced
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p

by a concentrated force p ( t ) td θdt acting on an infinitesimal surface

element C as shown in Fig. 4 , ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

σ̄r = 

1 

2 

∫ a 
0 

∫ 2 π
0 

{
σ̄ uc 

r ( k, 0 ) + σ̄ uc 
θ ( k, 0 ) 

+ 

[
σ̄ uc 

r ( k, 0 ) − σ̄ uc 
θ ( k, 0 ) 

](
2 cos 2 α − 1 

)}
p ( t ) td θd t 

σ̄θ = 

1 

2 

∫ a 
0 

∫ 2 π
0 

{
σ̄ uc 

θ ( k, 0 ) + σ̄ uc 
r ( k, 0 ) 

+ 

[
σ̄ uc 

θ ( k, 0 ) − σ̄ uc 
r ( k, 0 ) 

](
2 cos 2 α − 1 

)}
p ( t ) td θd t 

σ̄z = 

∫ a 
0 

∫ 2 π
0 σ̄ uc 

z ( k, 0 ) p ( t ) td θd t 

τ̄rz = − ∫ a 0 

∫ 2 π
0 τ̄ uc 

rz ( k, 0 ) cos αp ( t ) td θd t 

(23)

and {
ū r = − ∫ a 0 

∫ 2 π
0 ū 

uc 
r ( k, 0 ) cos αp ( t ) td θd t 

ū z = 

∫ a 
0 

∫ 2 π
0 ū 

uc 
z ( k, 0 ) p ( t ) td θd t 

(24)

where k = 

√ 

r 2 + t 2 − 2 rt cos θ and cos α = ( r − t cos θ ) /k . 

Let t = a ( t ′ + 1 ) / 2 , r = a ( r ′ + 1 ) / 2 , l = l r a and k = k r a / 2 .

Eqs. (23) and (24) can be rewritten as, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

σ̄r = 

1 

16 π l r 

∫ 1 
−1 

∫ 2 π
0 

[
( f 1 + f 2 ) + ( f 1 − f 2 ) 

(
2 cos 2 α − 1 

)]
(
t ′ + 1 

)
p 

[ 
a 

2 

(
t ′ + 1 

)] 
d θd t ′ 

σ̄θ = 

1 

16 π l r 

∫ 1 
−1 

∫ 2 π
0 

[
( f 2 + f 1 ) + ( f 2 − f 1 ) 

(
2 cos 2 α − 1 

)]
(
t ′ + 1 

)
p 

[ 
a 

2 

(
t ′ + 1 

)] 
d θd t ′ 

σ̄z = − 1 

8 π l 2 r 

∫ 1 
−1 

∫ 2 π
0 

[
8 ( 1 − ν) l r 

( 3 − 4 ν) k r 
− 2 �′ 

01 ( k r ) − 2 �′ 
02 ( k r ) 

( 3 − 4 ν) 
2 

]
(
t ′ + 1 

)
p 

[ 
a 

2 

(
t ′ + 1 

)] 
d θd t ′ 

τ̄rz = − 1 

8 π l 2 r 

∫ 1 
−1 

∫ 2 π
0 

⎡ 

⎢ ⎣ 

4 ( 1 − 2 ν) l r 

( 3 − 4 ν) k r 
− 2 �′ 

11 ( k r ) 

+ 

2 �′ 
12 ( k r ) 

( 3 − 4 ν) 
2 

⎤ 

⎥ ⎦ 

cos α
(
t ′ + 1 

)
p 

[ 
a 

2 

(
t ′ + 1 

)] 
d θd t ′ 

(25)

and ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ū r = − a 

16 πμl r 

∫ 1 
−1 

∫ 2 π
0 

[
−�′ 

11 ( k r ) + �′ 
12 ( k r ) 

]
cos α

(
t ′ + 1 

)
p 

[ 
a 

2 

(
t ′ + 1 

)] 
d θd t ′ 

ū z = 

a 

16 μπ l r 

∫ 1 
−1 

∫ 2 π
0 

[
�′ 

01 ( k r ) + �′ 
02 ( k r ) 

](
t ′ + 1 

)
p 

[ 
a 

2 

(
t ′ + 1 

)] 
d θd t ′ 

(26)

where 

f 1 = − 1 

l r 

[
8 νl r 

( 3 − 4 ν) k r 
+ 2 �′ 

01 ( k r ) −
6 �′ 

02 ( k r ) 

( 3 − 4 ν) 
2 

]

+ 

2 

k r 

[
−�′ 

11 ( k r ) + �′ 
12 ( k r ) 

]
f 2 = − 1 

l r 

[
8 νl r 

( 3 − 4 ν) k r 
− 8 ν�′ 

02 ( k r ) 

( 3 − 4 ν) 
2 

]
− 2 

k r 

[
−�′ 

11 ( k r ) + �′ 
12 ( k r ) 

]

�′ 
ˆ m ̂ s ( k r ) = 

⎧ ⎨ 

⎩ 

π
2 

[ 
H 0 

(
b ˆ s k r 

2 l r 

)
− Y 0 

(
b ˆ s k r 

2 l r 

)] (
ˆ m = 0 

)
2 l r 

b ˆ s k r 
+ 1 − π

2 

[ 
H 1 

(
b ˆ s k r 

2 l r 

)
− Y 1 

(
b ˆ s k r 

2 l r 

)] (
ˆ m = 1 

)
k r = 

√ 

( r ′ + 1 ) 
2 + ( t ′ + 1 ) 

2 − 2 ( r ′ + 1 ) ( t ′ + 1 ) cos θ

cos α = 

[(
r ′ + 1 

)
−
(
t ′ + 1 

)
cos θ

]
/ k r (27)

The stress and displacement fields at the surface in the model

of an elastic half space subjected to an axisymmetric but non-

uniform pressure on the surface are finally obtained, which are

given in Eqs. (25) –(27) . 
. Solutions of three typically axisymmetric contact problems 

Based on the above general solutions, three typical problems

re analyzed in this section, i.e., the Boussinesq model, contact

odel between a rigid flat-ended cylindrical indenter and an elas-

ic half space as well as contact model between a rigid spherical

ndenter and an elastic half space. 

.1. An elastic half space under an axisymmetrically uniform pressure 

As shown in Fig. 5 , a uniform pressure is applied on an elastic

alf space in a circular region, i.e., p ( r ) = p 0 ( r ≤ a ). Using Eqs. (25) –

27) leads to closed-form solutions of the stress and displacement

elds at the surface of the elastic half space, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ̄r = 

p 0 
16 π l r 

∫ 1 
−1 

∫ 2 π
0 

[
( f 1 + f 2 ) + ( f 1 − f 2 ) 

(
2 cos 2 α − 1 

)]
(
t ′ + 1 

)
d θd t ′ 

σ̄θ = 

p 0 
16 π l r 

∫ 1 
−1 

∫ 2 π
0 

[
( f 2 + f 1 ) + ( f 2 − f 1 ) 

(
2 cos 2 α − 1 

)]
(
t ′ + 1 

)
d θd t ′ 

σ̄z = − p 0 

8 π l 2 r 

∫ 1 
−1 

∫ 2 π
0 

[
8 ( 1 − ν) l r 

( 3 − 4 ν) k r 
− 2 �′ 

01 ( k r ) − 2 �′ 
02 ( k r ) 

( 3 − 4 ν) 
2 

]
(
t ′ + 1 

)
d θd t ′ 

τ̄rz = − p 0 

8 π l 2 r 

∫ 1 
−1 

∫ 2 π
0 

[
4 ( 1 − 2 ν) l r 

( 3 − 4 ν) k r 
− 2 �′ 

11 ( k r ) + 

2 �′ 
12 ( k r ) 

( 3 − 4 ν) 
2 

]
cos α

(
t ′ + 1 

)
d θd t ′ 

(28)

nd 

 

 

 

ū r = − p 0 a 

16 πμl r 

∫ 1 
−1 

∫ 2 π
0 

[
−�′ 

11 ( k r ) + �′ 
12 ( k r ) 

]
cos α

(
t ′ + 1 

)
d θd t ′ 

ū z = 

p 0 a 

16 μπ l r 

∫ 1 
−1 

∫ 2 π
0 

[
�′ 

01 ( k r ) + �′ 
02 ( k r ) 

](
t ′ + 1 

)
dθdt ′ 

(29)

.2. Contact model of a rigid flat-ended cylindrical indenter indenting

n elastic half space 

The frictionless contact between a rigid flat-ended cylindrical

ndenter of radius R and an elastic half space as shown in Fig. 6 is

onsidered, where P is a resultant force in the z -direction, δ de-

otes the indent depth and the contact radius is a = R . The dis-

lacement at the surface of the elastic half space in the z -axis di-

ection satisfies 

¯
 z = δ = const , ( r ≤ a ) (30)

Substituting the second equation of Eq. (26) into Eq. (30) and

hen differentiating the resulting equation with respect to r yields

1 

π

∫ 1 

−1 

kern 

(
r ′ , t ′ 

)
√ 

1 − t ′ 2 
p 

[ 
a 

2 

(
t ′ + 1 

)] 
dt ′ = 0 (31)

here 

ern 

(
r ′ , t ′ 

)
= 

√ 

1 − t ′ 2 
∫ 2 π

0 

(
t ′ + 1 

)

cos α

⎡ 

⎢ ⎢ ⎣ 

2 b 1 
π

− b 1 H 1 

(
b 1 k r 

2 l r 

)
+ b 1 Y 1 

(
b 1 k r 

2 l r 

)

+ 

2 b 2 
π

− b 2 H 1 

(
b 2 k r 

2 l r 

)
+ b 2 Y 1 

(
b 2 k r 

2 l r 

)
⎤ 

⎥ ⎥ ⎦ 

dθ

(32)

In addition, the resultant force P should equal to the integral of

 ( r ) in the circular contact region, which leads to 
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Fig. 11. The normalized contact radius a / a c as a function of the dimensionless pa- 

rameter P /( μR ) in the model of a rigid spherical indenter indenting an elastic half 

space for cases of different values of φ0 b / P . 
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1 

π

∫ 1 

−1 

(
t ′ + 1 

)
p 

[ 
a 

2 

(
t ′ + 1 

)] 
dt ′ = 

2 P 

π2 a 2 
(33) 

When the external load P and contact radius a are given, the

ontact pressure p ( r ) could be determined by solving Eqs. (31) and

33) . Compared with the solution of pressure in the classical con-

act model p(r) = P/ ( 2 πa 2 ) / 
√ 

1 − ( r/a ) 2 , an analytical expression

f the contact pressure considering surface effect is not easily

chieved. Numerical solutions can be obtained by transforming

qs. (31) and (33) into linear algebraic equations based on the nu-

erical method proposed by Erdogan and Gupta (1972) , 

p = f (34) 

n which 

B = 

[[
b ˆ i ̂ j 

][
b 

ˆ n ̂ j 

]], b ˆ i ̂ j = 

1 

ˆ n 

kern 

(
r ′ ˆ i , t 

′ 
ˆ j 

)
, b 

ˆ n ̂ j 
= 

1 

ˆ n 

(
t ′ ˆ j + 1 

)√ 

1 − t ˆ j 
′ 2 

p = 

[
p ′ 
[(

t ′ 1 + 1 

)
a / 2 

]
, p ′ 
[(

t ′ 2 + 1 

)
a / 2 

]
, · · ·, p ′ 

[(
t ′ ˆ n + 1 

)
a / 2 

]]T 

f = 

[
0 , 0 , · · ·, 0 , 2 P / 

(
π2 a 2 

)]T 

kern 

(
r ′ ˆ i , t 

′ 
ˆ j 

)
= 

√ 

1 − t ˆ j 
′ 2 
∫ 2 π

0 

(
t ′ ˆ j + 1 

)
( cos α) ˆ i ̂ j 

×

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

2 b 1 
π

− b 1 H 1 

( 

b 1 k 
ˆ i ̂ j 
r 

2 l r 

) 

+ b 1 Y 1 

( 

b 1 k 
ˆ i ̂ j 
r 

2 l r 

) 

+ 

2 b 2 
π

− b 2 H 1 

( 

b 2 k 
ˆ i ̂ j 
r 

2 l r 

) 

+ b 2 Y 1 

( 

b 2 k 
ˆ i ̂ j 
r 

2 l r 

) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

dθ

k 
ˆ i ̂ j 
r = 

√ (
r ′ ˆ i + 1 

)2 + 

(
t ′ ˆ j + 1 

)2 − 2 

(
r ′ ˆ i + 1 

)(
t ′ ˆ j + 1 

)
cos θ

( cos α) ˆ i ̂ j = 

[(
r ′ ˆ i + 1 

)
−
(
t ′ ˆ j + 1 

)
cos θ

]
/ k 

ˆ i ̂ j 
r 

r ′ ˆ i = cos 

(
ˆ i 

ˆ n 

π

)(
ˆ i = 1 , · · ·, ̂  n − 1 

)
, 

t ′ ˆ j = cos 

(
2 ̂

 j − 1 

2 ̂

 n 

π

)(
ˆ j = 1 , · · ·, ̂  n 

)
(35) 

Then, substituting the numerical solution of the contact pres-

ure p ( r ) into Eqs. (25) and (26) leads to the stress and displace-

ent fields at the contact surface ( z = 0). 

.3. Contact model of a rigid spherical indenter indenting an elastic 

alf space 

As for the frictionless contact between a rigid spherical inden-

er of radius R and an elastic half space as shown in Fig. 7 , a resul-

ant force P in the z -direction acts on the spherical indenter, result-

ng in a circular contact region of radius a . In the classical contact

odel without considering surface effect, the contact radius can

e expressed as a c = [ 3( 1 − ν) P R / ( 8 μ) ] 1 / 3 and the pressure in the

ontact region can be formulated as p(r) = 3 P 
√ 

1 − ( r/ a c ) 
2 
/ ( 2 πa 2 c )

 Johnson, 1987 ), both of which would no longer be valid for a

ano-scaled contact model with surface effect ( Gao et al., 2013;

hou and Gao, 2013 ). The vertical displacement at the surface of

he elastic half space can be written as, 

¯
 z = δ − r 2 

2 R 

, ( r ≤ a ) (36) 

Substituting the second equation of Eq. (26) into Eq. (36) and

hen differentiating the resulting equation with respect to r leads

o 

π

32 μl 2 r 

1 

π

∫ 1 

−1 

kern 

(
r ′ , t ′ 

)
√ 

1 − t ′ 2 
p 

[ 
a 

2 

(
t ′ + 1 

)] 
dt ′ = − a 

2 R 

(
r ′ + 1 

)
(37) 
In addition, Eq. (33) still holds in this model for the relationship

etween the resultant force P and the contact pressure p ( r ) in the

ircular contact region. 
Similarly, Eqs. (33) and (37) can be transformed to linear alge-

raic equations using the numerical method given by Erdogan and
upta (1972) , 

Bp = f , B = 

[[
b ˆ i ̂ j 

][
b 

ˆ n ̂ j 

]], b ˆ i ̂ j = 

1 

ˆ n 
kern 

(
r ′ ˆ i , t 

′ 
ˆ j 

)
, b 

ˆ n ̂ j 
= 

1 

ˆ n 

(
t ′ ˆ j + 1 

)√ 

1 − t 
′ 2 
ˆ j 

p = 

[
p ′ 
[(

t ′ 1 + 1 
)
a / 2 
]
, p ′ 
[(

t ′ 2 + 1 
)
a / 2 
]
, · · ·, p ′ 

[(
t ′ ˆ n + 1 

)
a / 2 
]]T 

, 

f = 

[
− 16 μal 2 r 

πR 

(
r ′ 1 + 1 

)
, · · ·, − 16 μal 2 r 

πR 

(
r ′ ˆ i + 1 

)
, · · ·, − 16 μal 2 r 

πR 

(
r ′ ˆ n −1 + 1 

)
, 

2 P 

π2 a 2 

] T 
kern 

(
r ′ ˆ i , t 

′ 
ˆ j 

)
= 

√ 

1 − t 
′ 2 
ˆ j 

∫ 2 π

0 

(
t ′ ˆ j + 1 

)
( cos α) ˆ i ̂ j 

×

⎡ 

⎢ ⎢ ⎣ 

2 b 1 
π − b 1 H 1 

(
b 1 k 

ˆ i ̂ j 
r 

2 l r 

)
+ b 1 Y 1 

(
b 1 k 

ˆ i ̂ j 
r 

2 l r 

)

+ 

2 b 2 
π − b 2 H 1 

(
b 2 k 

ˆ i ̂ j 
r 

2 l r 

)
+ b 2 Y 1 

(
b 2 k 

ˆ i ̂ j 
r 

2 l r 

)
⎤ 

⎥ ⎥ ⎦ 

dθ

k 
ˆ i ̂ j 
r = 

√ (
r ′ ˆ i + 1 

)2 + 

(
t ′ ˆ j + 1 

)2 − 2 
(
r ′ ˆ i + 1 

)(
t ′ ˆ j + 1 

)
cos θ

( cos α) ˆ i ̂ j = 

[(
r ′ ˆ i + 1 

)
−
(
t ′ ˆ j + 1 

)
cos θ

]
/ k 

ˆ i ̂ j 
r 

r ′ ˆ i = cos 

(
ˆ i 

ˆ n 
π

)(
ˆ i = 1 , · · ·, ̂  n − 1 

)
, t ′ ˆ j = cos 

(
2 ̂ j − 1 

2 ̂ n 
π

)(
ˆ j = 1 , · · ·, ̂  n 

)
(38) 

With regard to the above equations, the contact pressure p ( r )

nd the contact radius a can be solved numerically by a trial

ethod, which has also been adopted by Long and Wang (2013) . In

rder to find the real value, firstly, let the contact radius a equal a

rial value a ′ (for example, a ′ can be taken as the classical value of

ontact radius a c = [ 3( 1 − ν) P R / ( 8 μ) ] 1 / 3 ), then substitute a ′ into

q. (38) to calculate the pressure p ( r ). An abrupt drop or rise of

he p ( r ) curve near the contact edge indicates that a ′ is larger or

maller than the real value of a . Let a ′ decrease or increase a small

alue and start a new trial. The trial process would be finished

hen the slope of p ( r ) curve near the contact edge satisfies the

ondition | [ ( p ′ 1 − p ′ 2 ) / ( t ′ 1 − t ′ 2 ) ] [ ̄m ] − [ ( p ′ 2 − p ′ 3 ) / ( t ′ 2 − t ′ 3 ) ] [ ̄m ] | / 
 [ ( p ′ 2 − p ′ 3 ) / ( t ′ 2 − t ′ 3 ) ] [ ̄m ] | ≤ 0 . 05 and the difference of the con-

act radii in the neighboring trials satisfies | a ′ [ ̄m ] − a ′ [ ̄m −1 ] | / a c ≤
 . 001 , where p ′ 

j̄ 
= p ′ [ ( t ′ 

j̄ 
+ 1 ) a / 2 ] , ( ̄j = 1 , 2 , 3) and m̄ denotes the

rial number. Based on these two criteria, real solutions of the con-

act radius and the pressure can be found simultaneously. 
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Fig. 12. Distribution of the non-dimensional contact pressure in the contact region 

of a rigid spherical indenter indenting an elastic half space. (a) For cases of different 

values of φ0 b / P ; (b) For cases of different values of P /( μR ). 
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5. Results and discussion 

Distributions of the stress and displacement fields at the sur-

face of the elastic half space in three different kinds of models are

analyzed and compared with the corresponding solutions in the

classical contact mechanics without surface effect ( Johnson, 1987 ).

In the present paper, the Poisson’s ratio of the elastic half space is

taken as ν = 0.3. 

5.1. The case of an elastic half space under an axisymmetrically 

uniform pressure 

Closed-form solutions of the stress and displacement fields

at the surface of the elastic half space have been given in

Eqs. (28) and (29) for the model of an elastic half space sub-

jected to an axisymmetrically uniform pressure. Distributions of

each stress and displacement component at the pressured surface

are shown in Fig. 8 . The corresponding counterparts in the classical

Boussinesq model are also given for comparison. 

It is clearly found that surface effect characterized by the di-

mensionless parameter l r = φ0 b / ( μa ) on the stress fields at the

surface of the elastic half space is much obvious. The radial, cir-

cumferential and normal stresses with a non-zero l r deviate signif-

icantly from the classical counterparts as shown in Fig. 8 (a) −(c),

respectively. The surface effect leads to smoother stress distribu-

tion at the surface, which should be more reasonable than the

discontinuous jump of the classical solutions at the loading edge

r = a . Furthermore, in the loading area r ≤ a , absolute values of

all the stress components are remarkably smaller than the classi-

cal counterparts and the larger the dimensionless parameter l r , the
maller the absolute value of all the stress components is. Outside

he loading area r > a , the radial stress at the surface is much

maller than the classical tension stress, which even becomes a

ompressive one for a relatively large l r as shown in Fig. 8 (a).

owever, surface effect shows hardly influence on the circumfer-

ntial stress outside the loading area as shown in Fig. 8 (b). The

anishing normal stress outside the loading area in the classical

olution becomes negative when the surface effect is considered.

urthermore, the larger the dimensionless parameter l r , the larger

he absolute value of the compressive normal stress is, which can

e found in Fig. 8 (c). Especially, the tangential stress in the classi-

al model ( Johnson, 1987 ) does not vanish anymore and achieves

he maximum at the loading edge, which is due to the non-zero

urface-induced tangential traction (tangential traction induced by

urface effect) as shown in Fig. 8 (d). 

Both the radial and normal displacements become smaller than

heir classical counterparts as shown in Fig. 8 (e) and (f), which fur-

her demonstrates a fact that the nano-scaled contact area as well

s its vicinity is stiffened due to surface effect. It can be concluded

hat all the stress and displacement components depend signifi-

antly on surface effect when the dimensionless parameter l r re-

ated to the bulk surface energy density of the indented material

s non-vanishing. All the results would approach the classical ones

hen the surface effect becomes weak. 

.2. The case of a rigid flat-ended cylindrical indenter indenting an 

lastic half space 

Similar to the above Boussinesq model, the dimensionless pa-

ameter l r , as an important factor characterizing surface effect in

ano-contact problems, affects significantly the contact behavior

f a rigid flat-ended cylindrical indenter indenting an elastic half

pace. 

Distribution of contact pressure between a rigid flat-ended

ylindrical indenter and an elastic half space is plotted in Fig. 9 for

ifferent values of dimensionless parameter l r , where the clas-

ical result is also given for comparison. It is found that due

o the surface-induced normal traction, the contact pressure p ( r )

s obviously smaller and more uniform than the classical one

 Johnson, 1987 ). Besides, the singularity still exists at the contact

dge of the rigid flat-ended cylindrical indenter. Similar results

re also found in Pinyochotiwong et al. (2013) based on the G-

 model. When the surface effect becomes significant, i.e., an in-

reasing l r , deviation between the contact pressure with surface ef-

ect and the classical one becomes larger and larger. Furthermore,

t demonstrates that the classical closed-form solution of the con-

act pressure cannot be adopted approximately to describe that in

he model considering surface effect. 

Distributions of the normal and shear stresses as well as

he normal displacement at the surface z = 0 are illustrated in

ig. 10 (a) −(c), respectively. It can be easily found that the abso-

ute value of the compressive normal stress with surface effect

s smaller than the classical one in the contact area as shown in

ig. 10 (a), while additional non-zero compressive stress exists out-

ide the contact area induced by the surface effect, different from

he traction free condition in the classical model. Another inter-

sting phenomenon is that in contrast to a vanishing shear stress

t the surface in the classical solution, a non-zero one exists in

pite of the frictionless assumption as shown in Fig. 10 (b), which

s due to the additional surface-induced tangential traction given

n the second equation of Eq. (11) . As shown in Fig. 10 (c), the nor-

al displacement with surface effect decreases with an increas-

ng dimensionless parameter l r , which indicates reasonably a hard-

ning result induced by surface effect. Moreover, in the contact

rea, the normal displacement always keeps a constant regardless

f whether the surface effect is considered or not, which satisfies
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Fig. 13. The effect of bulk surface energy density of the indented material on the stress and displacement at the contact surface in the model of a rigid spherical indenter 

indenting an elastic half space. (a) For the non-dimensional normal stress σ̄z ; (b) For the non-dimensional shear stress τ̄rz ; (c) For the non-dimensional normal displacement 
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he boundary condition between the rigid flat-ended cylindrical in-

enter and the elastic half space. 

.3. The case of a rigid spherical indenter indenting an elastic half 

pace 

Different from the above two cases, both the contact radius a

nd the contact pressure p ( r ) are unknown in the model of a rigid

pherical indenter indenting an elastic half space, which should be

imultaneously determined with a preset external force P . Scaling

nalysis shows that two dimensionless parameters are introduced

n the present model, i.e., φ0 b / P characterizing the surface effect

nd P /( μR ) representing the size effect of indenter radius. 

The relation between the contact radius normalized by the clas-

ical one a / a c and the normalized external loading P /( μR ) is shown

n Fig. 11 for different φ0 b / P . It is clear to see that the contact ra-

ius with surface effect is much smaller than the classical one. For

 given value of φ0 b / P , the parameter a / a c decreases with an in-

reasing P /( μR ) indicating that the smaller the indenter radius or

he bulk shear modulus, the larger the deviation between the clas-

ical contact radius and the one with surface effect will be. When

he indenter radius or the bulk shear modulus increases, i.e., a

ecreasing parameter P /( μR ), a / a c approaches to 1, demonstrating

hat the surface effect could be neglected in cases with an inden-

er of relatively large radius or a harder substrate. For a determined

alue of P /( μR ), parameter a / a c decreases with an increasing φ0 b / P ,

hich means the larger the bulk surface energy density of the in-

ented material, the smaller the contact radius is. In a word, sur-

ace effect makes the indented material hardened. 
Distribution of the contact pressure p ( r ) in the contact area nor-

alized by the average pressure P /( πa 2 ) is plotted in Fig. 12 (a)

nd (b) for fixed parameters P /( μR ) and φ0 b / P , respectively. It is

ound that either an increasing bulk surface energy density in

he case with a given P /( μR ) or a decreasing indenter radius or

ulk shear modulus in the case with a fixed φ0 b / P , would en-

ance surface effect, leading to a more uniform distribution of the

resent result than the classical prediction. Since there exists the

elation p(r) / [ P/ ( πa 2 ) ] = 1 . 5 
√ 

1 − ( r/a ) 2 in classical contact me-

hanics ( Johnson, 1987 ), it can be solved that the contact pressure

ould equal to the average one at r/a = 

√ 

5 / 3 . It is interesting to

nd that all the contact pressures in different cases would intersect

t the point of r / a ≈ 0.745, inside which the present contact pres-

ure would decrease and approach to the average pressure, while

eyond which it would increase and approach to the average one,

long with the increase of surface effect, as shown in Fig. 12 (a) and

b). Furthermore, the contact pressure does not vanish at the con-

act edge r = a any more due to a non-zero surface-induced normal

raction. 

Distributions of the normal and tangential stresses as well

s the normal displacement at the contact surface are given in

igs. 13 (a) −(c) and 14 (a) −(c) for fixed parameters P /( μR ) and

0 b / P , respectively. Similar to the above two models, not only an

ncreasing bulk surface energy density but also a decreasing in-

enter radius or bulk shear modulus should enhance surface ef-

ect on the contact behaviors, which yield a more uniformly dis-

ributed normal stress, a non-zero tangential one and a smaller

ormal displacement as compared with the classical predictions.

n interesting phenomenon is that the shear stress at contact sur-
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Fig. 14. Effects of radius of the spherical indenter and the bulk shear modulus on the stress and displacement at the contact surface in the model of a rigid spherical 

indenter indenting an elastic half space. (a) For the non-dimensional normal stress σ̄z ; (b) For the non-dimensional shear stress τ̄rz ; (c) For the non-dimensional normal 

displacement ū z . 

Fig. 15. Normalized nano-indentation hardness H / H c as a function of the dimen- 

sionless parameter R / l in the model of a rigid spherical indenter indenting an elastic 

half space for cases of different values of φ0 b / P . 
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face becomes non-zero even though the friction between the rigid

indenter and half-space is neglected, which is different from the

zero-shear stress predicted by Long and Wang (2013) . The devi-

ation is due to the tangential component of the surface-induced

traction in the boundary condition, as shown in Eq. (11) , which

was not included in Long and Wang (2013) only considering the

effect of a surface tension. 

Surface effect on the nano-indentation hardness is further in-

vestigated with the model of a rigid spherical indenter indent-
ng an elastic half space. The nano-indentation hardness predicted

y the present model is defined as H = P/ ( πa 2 ) and that yielded

y the classical contact model is H c = P π−1 [ 3( 1 − ν) P R / ( 8 μ) ] −2 / 3 

 Johnson, 1987 ). The normalized nano-indentation by the classical

ne as a function of the dimensionless radius of the spherical in-

enter R / l is shown in Fig. 15 for cases with different φ0 b / P . It is

ound that the indentation hardness with surface effect is obvi-

usly larger than the classical one and increases with the decease

f indenter radius. When the parameter R / l and bulk surface en-

rgy density φ0 b are determined, it is found that the smaller the

xternal force P , the larger the predicted nano-indentation hard-

ess will be. 

. Conclusions 

To characterize the surface effect in nano-contact behaviors,

hree axisymmetric contact models are established and analyzed

sing an elastic theory for nanomaterials based on surface energy

ensity, including an elastic half space subjected to a uniformly

ormal pressure, the frictionless contact between an elastic half

pace and a rigid flat-ended cylindrical indenter as well as the

rictionless contact between an elastic half space and a spheri-

al indenter. The Love’s strain function method and Hankel inte-

ral transformation are adopted to obtain the general solution of

he stress and displacement fields at the surface of an elastic half

pace subjected to an arbitrarily but axisymmetrically distributed

ressure. An intrinsic length characterizing surface effect is found,

hich equals to the ratio of the bulk surface energy density to

he bulk shear modulus. Based on the general solution, surface ef-

ect on the stresses and displacements at the contact surface in
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he three kinds of models are analyzed. When the contact radius

s on the same order as the intrinsic length, surface effect on the

lastic fields and contact behaviors is very obvious, which cannot

e predicted by the classical contact model. It is found that sur-

ace effect could be strengthened not only by increasing the bulk

urface energy density of the indented material but also by de-

reasing the bulk shear modulus or the indenter size (contact ra-

ius). Compared with the classical solutions, surface effect leads

o much smoother and more uniformly distributed normal stresses

nd a smaller vertical displacement at the contact surface. A spe-

ial phenomenon is that in comparison with the classical predic-

ion, a non-zero shear stress exists at the contact surface in spite of

he frictionless assumption. The nano-indentation hardness is fur-

her discussed based on the spherical indenter model. It is found

hat surface effect would show significant influence on the nano-

ndentation hardness, which could be enhanced with the decrease

f the indenter radius or the external force. The results in this pa-

er should be helpful not only for deep understanding of surface

ffect in nano-contact behaviors but also for further revealing the

ature of size-dependent nano-indentation hardness. 
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