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Surface effect in three different axisymmetric Hertzian contact models is investigated in this paper with
a recently developed elastic theory for nanostructured materials, including a Boussinesq problem, con-
tact problem between a rigid flat-ended cylindrical indenter and an elastic half space as well as contact
problem between a rigid spherical indenter and an elastic half space. With the help of the Love’s strain
function method and Hankel integral transformation, closed-form solutions of the stress and displace-
ment fields at the surface of an elastic half space subjected to a concentrated force are achieved, based
on which the interface tractions and displacements in the three different axisymmetric contact problems
can be further obtained. It is found that surface effect in these contact problems can be characterized
only by an intrinsic length, i.e., the ratio of the bulk surface energy density to the bulk shear modulus
of the indented material. When the contact radius is comparable with the intrinsic length, surface ef-
fect is much obvious, leading to a serious deviation between the two solutions predicted respectively by
the theoretical model developed for nanomaterials and the classical contact model. A more interesting
phenomenon is about surface effect on the indentation hardness, which is found to increase with the
reduction of the indenter radius when the external load is fixed, or to increase with the decrease of the
external load when the indenter radius keeps unchanged. All the results in this paper should be help-
ful not only for deep understanding of the surface effect on nano-contact behaviors but also for further
revealing the nature of surface effect of nano-indentation hardness.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Nano-materials, as an important and integral part in the devel-
opment of nanoscience and nanotechnology, have been widely ap-
plied in many frontiers, for example, electrochemistry (Chan et al.,
2007), stretchable electronics (Rogers et al, 2010) and nano-
electro-mechanical systems (Poncharal et al., 1999), due to their
excellent physical and mechanical properties as compared to bulk
materials. Numerous experimental evidences have illustrated that
many important properties, including the melting temperature
(Qi and Wang, 2004), elastic modulus (Jing et al., 2006), resonant
frequency (Cuenot et al., 2004), yield strength (Zhang et al., 2010)
and indentation hardness (Gerberich et al., 1999; Wei et al., 2004),
are size dependent when the characteristic length of materials or
the indentation depth is on the order of nanoscale. Therefore, how
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to predict and explain the distinct size-dependent material proper-
ties becomes a key issue for the application of nanomaterials.

Size effect in nano-materials is essentially due to the large ratio
of surface/interface to volume, which is also addressed as surface
or interface effect (Gerberich et al.,, 2002; Zhang and Xu, 2002).
From the atomic point of view, atoms at or near the free sur-
face of a material would experience a discrepant local environ-
ment as compared to those in the bulk, which leads to an ex-
cess energy of each atom at or near the surface. When the char-
acteristic length of a material shrinks to nanometers, the influ-
ence of the excess energy on the material properties would be-
come significant. From the continuum viewpoint, the total ex-
cess energy can be described by the surface free energy and sur-
face stress (Gibbs, 1906; Shuttleworth, 1950). Gurtin and Mur-
doch (1975,1978) formulated a rigorous surface elastic theory (G-M
model) to account for the surface effect in nanomaterials, in which
surface elastic constants are introduced due to the elastic surface
constitutive relation. Such a model was then extensively studied.
Dingreville et al. (2005) and Dingreville and Qu (2008) developed
a framework incorporating the surface free energy, the interfa-
cial excess energy and excess stress into the continuum theory.
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Fig. 1. Schematic of a surface unit cell and the corresponding lattice lengths in two principal directions in the initial (reference), relaxed and current configurations, respec-

tively.
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Fig. 2. Schematic of the axisymmetric contact model of an elastic half space sub-
jected to an axisymmetric but non-uniform pressure p(r) at a circular area of radius
a.

Steigmann and Ogden (1997,1999) and Chhapadia et al. (2011) fur-
ther investigated the influence of curvature-dependent surface en-
ergy on the effective elastic modulus of nanomaterials. Huang and
Wang (2006,2010), Huang and Sun (2007) and Huang (2010) estab-
lished a hyperelastic theoretical framework, in which the interface
energy and the residual elastic field induced by the interface en-
ergy were taken into account. Both the curvature-dependent inter-
face energy and the interface and bulk residual elastic fields were
considered by Gao et al. (2014,2017).

The G-M theoretical framework and its extensions have been
widely adopted to predict the size-dependent elastic properties of
many nanostructured materials, from simple nanowires, nanofilms,
nanoparticles to relatively complex nanocomposites and elastic
media with nano-cracks (Cammarata, 1994; Streitz et al., 1994;
Sharma et al., 2003; He et al., 2004; Duan et al., 2005; Wang and
Feng, 2007b; He and Lilley, 2008; Wolfer, 2011; Huang and Wang,
2013; Nguyen et al., 2015; Nguyen et al., 2016; Takrori and Ayyad,
2017).

Recently, surface effect in contact mechanics attracts many in-
terests, including the Boussinesq problem (Gao et al., 2013; Zhou
and Gao, 2013), the Cerruti problem (Chen and Zhang, 2010; Zhou
and Gao, 2014) and the plane strain or axisymmetric model of in-
denters with different shapes contacting an elastic substrate or a
layer-substrate system (Long et al., 2012; Long and Wang, 2013;
Pinyochotiwong et al., 2013; Zhou and Gao, 2013; Rungamornrat
et al.,, 2016; Tirapat et al., 2017). Compared with the classical con-
tact model (Johnson, 1987), additional surface-induced tractions
as a function of surface stress are introduced at the contact sur-
face, which depends not only on the surface residual stress re-
sulted from surface relaxation but also on the surface deformation
yielded by the external load, i.e., o5 =19l +Cs: €. Here, o5, 7g, I, Cs
and & denote the surface stress tensor, surface residual stress, unit
tensor, surface elastic tensor and surface strain tensor, respectively.

From the way of surface treatment, the existing contact models
can be categorized into three classes. In the first one, the surface
stress equals to a constant surface residual stress and the effect
of surface elasticity is neglected (Hajji, 1978; He and Lim, 2006;
Wang and Feng, 2007a; Long et al.,, 2012; Long and Wang, 2013).
In the second one, only the effect of surface elasticity is included
without considering the surface residual stress induced by surface
relaxation (Zhao and Rajapakse, 2009). In the last one, both ef-
fects of the surface residual stress and surface elasticity are in-
volved (Koguchi, 2008; Chen and Zhang, 2010; Gao et al., 2013;
Pinyochotiwong et al., 2013; Zhou and Gao, 2013; Zhou and Gao,
2014; Vasu and Bhandakkar, 2016). The common conclusion is that
the normal traction and displacement at the contact surface would
be mainly influenced by the surface residual stress, while the sur-
face elasticity, as a dominant factor, would mainly affect the tan-
gential traction at the contact surface.

Almost all the above contact models are based on G-M model
or its extensions. Both values of the involved surface residual stress
and surface elastic constants are difficult to determine. The for-
mer induced by surface relaxation is always assumed to be a con-
stant, which should be influenced by the characteristic length of
nanomaterials or nanostructures (Zhang et al., 2014). The latter is
mainly determined with the help of molecular dynamics (MD) sim-
ulations (Miller and Shenoy, 2000; Shenoy, 2005; Mi et al., 2008).
However, many factors would influence the numerical values, for
example, the chosen atomic potential, size of the numerical model
and the truncation of atom layers regarded as the surface of nano-
materials. Consequently, some questions still remain open: How
can the surface elastic constants be accurately determined and
what thickness should be chosen to describe the surface layer in
MD simulations? Are the values of the surface constants sensitive
to the scales of a nanomaterial in the atomistic model? And is the
physical definition of elastic constants the same in MD simulations
as in existing theoretical models?

In order to avoid the above thorny problems, Chen and
Yao (2014) developed a new elastic theory for nanomaterials,
which is based on the atomic lattice model (Nix and Gao, 1998).
Surface energy density, as a typical parameter, is adopted to de-
scribe surface effect in nanomaterials. Both the effect of surface
relaxation and that of the external load on the surface energy
density of nanomaterials are included. Furthermore, the residual
strain induced by surface relaxation and the strain yielded by the
external load can be well defined based on the atomic lattice
model, which would show influence on the surface energy den-
sity of nanomaterials. Surface effect induced tractions as a func-
tion of surface energy density directly affect the stress bound-
ary conditions of nanomaterials, as compared with the classical
elasticity theory. Only two kinds of material parameters are in-
volved in the new theory to characterize the surface effect, i.e.,
the bulk surface energy density (surface energy density of the
corresponding bulk material) and the surface relaxation parame-
ter, both of which have clearly physical meanings and are easy to
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Fig. 3. The elastic fcc metallic half space with a (100) surface, where (1,2) denotes
a local coordinate system on the surface and (r, 6, z) is a global cylindrical one.
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Fig. 4. Schematic of a circular loading area, where point B is an arbitrary one on the
surface inside or outside the circular loading area and a concentrated force p(t)td6dt
acts on an infinitesimal surface element C.
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Fig. 5. The model of an elastic half space subjected to an axisymmetric and uniform
pressure po at an area of radius a.
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Fig. 6. The model a rigid flat-ended cylindrical indenter indenting an elastic half
space, where the radius of the cylindrical indenter is a and § is the indenting depth.

Zy

Fig. 7. The model a rigid spherical indenter indenting an elastic half space, where
the radius of the spherical indenter is a and ¢ is the indenting depth.

find in material handbooks or simple MD simulations. Recently, a
similar methodology is extended to investigate the interface effect
in nanocomposites (Yao et al, 2017). Analysis of several typical
problems has already verified the reasonability and feasibility of
such a novel elastic theory, including surface effect in nanowires
or nanobeams (Yao and Chen, 2015, 2016a,b; Jia et al., 2017b,c),
nanoparticles (Yao et al., 2015), nanocomposites (Yao et al., 2017)
and nano-indentation of plane strain contact problems (Jia et al.,
2017a). Especially, with regard to the Hertzian contact problem
considering surface effect, the normal pressure at the contact area
would not obey the classically elliptical expressions any more
(Johnson, 1987) due to the modified boundary conditions by the
surface-induced tractions. Some work ignored such an issue (Gao
et al., 2013; Zhou and Gao, 2013). More precise results have been
achieved by Jia et al. (2017a) with the elastic theory developed by
Chen and Yao (2014).

In this paper, the more realistic three-dimensional contact
problem considering surface effect is investigated, in which three
typical axisymmetric contact models are analyzed theoretically, in-
cluding the Boussinesq problem, contact problem between a rigid
flat-ended cylindrical indenter and an elastic half space as well as
contact problem between a rigid spherical indenter and an elastic
half space. Organization of the present paper is as follows. A brief
introduction of the elastic theory using surface energy density to
characterize surface effect of nanomaterials is given in Section 2.
A generalized axisymmetric problem, i.e., an elastic half space sub-
jected to an axisymmetric but non-uniform pressure, is analyzed in
Section 3. Three typical axisymmetric contact problems are further
analyzed respectively in Section 4. Results and discussion are given
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Fig. 8. Distributions of the stress and displacement at the contact surface in the model
region. (a) For the non-dimensional radial stress &;; (b) For the non-dimensional circum

of an elastic half space subjected to a uniformly distributed pressure in a circular
ferential stress &y; (c) For the non-dimensional normal stress &;; (d) For the non-

dimensional shear stress 7,,; (e) For the non-dimensional radial displacement i,; (f) For the non-dimensional normal displacement ;.

in Section 5, where the classical contact results are also given for
comparison and the size-dependent nano-indentation hardness is
further discussed. Conclusions are made finally.

2. Brief introduction of the surface energy density-based
elastic theory

Based on the atomic lattice model (Nix and Gao, 1998), an elas-
tic theory for nanomaterials was proposed by Chen and Yao (2014),
in which the surface effect is characterized by surface energy den-
sity.

The equilibrium equation and stress boundary conditions can
be derived as
o-V+£f=0(inV -Y5)
n.o-n=p n-dn- V)/(ons)
(I-nen)-o-n=I-nen) p+¢o(Vds)/J;
—(Vs¢o)/Js(onS)

where ¢ is the bulk Cauchy stress tensor inside the volume of the
nano-solid V, V denotes a spatial gradient operator in the current
configuration of deformed nanomaterials, n is the unit normal vec-
tor perpendicular to the boundary surface S of the nano-solid and I
is a unit tensor. f and p represent the body force and external sur-
face traction, respectively. ¢¢ denotes the Lagrangian surface en-

(1)
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Fig. 9. Distribution of the non-dimensional contact pressure in the contact region
of a rigid flat-ended cylindrical indenter indenting an elastic half space.

ergy density of nanomaterials. V; is a surface gradient operator. Js
is a Jacobean determinant characterizing the surface deformation
from a reference configuration to a current one.

Comparing to the classical elasticity theory, the stress bound-
ary conditions in the elastic model for nanomaterials include the
influence of the surface energy density, which is adopted to char-
acterize the surface effect. The Lagrangian surface energy density
¢o in the reference configuration can be further divided into two
parts. One is a structural part ¢8"“ related to the surface strain
energy induced by the residual strain leaded by surface relaxation
and the surface strain yielded by the external loadings. The other is
a chemical part qﬁghem related to the surface dangling-bond energy
induced by the unsaturated coordination.

+ ¢6hem

2
5 si; B Z aoiif [3+ (hi + Aig) ™ = 3(hi + Aigs) |

¢O — ¢(s)tru
¢(s)tru —

[)\2824—()» — 1% +24(h — Deg] )

D
pgem = ¢0b<1 —W1EO), N1 = 0o1/Ao2, N2 = Ao2/dot (2)

where ¢, is the bulk surface energy density, Dy is a critical
size (Do =3d, for nanoparticles, nanowires and 2d, for nanofilms,
where d, is the atomic diameter). D is a characteristic scale of
nanostructured materials (e.g., thickness, diameter, etc.). wy is a
parameter governing the size-dependent behavior of ¢8"em. Ep
is the bulk Young’s modulus. agq, ag, represent the initial lat-
tice lengths of surface atoms in the two principal directions, re-
spectively. S denotes an angle between the two basic vectors
as shown in Fig. 1. The lattice lengths become a,; and a,, af-
ter spontaneous surface relaxation, and subsequently become a;
and a, in the current configuration when subjected to an exter-
nal loading. A;=a,/ay; denotes the surface relaxation parameter,
&si=(a; —ay)/a,; is the surface strain induced only by the exter-
nal loading and m is a parameter describing the dependence of
bond lengths on the binding energy (m =4 for alloys or compounds
and m=1 for pure metals). Details can be found in Chen and
Yao (2014).

It can be found that only two material parameters, i.e., the bulk
surface energy density ¢q, and the surface relaxation parameter
A;, are involved to characterize the surface effect, both of which
have clearly physical meanings and are very easy to find through
Material Handbooks and simple MD simulations.

3. An elastic half space subjected to an axisymmetrically
non-uniform pressure

As a fundamental model in contact mechanics (Johnson, 1987),
the Boussinesq problem with surface effect is considered firstly. An
axisymmetric but non-uniform pressure p(r) is added on the sur-
face of the elastic half space as shown in Fig. 2. A cylindrical co-
ordinate system (r, €, z) with origin O at the center of the loading
area is attached on the surface, where r-axis is along the initially
flat surface and z-axis is perpendicular to the surface. a denotes
the radius of loading area. Surfaces beyond the loading area are
traction-free.

3.1. Governing equations and boundary conditions

In the absence of a body force, the equilibrium equation of the
axisymmetric indenting problem shown in Fig. 2 can be written as

dor 0T, Or—0y _0 0T, 00, T
ar T oz r U Yoz T
where o, 0y, 0, denote the radial, circumferential and normal
stresses, respectively. 7., is the only non-zero shear stress com-
ponent.

With an assumption of infinitesimal deformation, the non-zero
strain components, including the radial, circumferential and nor-
mal strains ¢, &y, &z, and the shear strain y,; can be expressed as

-0 3)

ou, U ou, our  0ug
Er=—,8g=—,E = —, = —— - 4
T A AR A T )
where u; and u, are the radial and normal displacements, respec-
tively.

The elastic half space is assumed to abide by the linear Hooke’s
law,

oy = 2ﬂ[17(8r+89 +&7) +er],
Oy = Z,u[ (sr—i—sa +&2) +89]
0z = 2,“[ (8r+89 +82)+82:|,Tzr—l/€)/zr (5)

where i and v are the bulk shear modulus and Poisson’s ratio of
the elastic half space, respectively.

Different from the classical contact theory (Johnson, 1987), ad-
ditional tractions would be induced by the surface effect besides
the external normal pressure p(r) (Chen and Yao, 2014). Thus, the
stress boundary conditions at z=0 can be expressed as,

0z, +P(r) = —¥n (6)
Tzl,0 = Vr

where y, and y, denote the normal and radial surface-induced
tractions, respectively.
According to Chen and Yao (2014), we have

0%u; 10u 10 0
Yo = ?O( 8r22+r8rz>’ Y= ¢O ¢0 .Is
s z=0

par gl U

For simplicity, the initial configuration of the elastic half space
is assumed to be an un-deformed fcc metallic substrate with
(100) surface as shown in Fig. 3, where a local coordinate sys-
tem (1, 2) coincides with a global Cartesian one (X, y, z). As a
result, in the structural part ¢§™ of the Lagrangian surface en-
ergy density ¢, we have m=1, $=90° and an equal atomic
spacing in both bond directions, i.e., ay = ap = v24ay/2, where
ap denotes the lattice constant of the bulk material. The sur-
face relaxation in both bond directions would be neglected for
an elastic half space, ie, A=A, ~ 1 (Zhang and Xu, 2002).
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Fig. 10. Distributions of the stress and displacement at the contact surface in the model of a rigid flat-ended cylindrical indenter indenting an elastic half space. (a) For the
non-dimensional normal stress &,; (b) For the non-dimensional shear stress 7,,; (c) For the non-dimensional normal displacement ii,.

According to the relationship between the local coordinate sys-
tem (1, 2) and the global cylindrical one (r, 0, z) as shown in
Fig. 3, the surface strain e (i=1, 2) in two bond directions
can be obtained as &g = [(&r + &) + (6r — &9) c0520]/2|,—0 and
&y = [(er + &) — (&r — &) €0520]/2|,—¢ (Timoshenko and Good-
ier, 1951). The chemical part d)g"em of the Lagrangian surface en-
ergy density ¢o should equal to the bulk surface energy density
¢op due to the large characteristic length D, i.e., qbg"em = ¢gp- Thus,
the Lagrangian surface energy density ¢y of an elastic half space
can be expressed as

V2Ea
do~ pop+ ” S[(&r+£9)* + (& — £9)*c05*(26)] (8)
z=0
For an axisymmetric model, we approximately have
V2Ea
Po ~ ¢op + bO(rz+8§) (9)
z=0

Combining Eqs. (7), (9) and noting that Js=1+¢&;+¢&4, the
stress boundary conditions in Eq. (6) can be rewritten as
0%u, 10u,
Ozl,0 +P(1) = —op (1 — & — 89)( 372 + T or

z=0

%u,
Trzl,0 = —Pon| (1 — x&r — ZSG)W (10)

10u, u,
+(1—xeo —28r)<r P 1’2)]

where x = +/2Epag/(8¢,) +2 is a dimensionless parameter re-
lated to the material properties. Under an infinitesimal deforma-
tion condition, the radial and circumferential strains &, and &4 are

z=0

much less than 1. It suggests that the high-order terms in Eq. (10),
e.g., the product of strain components with the partial derivatives
of ur, can be reasonable neglected. Moreover, when the surface ef-
fect is considered, the strain components should be significantly
smaller than the classical counterparts (Gao et al., 2013; Long and
Wang, 2013), while the latter ones are already very small quanti-
ties (much less than 0.1) when the substrate is only subjected to
a normal pressure p(r) (Johnson, 1987). Therefore, &, and &, are
negligible and the stress boundary conditions in Eq. (10) can be
rewritten as

32 19
0clo-o + p(r) = —pun (5 + 15 )| a
Our 4 19 _ -
Tizl,e0 = ¢0b( 32 T ar T rz) 720

Compared with the classical contact theory (Johnson, 1987), the
stress boundary conditions with surface effect depend significantly
on the surface energy density of the indented bulk substrate ¢y,
which, as a dominant parameter, characterizes the surface prop-
erty of an elastic half space in nano-contact models. The material
parameter x related to the bulk Young’s modulus E;, and the lattice
constant of the bulk material aq is neglected with the high-order
terms.

Thus, the governing equations for such an axisymmetric bound-
ary value problem considering surface effect are completely formu-
lated in Egs. (3)-(5) with boundary conditions in Eq. (11).

3.2. General solutions

Similar to the classical axisymmetric contact problem
(Selvadurai, 2000), a scalar Love’s strain function denoted by
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W(r, z) is introduced, which should satisfy the biharmonic equa-
tion V2V2W(r,z) = 0 in the absence of body forces. Here, we have
V2 =92/0r2 + (3/3r)/r + 82/3z> in the cylindrical coordinate
system. Using Hankel integral transform method with respect
to r, the stress and displacement components can be expressed
as a function of the Oth-order Hankel transform of Love’s strain
function W (&, ),

0r(r2) = 5° é[v et ]Jo@r)ds

-l 521 83\: 1(5r)d§
REN] o
04(1:2) = [ sv[ o szaz}fo@mds
1 8\1’ (12)
+fo 52 —hi(Endg
0:(1.2) = Ji*° s[a i - v)szaaﬂfo(sr)ds
2~ ~
Te(r2) = /;,“éz[vaaz‘f +(1- V)SZ‘I’]h (Erydé
and

(12) = 5 [ 87 d
ur(r,z) = fo £20V ] (£r)dE (13)

x(r.2) = ﬁfo [(1 - 20) 5 201 - 0)g2 W [ Eryd

vyhere Jn(€r) denotes the nth Bessel function of the first kind.
W (&, z) satisfies the following form

U (§,2) = (A+Bz)e™** (14)
where A and B can be determined by the stress boundary condi-
tions.

Substituting Eq. (14) into Eqgs. (12),(13), and then further into
Eq. (11) yields

_ 2(l& +4v)
A== EE+2IG- aiEr2P®) (15)
2(I5 +2) 5(E)

CE2(IE +2)[(3-4v)IE +2]

where p(&) denotes the Oth Hankel transformation of p(r) and is
expressed as

B(E) = /0 T tpt)o6t)de (16)

The parameter [ in Eq. (15) is an intrinsic length characterizing
surface effect, which equals to the ratio of the bulk surface energy
density to the bulk shear modulus,

0b
[ = Do
(17)

It is interesting to find that the intrinsic length in such an
axisymmetric model possesses the same expression as that in a
plane-strain contact problem with surface effect (Jia et al., 2017a).
In contrast to the work based on the G-M model (Gao et al., 2013;
Pinyochotiwong et al., 2013; Zhou and Gao, 2013), only one in-
trinsic length characterizing the surface effect is involved in the
present analysis.

Substituting Eqgs. (14) and (15) into Eq. (13) yields the stress and
displacement components

o E[AWIE +1) —2(l& +2)&7]

==l g 2@ _av)E 2 PO TENds
L ‘(‘,gjzz)‘ﬁ; A2 p(ee-so s
I G Tz PO o(Ends
I 2([,2;;(;)2[8 e e e s ends
o= Zf)(ll;: S P ThEnde
o E[2(1 =2v)IE +2(1& +2)&z2] .

Tz = — 0 (lé +2)[(3 4]))[5 +2] (S)e Ezjl (Er)dé:
(18)
and
_ 2[2(1-2v)— (1§ +2)§Z] N z
Ur = 2,bL fo (15 T 2)5(3 41)) g (‘5)6 g]l (fr)df
_L/ 2[(3—41))S+4(1—v)+(l§+2)§z]
£ 2u 0 (I€ +2)[(3 —4v)IE +2]
P(&)e 4o (5r)dé
(19)

where the solutions tend to the classical ones (Johnson, 1987; Sel-
vadurai, 2000) when the parameter | become zero.

In order to facilitate the calculation, we further transform the
infinite integral into an easy-solving form with a finite integral. As-
sume that the half space is subjected to a unit concentrated ver-
tical force p(r)=4(r) at the origin O. Then, Eq. (16) yields p(§) =
1/(2m). Using the knowledge of Bessel integral Abramowitz and
Stegun, 1964) and Egs. (18) and (19), the stress and displacement
fields at the surface (at z=0) in the model of an elastic half space
subjected to a unit concentrated force can be achieved as,

cwe_ 1 [ 4w - _ B6Eq(n)
o= ok | B—4v)r +2E0 (M) 3 —4v)2]
+*En(r) + Epp(n)
2mlr
FUC — 7# 4vl _ 8V Ep (r) _ —EBn1 (r) + E]z(r)
O 22| G-4v)r  (3-4uv)? 2xlr atz=0
R U - TC ) [ 280 (1)
% = Toni | B—4v)r —2Bn (M) - (3—4v)?
e 1 [2a-200 281,(1)
WS ok Godvyr DT 5Ty,
(20)
and
Uy = 4; il En () + En()]
H at z=0 (21)

_ 1
Ul = ——[Ep (1) + Boa(r
z 4;ml[ 01 (1) + Eo2()]
where the superscript “uc” denotes “unit concentrated”. The bar “-”
emphasizes the solution at z=0. Meanwhile,

(1) = Z[Ho(blr> YO(blr>](m=0)
s bir“ 2|:H1<blr)—Y1<bir):|(m:1) (22)

§=1or2,by =2,b, =2/(3 -4v)

Here, H, and Y, are the nth Struve function and the nth Bessel
function of the second kind, respectively.

When the elastic half space is subjected to an axisymmetric but
non-uniform pressure p(r), the stress and displacement fields at
any point B on the surface inside or outside the circular loading
area could be obtained by double integral of the result produced
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by a concentrated force p(t)td@dt acting on an infinitesimal surface
element C as shown in Fig. 4,

_ 6/(k,0) + (k. 0)
or=5Jolo +[61 (k. 0) — G (k, 0)] (2cos? — 1)
p(t)td@dt
_ 2 |65k, 0) +6/(k,0)
% = *fo 520k, 0) - Gk, 0)] (2082 ~ 1) [ *)
p(t)tdodt
&= 3 '“f(k 0)p(t)tdOdt
Ty = —fo fo T4 (k, 0) cosap(t)tdOdt
and
I, = —fo T 714 (k, 0) cos ap(t)tdOdt
fo f udc(k, 0)p(t)tdode
where k= /12 4+t2 — 2rt cos and cosa = (r —tcos6)/k.

Let t=a(t'+1)/2, r=a(+1)/2, I=La and k=ka/2.
Egs. (23) and (24) can be rewritten as,

(24)

_ 1 .

Or = m_f—ll I [({1 +fo) + (fi = fo)(2c0s’a - 1)]
(f/+1l)p 5 (¢ +1)|doae

0 = 1611, f I [(fz + fi) + (f2 —f])(Zcosza - 1)]
(¢ +1)p[5 (¢ +1) |avar

5 -1 8(1 - )l

0= gup e [(3_4\%
(¢ +1)p| 5 (¢ + 1) [doar’

41— 2v),

(3—4v)k,
3 -4v)

cosa(t' + 1)p[%(ﬂ + 1)]d9dt/

28k - 222l ("r)}

(3 —4v)?

T =7L [1 f2” Full)
T g 1lo

(25)

and

2 — -~
iy = —m f,1 fon [—.:/11 (kr) + C‘/lz(kr)]

/ a ! /
cosa(t + 1)p[§(t + 1)]d9dt 26)

Uz = 16/”'[1 S5 IS [E ot ko) + B (k)] (£ + 1)
p[5(+1)]avar
where
]
+%[ &1 (k) + B 12 (k)]
L= %[(3 821;)1@ 8(‘)33!(2‘5’;)} - %[_E/ll(kr) +E'(kn)]

E s (kr) = [H()(%) Y (bblzj#)}(rﬁ :b(:)
g+ a ) -n () om0
ke = \/(f’ + 1%+ (' + 1) = 2(" + 1)(t' + 1) cos 6
(t' +1) cos O] /k: (27)

cosa = [(r’ + 1) _

The stress and displacement fields at the surface in the model
of an elastic half space subjected to an axisymmetric but non-
uniform pressure on the surface are finally obtained, which are
given in Eqs. (25)-(27).

4. Solutions of three typically axisymmetric contact problems

Based on the above general solutions, three typical problems
are analyzed in this section, i.e., the Boussinesq model, contact
model between a rigid flat-ended cylindrical indenter and an elas-
tic half space as well as contact model between a rigid spherical
indenter and an elastic half space.

4.1. An elastic half space under an axisymmetrically uniform pressure

As shown in Fig. 5, a uniform pressure is applied on an elastic
half space in a circular region, i.e., p(r)=po(r < a). Using Egs. (25)-
(27) leads to closed-form solutions of the stress and displacement
fields at the surface of the elastic half space,

Or = 167‘[[ / f [(fl + )+ (i —fz)(ZCOSZ(X—l)]
(t’+1)d6dt’
0y = 167”] fozn[(f2+f1)+(fz—fl)(Zcosza—l)]
(t’+1)d0dt/

5, = or | 80—Vl 2802 (k)
%= 87112 I Jo [(3 “ayk, 2Eak) =g e
(t'+ 1)d9dt/
T 4(1 zv)lr 23/]2 (kr)
Tz = 87‘[12[ f W—Zun(kr)+m
cosa(t/ + l)det/
(28)
and
Ur = }?61%]:11 4 fozn[ E'1 (k) + Bz (kr)] cos e (t' + 1)dodt’ (29)
Uz = 16/,27Tlr f, f027-r [:/01 (k) + E'02 (kr)](t’ + 1)d9dt’

4.2. Contact model of a rigid flat-ended cylindrical indenter indenting
an elastic half space

The frictionless contact between a rigid flat-ended cylindrical
indenter of radius R and an elastic half space as shown in Fig. 6 is
considered, where P is a resultant force in the z-direction, § de-
notes the indent depth and the contact radius is a=R. The dis-
placement at the surface of the elastic half space in the z-axis di-
rection satisfies

i, = 8 = const, (r < a) (30)

Substituting the second equation of Eq. (26) into Eq. (30) and
then differentiating the resulting equation with respect to r yields

/1 kern r t [g(t/+1)]dt/=0 (31)

where

kern(r/, t

/)=ﬂ/02”(r/+1)

Zb] b]kr b1kr
Ea _b‘H1< 21, )er]yl( 2, )

coso
2b2 bzkr bzkr
e _sz]< 20, ) +b2y1< 2, )

In addition, the resultant force P should equal to the integral of
p(r) in the circular contact region, which leads to

do

(32)
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7/ (t'+1) [ (t/+l)]dt/:n221:12 (33)

When the external load P and contact radius a are given, the
contact pressure p(r) could be determined by solving Eqs. (31) and
(33). Compared with the solution of pressure in the classical con-
tact model p(r) = P/(2wa®)/y/1 - (r/a)z, an analytical expression
of the contact pressure considering surface effect is not easily
achieved. Numerical solutions can be obtained by transforming
Egs. (31) and (33) into linear algebraic equations based on the nu-
merical method proposed by Erdogan and Gupta (1972),

Bp—f (34)

in which

B= I:{zl:d]], b?f = %kern(r’f, t,f)’ ﬁf %(t 4 ‘1)1 / 1- tj,Z
nj

p=[p[(t + 1)a/2] P(¢2 + ar2]. - P (¢ + 1ar2]]

f=[0.0.---0, 2P/(n2a2)]T
kern(r';, t';) 1-t;? (t';+1)(cosa);
0
2bq b1klr] b]klrj
T[_bﬁh(Zh b 5p
X do

ij ij
+27T£ — baH, (b;;ir ) +byY; (b;{rr )
R 2—2(r’;+1)(t/]¢+1)c050
- (t’;—i—l)cos@]/kg

nﬁ—l)

2j-1_\,» .
t’j:cos( ]2ﬁ n)(lzl,...,n) (35)

Then, substituting the numerical solution of the contact pres-
sure p(r) into Eqgs. (25) and (26) leads to the stress and displace-
ment fields at the contact surface (z=0).

4.3. Contact model of a rigid spherical indenter indenting an elastic
half space

As for the frictionless contact between a rigid spherical inden-
ter of radius R and an elastic half space as shown in Fig. 7, a resul-
tant force P in the z-direction acts on the spherical indenter, result-
ing in a circular contact region of radius a. In the classical contact
model without considering surface effect, the contact radius can
be expressed as ac = [3(1 — v)PR/(814)]'/3 and the pressure in the

contact region can be formulated as p(r) = 3P\/1 — (r/ac)z/(27ra§)
(Johnson, 1987), both of which would no longer be valid for a
nano-scaled contact model with surface effect (Gao et al., 2013;
Zhou and Gao, 2013). The vertical displacement at the surface of
the elastic half space can be written as,

r2
S r=0) (36)

Substituting the second equation of Eq. (26) into Eq. (36) and
then differentiating the resulting equation with respect to r leads
to

U, =0 —
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Fig. 11. The normalized contact radius a/a. as a function of the dimensionless pa-
rameter P/(uR) in the model of a rigid spherical indenter indenting an elastic half
space for cases of different values of ¢o,/P.

In addition, Eq. (33) still holds in this model for the relationship
between the resultant force P and the contact pressure p(r) in the
circular contact region.

Similarly, Egs. (33) and (37) can be transformed to linear alge-
braic equations using the numerical method given by Erdogan and
Gupta (1972),

(t';+1) /14}2

P e

3)\ —_

aj =

Bp:f,B:EZ:}]]]bU =kern(r';, t';). by;

p=[P[(th+1)a2]. p'[(t2+1)as2]. -

16al? 16pal? 16pal?
o [ ) T )
2P 17
(r/"—l + ])’ nzaz]
1 ’t’—lt’zznt’l
kern(r';, j)— - ffo ( i+ )(cosa);j
ﬁ CbH <b11<§j)+blyl<b k?f>
sz — byH; ( ) + b,yY; (
k” \/(r/ +1) +(t;+ ) -2(r; +1)( +1) cos6

(
(cosa);; =[(r:+1) - (t; +1) cos 6] /k K

v —cos(rll )(i:1,-.-,ﬁ—1),t’f:cos(21;;1n)(f:1w-wﬁ) (38)

With regard to the above equations, the contact pressure p(r)
and the contact radius a can be solved numerically by a trial
method, which has also been adopted by Long and Wang (2013). In
order to find the real value, ﬁrstly, let the contact radius a equal a
trial value a’ (for example, @’ can be taken as the classical value of
contact radius ac = [3(1 — v)PR/(8)]1/3), then substitute a’ into

g. (38) to calculate the pressure p(r). An abrupt drop or rise of
the p(r) curve near the contact edge indicates that a’ is larger or
smaller than the real value of a. Let a’ decrease or increase a small
value and start a new trial. The trial process would be finished
when the slope of p(r) curve near the contact edge satisfies the
condition [[(p'y — p/5)/(t'1 —t')I™ —[(0'y = p'3)/ (2 — '™/
[[(p'3 —P'3)/(t —t’3)][m]| < 0.05 and the difference of the con-
tact radii in the neighboring trials satisfies |a'™ — '™ Y|/ <
0.001, where p}: p’[(t/j+ 1a/2], (j=1,2,3) and m denotes the
trial number. Based on these two criteria, real solutions of the con-
tact radius and the pressure can be found simultaneously.
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5. Results and discussion

Distributions of the stress and displacement fields at the sur-
face of the elastic half space in three different kinds of models are
analyzed and compared with the corresponding solutions in the
classical contact mechanics without surface effect (Johnson, 1987).
In the present paper, the Poisson’s ratio of the elastic half space is
taken as v=0.3.

5.1. The case of an elastic half space under an axisymmetrically
uniform pressure

Closed-form solutions of the stress and displacement fields
at the surface of the elastic half space have been given in
Egs. (28) and (29) for the model of an elastic half space sub-
jected to an axisymmetrically uniform pressure. Distributions of
each stress and displacement component at the pressured surface
are shown in Fig. 8. The corresponding counterparts in the classical
Boussinesq model are also given for comparison.

It is clearly found that surface effect characterized by the di-
mensionless parameter I = @q,/(1a) on the stress fields at the
surface of the elastic half space is much obvious. The radial, cir-
cumferential and normal stresses with a non-zero I deviate signif-
icantly from the classical counterparts as shown in Fig. 8(a)—(c),
respectively. The surface effect leads to smoother stress distribu-
tion at the surface, which should be more reasonable than the
discontinuous jump of the classical solutions at the loading edge
r=a. Furthermore, in the loading area r < a, absolute values of
all the stress components are remarkably smaller than the classi-
cal counterparts and the larger the dimensionless parameter I, the

smaller the absolute value of all the stress components is. Outside
the loading area r > a, the radial stress at the surface is much
smaller than the classical tension stress, which even becomes a
compressive one for a relatively large I, as shown in Fig. 8(a).
However, surface effect shows hardly influence on the circumfer-
ential stress outside the loading area as shown in Fig. 8(b). The
vanishing normal stress outside the loading area in the classical
solution becomes negative when the surface effect is considered.
Furthermore, the larger the dimensionless parameter I, the larger
the absolute value of the compressive normal stress is, which can
be found in Fig. 8(c). Especially, the tangential stress in the classi-
cal model (Johnson, 1987) does not vanish anymore and achieves
the maximum at the loading edge, which is due to the non-zero
surface-induced tangential traction (tangential traction induced by
surface effect) as shown in Fig. 8(d).

Both the radial and normal displacements become smaller than
their classical counterparts as shown in Fig. 8(e) and (f), which fur-
ther demonstrates a fact that the nano-scaled contact area as well
as its vicinity is stiffened due to surface effect. It can be concluded
that all the stress and displacement components depend signifi-
cantly on surface effect when the dimensionless parameter [, re-
lated to the bulk surface energy density of the indented material
is non-vanishing. All the results would approach the classical ones
when the surface effect becomes weak.

5.2. The case of a rigid flat-ended cylindrical indenter indenting an
elastic half space

Similar to the above Boussinesq model, the dimensionless pa-
rameter I, as an important factor characterizing surface effect in
nano-contact problems, affects significantly the contact behavior
of a rigid flat-ended cylindrical indenter indenting an elastic half
space.

Distribution of contact pressure between a rigid flat-ended
cylindrical indenter and an elastic half space is plotted in Fig. 9 for
different values of dimensionless parameter I, where the clas-
sical result is also given for comparison. It is found that due
to the surface-induced normal traction, the contact pressure p(r)
is obviously smaller and more uniform than the classical one
(Johnson, 1987). Besides, the singularity still exists at the contact
edge of the rigid flat-ended cylindrical indenter. Similar results
are also found in Pinyochotiwong et al. (2013) based on the G-
M model. When the surface effect becomes significant, i.e., an in-
creasing I, deviation between the contact pressure with surface ef-
fect and the classical one becomes larger and larger. Furthermore,
it demonstrates that the classical closed-form solution of the con-
tact pressure cannot be adopted approximately to describe that in
the model considering surface effect.

Distributions of the normal and shear stresses as well as
the normal displacement at the surface z=0 are illustrated in
Fig. 10(a)—(c), respectively. It can be easily found that the abso-
lute value of the compressive normal stress with surface effect
is smaller than the classical one in the contact area as shown in
Fig. 10(a), while additional non-zero compressive stress exists out-
side the contact area induced by the surface effect, different from
the traction free condition in the classical model. Another inter-
esting phenomenon is that in contrast to a vanishing shear stress
at the surface in the classical solution, a non-zero one exists in
spite of the frictionless assumption as shown in Fig. 10(b), which
is due to the additional surface-induced tangential traction given
in the second equation of Eq. (11). As shown in Fig. 10(c), the nor-
mal displacement with surface effect decreases with an increas-
ing dimensionless parameter [, which indicates reasonably a hard-
ening result induced by surface effect. Moreover, in the contact
area, the normal displacement always keeps a constant regardless
of whether the surface effect is considered or not, which satisfies
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Fig. 13. The effect of bulk surface energy density of the indented material on the stress and displacement at the contact surface in the model of a rigid spherical indenter
indenting an elastic half space. (a) For the non-dimensional normal stress &;; (b) For the non-dimensional shear stress 7,;; (c) For the non-dimensional normal displacement
il;.

the boundary condition between the rigid flat-ended cylindrical in- Distribution of the contact pressure p(r) in the contact area nor-
denter and the elastic half space. malized by the average pressure P/(ra?) is plotted in Fig. 12(a)
and (b) for fixed parameters P/(iuR) and ¢q,/P, respectively. It is

found that either an increasing bulk surface energy density in

5.3. The case of a rigid spherical indenter indenting an elastic half the case with a given P/(uR) or a decreasing indenter radius or
space bulk shear modulus in the case with a fixed ¢q/P, would en-
hance surface effect, leading to a more uniform distribution of the

Different from the above two cases, both the contact radius a present result than the classical prediction. Since there exists the
and the contact pressure p(r) are unknown in the model of a rigid relation p(r)/[P/(wa?)] = 1.5/1 — (r/a)? in classical contact me-
spherical indenter indenting an elastic half space, which should be  chanics (Johnson, 1987), it can be solved that the contact pressure
simultaneously determined with a preset external force P. Scaling would equal to the average one at r/a = +/5/3. It is interesting to

analysis shows that two dimensionless parameters are introduced find that all the contact pressures in different cases would intersect
in the present model, i.e., ¢g,/P characterizing the surface effect  at the point of rfa~0.745, inside which the present contact pres-
and P/(uR) representing the size effect of indenter radius. sure would decrease and approach to the average pressure, while
The relation between the contact radius normalized by the clas- beyond which it would increase and approach to the average one,
sical one afac and the normalized external loading P/(tR) is shown  along with the increase of surface effect, as shown in Fig. 12(a) and
in Fig. 11 for different ¢p/P. It is clear to see that the contact ra-  (b). Furthermore, the contact pressure does not vanish at the con-
dius with surface effect is much smaller than the classical one. For tact edge r=a any more due to a non-zero surface-induced normal
a given value of ¢q,/P, the parameter a/a. decreases with an in- traction.
creasing P/(uR) indicating that the smaller the indenter radius or Distributions of the normal and tangential stresses as well
the bulk shear modulus, the larger the deviation between the clas- as the normal disp]acement at the contact surface are given in

sical contact radius and the one with surface effect will be. When Figs. 13(a)—(c) and 14(a)—(c) for fixed parameters P/(uR) and
the indgnter radius or the bulk shear modulus increases, i.e.., a ¢op/P, respectively. Similar to the above two models, not only an
decreasing parameter P/(tR), ajac approaches to 1, demonstrating increasing bulk surface energy density but also a decreasing in-

that the surface effect could be neglected in cases with an inden- denter radius or bulk shear modulus should enhance surface ef-
ter of relatively large radius or a harder substrate. For a determined fect on the contact behaviors, which yield a more uniformly dis-
value of P/(R), parameter a/ac decreases with an increasing ¢op/P,  tributed normal stress, a non-zero tangential one and a smaller
which means the larger the bulk surface energy density of the in-  pormal displacement as compared with the classical predictions.
dented material, the smaller the contact radius is. In a word, sur- An interesting phenomenon is that the shear stress at contact sur-

face effect makes the indented material hardened.
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Fig. 15. Normalized nano-indentation hardness H/H. as a function of the dimen-
sionless parameter R/l in the model of a rigid spherical indenter indenting an elastic
half space for cases of different values of ¢g/P.

face becomes non-zero even though the friction between the rigid
indenter and half-space is neglected, which is different from the
zero-shear stress predicted by Long and Wang (2013). The devi-
ation is due to the tangential component of the surface-induced
traction in the boundary condition, as shown in Eq. (11), which
was not included in Long and Wang (2013) only considering the
effect of a surface tension.

Surface effect on the nano-indentation hardness is further in-
vestigated with the model of a rigid spherical indenter indent-

ing an elastic half space. The nano-indentation hardness predicted
by the present model is defined as H = P/(7ra?) and that yielded
by the classical contact model is Hc = Pw~1[3(1 — v)PR/(8w)]~2/3
(Johnson, 1987). The normalized nano-indentation by the classical
one as a function of the dimensionless radius of the spherical in-
denter R/l is shown in Fig. 15 for cases with different ¢gp/P. It is
found that the indentation hardness with surface effect is obvi-
ously larger than the classical one and increases with the decease
of indenter radius. When the parameter R/l and bulk surface en-
ergy density ¢q, are determined, it is found that the smaller the
external force P, the larger the predicted nano-indentation hard-
ness will be.

6. Conclusions

To characterize the surface effect in nano-contact behaviors,
three axisymmetric contact models are established and analyzed
using an elastic theory for nanomaterials based on surface energy
density, including an elastic half space subjected to a uniformly
normal pressure, the frictionless contact between an elastic half
space and a rigid flat-ended cylindrical indenter as well as the
frictionless contact between an elastic half space and a spheri-
cal indenter. The Love’s strain function method and Hankel inte-
gral transformation are adopted to obtain the general solution of
the stress and displacement fields at the surface of an elastic half
space subjected to an arbitrarily but axisymmetrically distributed
pressure. An intrinsic length characterizing surface effect is found,
which equals to the ratio of the bulk surface energy density to
the bulk shear modulus. Based on the general solution, surface ef-
fect on the stresses and displacements at the contact surface in
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the three kinds of models are analyzed. When the contact radius
is on the same order as the intrinsic length, surface effect on the
elastic fields and contact behaviors is very obvious, which cannot
be predicted by the classical contact model. It is found that sur-
face effect could be strengthened not only by increasing the bulk
surface energy density of the indented material but also by de-
creasing the bulk shear modulus or the indenter size (contact ra-
dius). Compared with the classical solutions, surface effect leads
to much smoother and more uniformly distributed normal stresses
and a smaller vertical displacement at the contact surface. A spe-
cial phenomenon is that in comparison with the classical predic-
tion, a non-zero shear stress exists at the contact surface in spite of
the frictionless assumption. The nano-indentation hardness is fur-
ther discussed based on the spherical indenter model. It is found
that surface effect would show significant influence on the nano-
indentation hardness, which could be enhanced with the decrease
of the indenter radius or the external force. The results in this pa-
per should be helpful not only for deep understanding of surface
effect in nano-contact behaviors but also for further revealing the
nature of size-dependent nano-indentation hardness.
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