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a b s t r a c t 

Symbolic regression is an important application area of genetic programming (GP), aimed at finding an 

optimal mathematical model that can describe and predict a given system based on observed input- 

response data. However, GP convergence speed towards the target model can be prohibitively slow for 

large-scale problems containing many variables. With the development of artificial intelligence, conver- 

gence speed has become a bottleneck for practical applications. In this paper, based on observations of 

real-world engineering equations, generalized separability is defined to handle repeated variables that 

appear more than once in the target model. To identify the structure of a function with a possible gen- 

eralized separability feature, a multilevel block building (MBB) algorithm is proposed in which the target 

model is decomposed into several blocks and then into minimal blocks and factors. The minimal factors 

are relatively easy to determine for most conventional GP or other non-evolutionary algorithms. The ef- 

ficiency of the proposed MBB has been tested by comparing it with Eureqa, a state-of-the-art symbolic 

regression tool. Test results indicate MBB is more effective and efficient; it can recover all investigated 

cases quickly and reliably. MBB is thus a promising algorithm for modeling engineering systems with 

separability features. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Symbolic regression seeks to identify an optimal mathematical

odel that can describe and predict a given system based on ob-

erved input-response data. Unlike conventional regression meth-

ds that require a preset explicit expression of the target model,

ymbolic regression can extract an appropriate function (model)

rom a space of all possible expressions S defined by a set of given

inary operations (e.g., + , − , × , ÷) and mathematical functions

e.g., sin , cos , exp , ln ), which can be described as follows: 

f ∗ = arg min 

f∈S 

∑ 

i 

∥∥ f 
(
x (i ) 

)
− y i 

∥∥, (1) 

here x (i ) ∈ R 

d and y i ∈ R are sample data, f is the target model,

nd f ∗ is the regression model. 

Symbolic regression has been widely applied in

any engineering sectors, such as industrial data anal-

sis (e.g., Li, Zhang, Bailey, Hoagg, & Martin, 2017; Luo,

u, Zhang, & Jiang, 2015 ), circuits analysis and design
∗ Corresponding author. 
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e.g., Ceperic, Bako, & Baric, 2014; Shokouhifar & Jalali, 2015;

arifi, Satvati, & Baradaran-nia, 2015 ), signal processing (e.g.,

olaric, Sucic, & Stankovic, 2017; Yang, Wang, & Soh, 2005 ), em-

irical modeling (e.g., Gusel & Brezocnik, 2011; Mehr & Nourani,

017 ), and system identification (e.g., Guo & Li, 2012; Wong, Yip,

 Li, 2008 ). Genetic programming (GP) ( Koza, 1992 ) is a classical

ethod of symbolic regression. Theoretically, GP can obtain an

ptimal solution provided that the computation time is sufficiently

ong. However, the computational cost of GP for large-scale prob-

ems with many input variables is still quite high. This situation

an be further exacerbated by increasing problem size (i.e., the

umber of involved independent variables) and complexity of the

arget function. 

GP has been refined in several ways. Some variants focus on

he coding plan. For example, grammatical evolution (GE) ( O’Neill

 Ryan, 2001 ) suggests using a variable-length binary string as the

enotype of a target function, and parse-matrix evolution (PME)

 Luo & Zhang, 2012 ) suggests using a parse-matrix with integer

ntries to retain more information from the parse tree. Some other

ariants have tested different evolutionary strategies, such as clone

election programming ( Gan, Chow, & Chau, 2009 ) and artificial

ee colony programming ( Karaboga, Ozturk, Karaboga, & Gorkemli,

012 ). GP variants can simplify the coding process and provide al-
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ternative evolutionary strategies; however, these methods do little

to improve convergence speed when solving large-scale problems. 

In the past decades, increasing attention has been paid to re-

ducing search space. For instance, McConaghy (2011) presented

the first non-evolutionary algorithm, fast function eXtraction (FFX),

which confined its search space to a generalized linear space. How-

ever, computational efficiency is gained by sacrificing the gener-

ality of the solution. More recently, Worm (2016) proposed a de-

terministic machine learning algorithm, prioritized grammar enu-

meration (PGE), in his thesis. PGE merges isomorphic chromo-

some presentations (equations) into a canonical form, yet a debate

is ongoing regarding how simplification affects the solving pro-

cess ( Kinzett, Johnston, & Zhang, 2009; Kinzett, Zhang, & Johnston,

2008; McRee, Software, & Park, 2010 ). 

More recently, a favorable feature in the symbolic regression

method, separability, has been addressed based on the fact that

the target model is separable in many scientific or engineering

problems ( Luo, Chen, & Jiang, 2017 ). A divide-and-conquer (D&C)

method for GP has also been presented to make use of the separa-

bility feature. The solving process is accelerated by dividing the tar-

get function into a number of sub-functions. Compared to conven-

tional GP, the D&C method can reduce computational effort (com-

plexity) by orders of magnitude. Chen, Luo, and Jiang (2018) re-

cently proposed an improved version of D&C, block building pro-

gramming (BBP), in which the target function is partitioned into

blocks and factors so it can further reduce the complexity of sub-

functions. 

However, the separability defined in Luo et al. (2017) and

Chen et al. (2018) is limited in that it does not allow for recur-

rence of the same variable in different sub-functions; it would oth-

erwise be considered non-separable. As a result, the sub-function

size could still be large in many practical applications, which will

be demonstrated in the following sections. This drawback moti-

vates us to broaden the prospective applications of D&C and BBP

in this work. 

First, a generalized separability is defined to allow for recur-

rence of the same variable in different sub-functions. More specifi-

cally, the variables involved are classified into two types: repeated

variables and non-repeated variables. The structure of the target

function and the type of variables (repeated or non-repeated) are

identified by a new proposed algorithm, multilevel block building

(MBB), in which the blocks could be further decomposed into a

higher level of blocks and factors until they are confirmed to be

minimal blocks and factors. Therefore, the sub-functions (i.e., min-

imal factors) may have smaller sizes and be more easily identified.

The minimal blocks and factors are then assembled together prop-

erly to form the target function. The block building process is sim-

ilar to that of BBP. 

In short, the new algorithm is an improved version of BBP

( Chen et al., 2018 ) with more general application potential. The

efficiency of the proposed MBB has been compared with the re-

sults of Eureqa, a state-of-the-art symbolic regression tool. Numer-

ical results show that the proposed algorithm is more effective and

can recover all investigated cases quickly and reliably. 

The rest of this paper is organized as follows. Section 2 analyzes

different types of separability in practical engineering. Section 3 is

devoted to establishing the mathematical model of the GS system.

In Sections 4 and 5 , we propose an MBB algorithm and illustrate

it using a case study. Section 6 presents numerical results and

discussions for the proposed algorithm. The paper concludes with

Section 8 , which provides remarks on future work. 

2. Observation of separability types 

Recall that the separability introduced in Luo et al. (2017) can

be described as follows. 
efinition 2.1 (Separability) . A scalar function f ( X ) with n con-

inuous variables X = { x i : i = 1 , 2 , · · · , n } ( f : R 

n �→ R , X ⊂ � ∈ R 

n ,

here � is a closed bounded convex set, such that � = [ a 1 , b 1 ] ×
 

a 2 , b 2 ] × · · · × [ a n , b n ] ), is said to be separable if and only if it can

e written as 

f ( X ) = c 0 �1 c 1 ϕ 1 ( X 1 ) �2 c 2 ϕ 2 ( X 2 ) �3 · · · �m 

c m 

ϕ m 

( X m 

) , (2)

here the variable set X i is a proper subset of X , such that X i ⊂ X

ith 

⋃ m 

i =1 X i = X, 
⋂ m 

i =1 X i = ∅ , and the cardinal number of X i is

enoted by card ( X i ) = n i , for 
∑ m 

i =1 n i = n and i = 1 , 2 , · · · , m . Sub-

unction ϕi is a scalar function where ϕ i : R 

n i �→ R . The binary op-

rator �i could be plus ( + ) and times ( × ). 

This separability suits the separability type of many engineering

odels as demonstrated below. 

xample 2.1. When developing a rocket engine, it is crucial to

odel the internal flow of high-speed compressible gas through

he nozzle. The closed-form expression for the mass flow through

 choked nozzle ( Anderson, 2006 ) is 

˙ 
 = 

p 0 A 

∗√ 

T 0 

√ 

γ

R 

(
2 

γ + 1 

)( γ +1 ) / ( γ −1 ) 

. (3)

n Eq. (3) , the five independent variables ( p 0 , T 0 , A 

∗, R , and γ ) are

ll separable. The equation can be called a multiplicatively separa-

le function, expressed as follows: 

˙ m = f ( p 0 , A 

∗, T 0 , R, γ ) 

= ϕ 1 ( p 0 ) × ϕ 2 ( A 

∗) × ϕ 3 ( T 0 ) × ϕ 4 ( R ) × ϕ 5 ( γ ) . 
(4)

The target function in this example is multiplicatively separable.

he sub-functions are connected to the binary operator times ( × ).

imilarly, the target function might be additively separable, where

he sub-functions are combined with the binary operator plus ( + ).

hese classes of separable functions are common in engineering. In

ractice, the binary operator between two sub-functions could be

lus ( + ) or times ( × ), which can be illustrated as follows. 

xample 2.2. In aircraft design, the lift coefficient of a whole air-

raft ( Zhang, 2002 ) can be expressed as 

 L = C Lα( α − α0 ) + C L δe 
δe 

S HT 

S ref 

, (5)

here variables C L α , C L δe 
, δe , S HT , and S ref are separable. Variables

and α0 are not separable, but their combination ( α, α0 ) is.

ence, Eq. (5) can be expressed as 

 L = f 
(
C Lα, α, α0 , C L δe 

, δe , S HT , S ref 

)
= ϕ 1 ( C Lα) × ϕ 2 ( α, α0 ) + ϕ 3 

(
C L δe 

)
× ϕ 4 ( δe ) 

×ϕ 5 ( S HT ) × ϕ 6 ( S ref ) . (6)

However, for many other engineering models, the separability

ype defined in Definition 2.1 is not broad enough; refer to the

ubsequent example. 

xample 2.3. The flow past a circular cylinder is a classic problem

n fluid dynamics. A valid stream function for the inviscid, incom-

ressible flow over a circular cylinder of radius R ( Anderson, 2011 )

s 

 = ( V ∞ 

r sin θ ) 

(
1 − R 

2 

r 2 

)
+ 

	

2 π
ln 

r 

R 

, (7)

hich can be re-expressed as 

ψ = f ( V ∞ 

, sin θ, R, r, 	) 

= ϕ 1 ( V ∞ 

) × ϕ 2 ( sin θ ) × ϕ 3 ( r, R ) + ϕ 4 ( 	) × ϕ 5 ( r, R ) . 
(8)
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Note that the target model in Example 2.3 is inconsistent with

he separability type defined in Definition 2.1 because some vari-

bles (e.g., variables V ∞ 

, θ , and 	 of Eq. (7) ) appear only once in a

iven target model, whereas other variables (e.g., variables r and R

ppear more than once in Eq. (7) . In other words, the recurrence of

he same variable in different sub-functions has occurred. Accord-

ng to Definition 2.1 , the target function here is not separable –

nd this is not a rare case. It is common for some parameters (e.g.,

ne or two) to couple widely with other variables in real-world

roblems. 

The inconsistency renders standard D&C and BBP ( Chen et al.,

018 ) inapplicable for this kind of problem; however, this finding

s unexpected. This discrepancy motivates us to define a more gen-

ral model of separability to make these problems separable so as

o reduce the computational complexity. The widely coupled vari-

bles ( r and R in this case) are considered special variables, called

epeated variables, and handled using specific techniques. Details

re described in the following section. 

. Generalization of separability 

As can be seen from Definition 2.1 , each variable appears only

nce in the model function. However, as mentioned above, some

ariables might appear twice or more in practical applications.

hus, the standard D&C and BBP methods lost their basis of work-

ng mechanism and cannot be used to model such systems. In this

ection, to let the symbolic regression algorithm take more advan-

age of separability , variables are distinguished as repeated vari-

bles and non-repeated variables, and a more general concept of

eparability is defined as follows. 

efinition 3.1 (Generalized separability) . A scalar function f ( X )

ith n continuous variables on a closed convex set � is said to

e generalized separable (GS) if it can be rewritten as 

f ( X ) = f 
(
X 

R , X 

NR 
)

= c 0 + 

m ∑ 

i =1 

c i ϕ i 

(
X 

R 
i , X 

NR 
i 

)

= c 0 + 

m ∑ 

i =1 

c i ̃  ω i 

(
X 

R 
i 

)
˜ ψ i 

(
X 

NR 
i 

)

= c 0 + 

m ∑ 

i =1 

c i 

p i ∏ 

j=1 

ω i, j 

(
X 

R 
i, j 

) q i ∏ 

k =1 

ψ i,k 

(
X 

NR 
i,k 

)
. (9) 

In Definition 3.1 , superscript R denotes repeated variables, and

R denotes non-repeated variables. The set of variables X is par-

itioned into complementary sets X R and X NR . The set of vari-

bles X R , X R 
i 
, X NR and X NR 

i 
are further partitioned into respective

on-overlapping subsets X R 
i 
, X R 

i j 
, X NR 

i 
and X NR 

i j 
(see Chen, Luo, &

iang, 2017 for more details). 

The intermediate functions ϕi ( · ) is called the i th minimal block

f f ( X ). The terminal sub-functions ω i, j ( · ) and ψ i, k ( · ) are called

he j th and k th factors of the repeated variables and non-repeated

ariables in the i th minimal block ϕi ( · ), respectively. The constants

 0 , c 1 , ���, c m 

are coefficients. 

Note that the standard separable function (see Definition 2.1 )

oes not involve repeated variables. So it is a special case of this

efinition when the number of repeated variables is 0, or q i = 0

n Eq. (9) . The function structure in Definition 3.1 can describe the

eparability types of all typical examples discussed in Section 2 . 

The block, minimal block, and factor are different levels of sub-

unctions. The blocks are connected with the binary operator plus

+), while factors are connected with the binary operator times

 × ). The minimal block is the block in which all sub-functions

factors) are connected with times ( × ). The minimal factors can

e considered as the minimum elements or terminal sub-functions

f the target function. 
Next, an example is given to illustrate these concepts. 

xample 3.1. Columns 4–6 in Table 2 show the repeated variables,

he number of minimal blocks, and the factors of 10 cases given

n Appendix A , respectively. All minimal blocks in these cases are

oxed. 

. Multilevel block building 

The function structure of a given system with standard sepa-

ability is detected by BiCT ( Luo et al., 2017 ), a statistical method

n which the target function can be divided into a number of ad-

itively or multiplicatively separable sub-functions. However, due

o the presence of repeated variables, the GS function f ( X ) is no

onger separable in terms of standard BiCT; that is, the standard

iCT method cannot be used directly. It is necessary to carry out a

eeper probe to determine the function structure. To identify the

unction structure of a given system with possible generalized sep-

rability (see Eq. (9) based on provided input-response data, three

teps must occur: 

(1) Distinguish repeated variables and non-repeated variables; 

(2) Determine the proper number of minimal blocks and fac-

tors; 

(3) Determine the membership of each variable (in which block

and factor). 

To fulfill these missions, a multilevel block search method is de-

igned. It is an improved version of BiCT as described below. 

.1. Minimal block detection 

The multilevel block search is designed based on an important

act: the number of blocks in terms of standard separability can in-

rease if the repeated variables are fixed. Suppose the model func-

ion f ( X ) of a GS system could initially be written as m 0 additively

eparable blocks ( m 0 ≥ 1). The test variable set X 

t is a subset of the

epeated-variable set X R of f ( X ), namely X t ⊆ X R , if the following

wo conditions are satisfied: 

(1) When the variables belonging to X 

t are all fixed, the num-

ber of additively separable blocks of m will increase; that is,

m > m 0 . 

(2) When the variables belonging to ˜ X t (in which 

˜ X t � = X t is

the element of the power set P X t of X 

t ) are all fixed, the

number of additively separable blocks of m will remain un-

changed; that is, m = m 0 . 

In fact, based on the meaning of a repeated variable, if the

epeated variables of a certain block are all fixed, then the

on-repeated variables of this block become additively separable.

ence, m will increase. On the other hand, if a set ˜ X t belongs to

 X t , then f ( X ) can be rewritten as more than m 0 additively sep-

rable sub-functions. The difference set P X t \ ̃  X t must be a non-

epeated-variable set. 

Suppose that the test variable sets X t 
( i ) 

� = ∅ for i = 1 , 2 , · · · , k,

atisfy the two conditions for a given GS function f ( X ). The

epeated-variable set of f ( X ) could be determined as X R = 

⋃ k 
i =1 X 

t 
( i ) 

.

his could be easily obtained if we let X t = X R in the above state-

ent. 

Based on these facts, the minimal block detection technique can

e succinctly described by Algorithm 1 : 

.2. Factor detection 

Once the repeated-variable set X R and non-repeated-variable

et X NR 
i 

( i = 1 , 2 , · · · , m ) have been obtained by the minimal block
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Algorithm 1 Minimal block detection. 

1: Input: Target model f : R 

n �→ R ; Variable set X = { x 1 , · · · , x n } ; 
Sample data S ∈ R 

N×n 

2: Let all variables be randomly sampled 

3: Detect the additively separable blocks by BiCT 

4: Update non-repeated variable sets of each block 

5: Carry out the multi-level block search as follows: 

6: for i = 1 : n do 

7: Create 
(

n 
i 

)
test variable sets X t 

( j) 
( j = 1 , 2 , · · · , 

(
n 
i 

)
) , which 

consist of all possible combinations of the set X taken i vari- 

ables at a time 

8: for j = 1 : 
(

n 
i 

)
do 

9: Keep the test variables belong to X t 
( j) 

fixed; Re-generate 

S ′ ; Call BiCT 

10: if More blocks are detected by BiCT then 

11: Add all x t ∈ X t 
( j) 

to X R 

12: Update the non-repeated variable sets of each block 

13: Output: Repeated variable set X R , and non-repeated variable 

sets of each minimal block X NR 
i 

, for i = 1 , 2 , · · · , m 
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detection algorithm, the next step is to determine the repeated-

variable set of each block, namely X R 
i 
, and the separability of each

block, namely X R 
i, j 

and X NR 
i,k 

, for j = 1 , 2 , · · · , p i , k = 1 , 2 , · · · , q i . For

non-repeated variables, note that in Eq. (9) , factors ψ i,k 

(
X NR 

i,k 

)
are

multiplicatively separable. The separability of the variables of X NR 
i,k 

in the i th block of Eq. (9) can be easily derived via standard BiCT

method when all variables in X R and X NR 
ξ ( ξ � = i ) are fixed. 

To determine the repeated variables in each block as well as

their separability, two test functions, ˜ f 1 and 

˜ f 2 are formulated for

BiCT: 

f ( X ) | ˜ x t → x α,x NR → x β , ̃ x NR → x α
� 

˜ f 1 
(
X 

t 
)

(10)

and 

f ( X ) | x t → x α,x NR → x β , ̃ x NR → x α
� 

˜ f 2 
(

˜ X 

t 
)
, (11)

where x t 
1 
, x t 

2 
, · · · are test variables belonging to the test variable

set X 

t , such that x t ∈ X t ⊂ X R . Variables ˜ x t 
1 
, ̃  x t 

2 
, · · · belong to ˜ X t ,

where ˜ X t is the complementary set of the test variable set X 

t in

the repeated-variable set X R , where ˜ x t ∈ 

˜ X t = � X R X t . x NR 
1 

, x NR 
2 

, · · ·
are the non-repeated variables of the i th block, such that x NR ⊂ X R 

i 
.

˜ x NR 
1 

, ̃  x NR 
2 

, · · · are the non-repeated variables of all the blocks except

the i th block, such that ˜ x NR ⊂ � X NR X NR 
i 

. x α and x β are two certain

points that remain fixed in BiCT. 

To eliminate the effects of other blocks when determining

the separability of the repeated variables in the i th block, four

groups involving eight sampling iterations should be evaluated us-

ing Eqs. (10) and (11) , respectively. The first sampling group is

evaluated as follows: set x α to the point x G , and set x β to x A and

x B , respectively. Let variables x̄ ξ be randomly sampled. Then, two

function-value vectors, y A 1 and y B 1 , are obtained. Let y 1 = y A 1 − y B 1 .

The other three sampling groups are simply interpreted as fol-

lows: 

y 2 = y C 2 − y D 2 , y 3 = y A 3 − y B 3 , and y 4 = y C 4 − y D 4 

The test variables x t 
1 
, x t 

2 
, · · · ∈ X t ⊂ X R are separable, and the

factor ω i , · ( X 

t ) involves the i th block if and only the following two

conditions are satisfied: (1) vectors y 1 and y 2 are linearly inde-

pendent, while y 3 and y 4 are linearly independent; and (2) both

y 1 and y 2 are not constant vectors. This conclusion can be eas-

ily obtained from Theorem 1 proved in Luo et al. (2017) . For the

above Condition 2, when both y 1 and y 2 are constant vectors, the

i th block does not involve a repeated-variable set factor ω i , · ( X 

t ).
hus, we can set ω i , · ( X 

t ) := 1. The corresponding factor detection

rocedure is described in Algorithm 2 : 

lgorithm 2 Factor detection. 

1: Input: Target system f : R 

n �→ R ; Sample data S ∈ R 

N×n ; Set X R 

and X NR 
i 

, for i = 1 , 2 , · · · , m 

2: for i = 1 : m do 

3: Let s i be the number of variables of X NR 
i 

, namely s i =
card 

(
X NR 

i 

)
4: for j = 1 : s i do 

5: Create 
(

s i 
j 

)
test variable set X t 

(k ) 
, k = 1 , 2 , · · · , 

(
s i 
j 

)
, which

consist of all possible combinations of the set X NR 
i 

taken j vari-

ables at a time; Let Count 1 = 1 

6: for k = 1 : 
(

s i 
j 

)
do 

7: Keep the test variable in X t 
(k ) 

and X R fixed; Re-

generate S ′ ; Call BiCT 

8: if X t 
(k ) 

is separable detected by BiCT then 

9: X NR 
i, Count 1 

:= X t 
(k ) 

; Count 1 := Count 1 + 1 

10: Let r i be the number of variables of X R 
i 

(i.e., X r ), namely r i =
card 

(
X R 

i 

)
11: for j = 1 : r i do 

12: Create 
(

r i 
j 

)
test variable set X t 

(k ) 
, k = 1 , 2 , · · · , 

(
r i 
j 

)
, which

consist of all possible combinations of the set X R 
i 

taken j vari-

ables at a time; Let Count 2 = 1 

13: for k = 1 : 
(

r i 
j 

)
do 

14: Generate test functions ˜ f 1 and 

˜ f 2 ; Obtain y 1 , y 2 , y 3 
and y 4 ; Call BiCT 

15: if X t 
(k ) 

satisfy separability then 

16: X R 
i, Count 2 

:= X t 
(k ) 

; Count 2 := Count 2 + 1 

17: Output: Variable sets X R 
i, j 

and X NR 
i,k 

, for j = 1 , 2 , · · · , p i and k =
1 , 2 , · · · , q i 

.3. Procedure of multilevel block building 

The identification of the separability structure of a target func-

ion is a top-to-bottom process. Next, the specific expression of

ach minimal factor needs to be determined and assembled prop-

rly with optimal coefficients to form an optimized model func-

ion. This is a bottom-to-top process; that is, MBB involves two

hases: structure delectation and model determination (see the

BB flowchart in Fig. 1 ). 

The model determination includes two steps: inner optimiza-

ion and outer optimization. 

Inner optimization is invoked to determine the function ex-

ressions and coefficients of all minimal factors ω i, j and ψ i, k . It

an also be referred to as factor modeling. Note that the mini-

al factors usually involve only a small number of variables (usu-

lly one or two) and have much less complexity than the orig-

nal target function. Therefore, factor modeling is relatively easy

or most conventional GP or other non-evolutionary algorithms, in-

luding PME ( Luo & Zhang, 2012 ), low-dimensional simplex evolu-

ion (LSDE) ( Luo & Yu, 2012 ), and artificial bee colony program-

ing ( Karaboga et al., 2012 ). If we choose a genetic programming

lgorithm or another symbolic regression algorithm as the termi-

al optimization engine, we must pre-establish a set of arithmetic

perations (e.g., + , - , × , ÷) and mathematical operators (e.g., sin ,

os , exp , ln ) according to the actual requirements. If we choose a

lobal optimization as the terminal optimization engine, we need

o pre-establish a library of element functions. For instance, typical

unctions (e.g., a · x + b, x 2 , 1 − x 2 
x 1 

, ���) that involve uni-variables

nd bi-variables could be set as elementary functions. The fac-
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Fig. 1. Flowchart of MBB. 
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ors are optimized to have small enough fitting errors (e.g., mean

quare error � 10 −8 ). The minimal factors are multiplied together

o produce a minimal block ϕi ( · ). 

The outer optimization involves assembling the minimal blocks

ogether to form the final model function. This step is quite sim-

le because the minimal blocks are linearly combined according to

he separability structure. Therefore, general linear regression al-

orithms could accomplish this mission to determine the optimal

oefficients c i , i = 0 , 1 , · · · , m . 

The general procedure of MBB for modeling a GS system can be

riefly described as follows: 

Procedure of multilevel block building: 

Step 1. (Minimal block detection) Partition a GS system into a

number of minimal blocks with all repeated variables fixed

(see Algorithm 1 ); 

Step 2. (Factor detection) Divide each minimal block into factors

(see Algorithm 2 ); 

Step 3. (Factor modeling) Determine the minimal factors by em-

ploying an optimization engine; 

Step 4. (Global assembling) Combine the optimized factors into

minimal blocks multiplicatively and then into an optimiza-

tion model linearly with optimal coefficients. 

. Case study 

In this section, a toy example ( Eq. (12) ) will be used to illus-

rate the implementation of the proposed MBB algorithm. The tar-

et function involves six independent variables, two of which ( x 5 
nd x 6 ) are repeated variables. 

f ( x ) = sin 3 x 1 − 2 ( x 5 ∗ x 6 ) cos x 2 + e x 6 ln x 3 + x 5 x 4 . (12)

.1. Minimal block detection 

1) Level-1 block search. The first step is a level-1 block search.

This step can use the same method as the BBP method pro-

posed in Chen et al. (2018) . The black box function (12) is first

divided into several additively separable blocks. Eq. (12) can be

decomposed into two blocks as follows ( Eq. (13) ), where each

block is boxed separately: 

f ( x ) = c 1 ∗ ϕ 1 ( x 1 ) + c 2 ∗ ϕ 2 ( x 2 , x 3 , x 4 , x 5 , x 6 ) . (13) 

2) Level-2 block search. The second step is the level-2 block

search. In this step, the variables are fixed individually to de-

tect whether the number of blocks will increase. In this exam-

ple, for the detection test loop to variable x 5 (let x 5 be fixed),

Eq. (13) can be further rewritten as three additively separate

blocks. The number of blocks increases; in other words, the re-

maining variables or variable combinations, namely x 1 , x 4 , and

( x 3 , x 6 ), can be considered additively separable. This is illus-

trated in the following equation: 

f ( x ) = c 1 ∗ ϕ 1 ( x 1 ) + c 2 ∗ ϕ 2 ( x 4 , ��x 5 ) + c 3 ∗ ϕ 3 ( x 2 , x 3 , ��x 5 , x 6 ) . 
(14) 

Similarly, when x 6 is fixed, we get 

f ( x ) = c 1 ∗ ϕ 1 ( x 1 ) + c 2 ∗ ϕ 2 ( x 3 , ��x 6 ) + c 3 ∗ ϕ 3 ( x 2 , x 4 , x 5 , ��x 6 ) . 

(15) 

The number of blocks is still three and does not increase, thus

concluding the level-2 block search. 

3) Level-3 block search. The third step is the level-3 block search.

All possible two-variable combinations are fixed one-by-one to

detect whether the number of blocks will increase. When the

variable combination ( x 5 , x 6 ) is fixed to a certain point, the

number of blocks increases to four: 

f ( x ) = c 1 ∗ ϕ 1 ( x 1 ) + c 2 ∗ ϕ 2 ( x 4 , ��x 5 ) + c 3 ∗ ϕ 3 ( x 2 , ���x 6 , x 5 ) 

+ c 4 ∗ ϕ 4 ( x 3 , ��x 6 ) . (16) 

As shown in Eq. (16) , only one variable exists in each block ( x 5 
and x 6 are fixed). These blocks are called minimal blocks. Thus

far, we have decomposed all variables into repeated variables

( x 5 , x 6 ), non-repeated variables ( x 1 , x 2 , x 3 , x 4 ), and four minimal

blocks, rendering further decomposition unnecessary. We can

obtain the following structure of the black box function from

Eq. (17) : 

f ( x ) = c 1 ∗ ˜ ω 1 ( x 5 , x 6 ) ˜ ψ 1 ( x 1 ) + c 2 ∗ ˜ ω 2 ( x 5 , x 6 ) ˜ ψ 2 ( x 2 ) 

+ c 3 ∗ ˜ ω 3 ( x 5 , x 6 ) ˜ ψ 3 ( x 3 ) + c 4 ∗ ˜ ω 4 ( x 5 , x 6 ) ˜ ψ 4 ( x 4 ) (17) 

ig. 2 illustrates an example of the 3-level block search as described

n Eq. (12) . We must emphasize that, in the process of minimal

lock detection, only the variable type and the number of minimal

locks are determined; the specific expression of each block has

et to be identified. 

.2. Factor detection 

In this process, the minimal blocks will be further decomposed

nto a number of minimal factors. Similarly, only the function

tructure of each factor, not the function specific, needs to be de-

ermined. 

(1) Factors of non-repeated variables. In this step, the task is

to identify non-repeated variable factors, which can be im-

plemented using the same method as the factor detection

process proposed in Chen et al. (2018) . Essentially, after all

repeated variables (i.e., x 5 and x 6 ) are fixed, the factors in

each minimal block must be multiplicatively separable. In

this example, the factors of non-repeated variables in each

minimal block are ψ 1 ( x 1 ), ψ 2 ( x 2 ), ψ 3 ( x 3 ), and ψ 4 ( x 4 ). 

(2) Factors of repeated variables. This step is slightly more

difficult because the sampling of repeated variables in one

minimal block will affect other minimal blocks. For example,

when we try to detect the separability of x 5 and x 6 in mini-

mal block-2, the sampling process affects the other minimal
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Fig. 2. Illustration of 3-level block search for Eq. (12) . 

Fig. 3. Sampling method of detecting the separability of the repeated variables x 5 and x 6 in minimal block-2. 
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blocks (because x 5 and x 6 also exist in minimal blocks-3 and

-4). Next, we take minimal block-2 as an example, namely 

ϕ 2 ( x 2 , x 5 , x 6 ) = ˜ ω 2 ( x 5 , x 6 ) ∗ ˜ ψ 2 ( x 2 ) , 

to illustrate the implementation of the separability detec-

tion of repeated variables x 5 and x 6 . The main sampling pro-

cess is shown in Fig. 3 . Recall from Section 4.2 that four

groups with eight sampling iterations should be evaluated.

First, let variable x 5 be randomly sampled. In the first group,

the non-repeated variable x 2 in minimal block-2 is fixed to

x A and x B respectively; all other variables are fixed to x G , in-

volving the repeated variable x 6 and non-repeated variables

x 1 , x 2 , x 3 , and x 4 . Then we can obtain two vectors, y A 1 and

y B 
1 
. Let y 1 = y A 

1 
− y B 

1 
. Notably, we sample twice in the first

group to eliminate the effects of repeated variables in the

other minimal blocks. In the second group, the non-repeated

variable x 2 in minimal block-2 is fixed to x C and x D , respec-

tively; all other variables are fixed to x H . Then we can ob-

tain two vectors, y C 
2 

and y D 
2 

. Let y 2 = y C 
2 

− y D 
2 

. In the third

and fourth groups, vectors y 3 and y 4 can be obtained simi-

larly. Luo et al. (2017) demonstrated that if the correspond-

ing components of function-value vectors y 1 and y 2 are pro-

portional, and those of vectors y 3 and vector y 4 are simulta-

neously proportional, then variables x 5 and x 6 are multiply

separable. The other two factors, ω 31 ( x 6 ) and ω 41 ( x 5 ), can

be obtained similarly. After the factor detection process, the

structure of the black box function Eq. (12) can be written
as follows: 

f ( x ) = c 1 ψ 1 ( x 1 ) + c 2 ω 21 ( x 5 ) ω 22 ( x 6 ) ψ 21 ( x 2 ) 

+ c 3 ω 31 ( x 6 ) ψ 31 ( x 3 ) + c 4 ω 41 ( x 5 ) ψ 41 ( x 4 ) (18)

.3. Factor modeling 

(1) Modeling factors of non-repeated variables. Here, we use

an example, ψ 21 ( x 2 ), to illustrate how to model factors of

non-repeated variables. The main sampling process is illus-

trated in Fig. 4 (a). Let the variable x 2 be randomly sampled,

where the sample points are denoted by the vector x train .

Fix the repeated variables, x 5 and x 6 , to points x A and x B , re-

spectively. Simultaneously, keep all other variables fixed to

point x G . Then, we can get two function vectors, y 1 and y 2 .

Let y train = y 1 − y 2 . Substitute y train and x train into the fitting

model y train = β · f ∗( x train ) . Keep in mind that the aim is to

obtain the optimization model f ∗, and the constant β will

be discarded. This step could be realized via an existing op-

timization engine. Recall from Section 4.3 that any conven-

tional GP method and global optimization (GO) algorithm

could be chosen as the optimization engine of MBB. 

(2) Modeling factors of repeated variables. Modeling factors

of repeated variables uses the same procedure as the pre-

vious method. Here, we use the factor ω 21 ( x 5 ) to illustrate

it. The main sampling process is depicted in Fig. 4 (b). Let

the variable x 5 be randomly sampled, where the sample

points are denoted by the vector x . Similarly, after sam-
train 
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Fig. 4. Sampling methods of modeling factors ψ 21 ( x 2 ) and ω 21 ( x 5 ). 
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Table 1 

Pre-established function models of uni-variable and bi-variables in LDSE powered 

MBB. 

No. Uni-variable model Bi-variables model 

1 x m 1 m 1 x 1 + m 2 x 2 
2 e m 1 x e m 1 x 1 x 2 

3 sin ( m 1 x + m 2 ) ( x 1 / x 2 ) 
m 1 + m 2 ( x 1 / x 2 ) 

m 3 + m 4 

4 log ( m 1 x + m 2 ) sin ( m 1 x 1 + m 2 x 2 + m 3 x 1 x 2 + m 4 ) 
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6
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6

 

o  
pling twice, we can get two function vectors, y 1 and y 2 .

Let y train = y 1 − y 2 . Substitute y train and x train into the fit-

ting model y train = β · f ∗( x train ) . Using the optimization en-

gine, we can obtain the regression model f ∗. 

.4. Global assembling 

The final task is to assemble these factors into minimal blocks.

he minimal blocks are considered as basic functions of the target

odel (12) . To determine the global parameter c k , k = 0 , 1 , · · · , m,

f Eq. (12) , we can use the conventional linear fitting method,

hich can be obtained by the following equation: 

 train = c 0 + 

m ∑ 

i =1 

c i 

p i ∏ 

j=1 

ω i, j 

(
x R train 

) q i ∏ 

k =1 

ψ i,k 

(
x NR 

train 

)
. (19) 

. Numerical results 

In our implementation, LDSE ( Luo & Yu, 2012 ) is chosen as

he optimization engine. LDSE is a hybrid evolutionary algorithm

or continuous global optimization. The efficiency of LDSE-powered

BB is tested by comparing the method with a state-of-the-art

ymbolic regression tool, Eureqa ( Schmidt & Lipson, 2009 ), a pro-

rietary A.I.-powered modeling engine based on GP, developed by

r. Hod Lipson from the Computational Synthesis Lab at Cornell

niversity. The efficiency is evaluated by the structure optimiza-

ion and coefficient optimization abilities. 

Two test groups are taken into account: Group A consists of 10

oy cases (see Appendix A ), and Group B consists of three real-

orld cases (see Section 2 ). The range of variables is ( −3 , 0 ) ∪
( 0 , 3 ) for all toy cases ((1, 3) for Case 6) and ( 0 , + ∞ ) for all en-

ineering cases. 

We take the MSE as the fitting error in the numerical study of

or each run, which is used to evaluate the regression model. The

SE is defined by Eq. (20) , 

SE ( f, f ∗) = 

‖ f − f ∗‖ 

2 
2 

N 

, (20) 

here N is the number of sampling points, and f and f ∗ are vec-

ors of predicted and observed values at these sampling points. The

alculation of predicted vector f is similar to Eq. (19) . The observed

ector f ∗ is obtained from the original system. 

The MBB computing time consists of three parts, t = t 1 + t 2 +
 , where t denotes time for separability detection, t denotes
3 1 2 
ime for factor modeling, and t 3 denotes time for global assem-

ly. In Luo et al. (2017) demonstrated that the separability detec-

ion and function recovery processes are double-precision opera-

ions and thus cost much less time than the factor determination

rocess; therefore, the factor modeling process consumes most of

he total computing time (i.e., t ≈ t 2 ). 

.1. Toy cases 

In this test group, 10 problems (see Appendix A ) are chosen to

est the efficiency of MBB. In Table 2 , the case number, dimension,

umber of sampling points, number of minimal blocks, number of

actors, and MSE variance from the 20 runs are denoted as Case

o., Dim, No. samples, No. blocks, No. factors, and MSE, respec-

ively. 

.1.1. Control parameter setting 

For calculation conditions, the number of sampling points for

ach independent variable is 200. The control parameters in LDSE

re as follows: the upper and lower bounds of the fitting param-

ters are set as −50 and 50. The population size N p is set to

 p = 10 + 10 d, where d is the dimension of the problem. The max-

mum generations are set to 3 N p . The maximum number of par-

ially separable variables in all target models in our tests is 2;

ence, our uni-variable and bi-variable function library of MBB is

et as shown in Table 1 , in which m 1 , m 2 are the parameters to

e fitted. The sequence search and optimization method comprise

 suitable GO strategy. The search will exit immediately if the MSE

s small enough (MSE ≤ εtarget ), and the tolerance (fitting error) is

 target = 10 −6 . To reduce the effect of randomness, each test case

as executed 20 times. 

.1.2. Numerical results and comparison 

Table 2 shows the comparative results of the average efficiency

f MBB and Eureqa for the 20 independent runs with different



32 C. Chen et al. / Expert Systems With Applications 109 (2018) 25–34 

Table 2 

Comparison of average efficiency of LDSE powered MBB and Eureqa for modeling 10 toy cases listed in Appendix A . 

Case No. Dim No. samples LDSE powered MBB Eureqa 

Repeated variable No. block No. factor CPU time a MSE CPU time b MSE Remarks 

1 2 400 None 1 2 7 s ≤ εtarget 7 s ≤ εtarget Solutions are all exact 

2 3 600 None 2 2 9 s ≤ εtarget > 4 m 12 s [ 0 , 2 . 33 ] × 10 −8 10 runs failed c 

3 3 600 None 2 3 9 s ≤ εtarget > 1 m 9 s ≤ εtarget 2 runs failed 

4 3 600 x 3 2 4 11 s ≤ εtarget 55 s ≤ εtarget Solutions are all exact 

5 4 800 x 4 2 5 14 s ≤ εtarget > 2 m 28 s ≤ εtarget 3 runs failed 

6 5 10 0 0 x 5 4 6 21 s ≤ εtarget � 6 m 25 s [ 4 . 79 , 14 . 2 ] × 10 −6 All runs failed 

7 5 10 0 0 x 4 , x 5 3 7 16 s ≤ εtarget � 8 m 38 s [ 4 . 05 , 7 . 68 ] × 10 −4 All runs failed 

8 5 10 0 0 x 4 3 6 15 s ≤ εtarget � 6 m 44 s [ 2 . 89 , 122 . 86 ] × 10 −2 All runs failed 

9 6 1200 None 1 4 9 s ≤ εtarget � 6 m 59 s [ 1 . 4 , 8 . 54 ] × 10 −1 All runs failed 

10 7 1400 x 7 2 6 11 s ≤ εtarget � 6 m 51 s [ 7 . 58 , 399 . 5 ] × 10 −4 All runs failed 

a LDSE powered MBB is implemented in MATLAB and executed on a single processor. 
b Eureqa is implemented in C language and executed in parallel on 8 processors. 
c Maximum generation is set to 10 0,0 0 0. 
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Table 3 

Average efficiency of LDSE powered MBB for modeling 3 real-world examples (min- 

imal block determination). 

Target minimal block CPU Time a Result expression 

Case 11: Eq. (3) 

ϕ1 ( p 0 , A 
∗ , T 0 ) 7s ϕ 1 = 0 . 04 ∗ p 0 ∗ A ∗ ∗ T 0 

−0 . 5 

Case 12: Eq. (5) 

ϕ1 ( C L α , α) 5s ϕ 1 = C Lα ∗ ( α − 2 ) 

ϕ 2 
(
C L δe 

, δe , S HT , S ref 

)
8s ϕ 2 = C L δe 

∗ δe ∗ S HT ∗ 1 / S ref 

Case 13: Eq. (7) 

ϕ1 ( V ∞ , r , sin θ , R ) 7s ϕ 1 = V ∞ ∗ sin θ ∗
(
r − R 2 /r 

)
ϕ2 ( 	, r, R ) 5s ϕ 2 = 0 . 1592 ∗ 	 ∗ ln ( r/R ) 

a The CPU time refers to the time cost of the minimal block determination. 
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initial populations. Numerical results show that the LDSE-powered

MBB successfully recovered all target models exactly in double pre-

cision. Once the uni- and bi-variables models are preset, the se-

quence search method allows MBB to easily identify the best re-

gression model. In practical applications, more function models

could be added to the pre-established function models of MBB,

provided they are needed. As shown in the second column of

Table 2 , Eureqa failed to reach the target accuracy in all 20 runs

within the maximum generation (10 0,0 0 0) for Cases 6–10. 

The results of Eureqa were quite unexpected at first sight as Eu-

reqa is assumed to be a state-of-the-art symbolic regression soft-

ware implemented in C language and executed in parallel on eight

processors. However, the result is reasonable because the separa-

bility features of these cases are not used in Eureqa . The com-

plexity of Cases 6–10 is rather high because of the relative large

number of active variables and the combinations of different types

of functions along with the non-integer coefficients inside the sub-

functions. The search space is indeed quite large; hence, stochastic

algorithms are easy to get premature. 

For MBB, a stochastic search algorithm is used only for mini-

mal factor modeling, and the search space is substantially reduced.

Other processes of MBB are nearly determinate. 

6.2. Real-world cases 

In this test group, numerical experiments on four real-world

problems discussed in Section 2 are conducted, namely Eqs. (3) ,

(5) , and (7) . This test group helps to evaluate the potential feasi-

bility of MBB in practical applications. 

6.2.1. Control parameter setting 

For Eq. (3) , the sample set consists of 100 observations uni-

formly distributed in a box in R 3 (i.e., A 

∗ = 0 . 5 : 1 . 5 m 

2 ; p 0 = 4 ×
10 5 : 6 × 10 5 Pa; T 0 = 250 : 260 K). The specific gas constant R is

set to R = 287 J / ( kg · K ) , and the ratio of specific heat γ is set to

γ = 1 . 4 while detecting and modeling Eq. (3) . 

For Eq. (5) , the sample set consists of 100 observations uni-

formly distributed in a box in R 6 (i.e., C Lα = 0 . 4 : 0 . 8 ; α = 5 : 10 ◦;

 L δe 
= 0 . 4 : 0 . 8 ; δe = 5 : 10 ◦; S HT = 1 : 1 . 5 m 

2 ; S ref = 5 : 7 m 

2 ). The

zero-lift angle of attack α0 is −2 ◦. 

For Eq. (7) , the sample set consists of 100 observations uni-

formly distributed in a box in R 5 (i.e., V ∞ 

= 60 : 65 ; m/s; θ = 30 :

40 ◦; r = 0 . 2 : 0 . 5 m; R = 0 . 5 : 0 . 8 m; 	 = 5 : 10 m 

2 /s). In our tests,

the matrix of 100 sample data is directly used for global assem-

bling to determine the coefficients of the final model function.

Meanwhile, the colons corresponding to unfixed variables of the

matrix are also used in all phases of MBB including block detec-

tion, minimal block detection, factor detection, and factor model-
ng. The colons corresponding to fixed variables are fixed to the el-

ments of the first row. That is, the samples are partially renewed

or every BiCT detection, but the number of using samples always

emains at 100. 

The control parameters and uni-variable and bi-variable model

ibrary in LDSE are the same as in the first test group. Similarly,

he search will exit immediately if the MSE is small enough (MSE

 ε target = 10 −8 ). To reduce the effect of randomness, each test case

as executed 20 times, and average values are reported. 

.2.2. Numerical results and comparison 

The results of this test group facilitate further analysis of the

fficiency of the LDSE-powered MBB. Table 3 shows MBB results

or the minimal block detections in the four cases. Table 4 shows

he comparative results of the average efficiency of MBB and Eu-

eqa on the 20 independent runs. As indicated in Table 3 , the min-

mal blocks were detected correctly and fitted accurately with MSE

 ε target = 10 −8 for all 20 runs. 

Meanwhile, the comparison of MSEs in Table 4 indicates that

DSE-powered MBB demonstrated a much lower MSE for all cases.

rom the above results, we can determine that the LDSE-powered

BB is highly capable of detecting the complex structures of GS

ystems and of modeling complex practical problems. Good effi-

iency for the modeling of a complex system and the capability of

tructure optimization and coefficient optimization reflect the po-

ential of MBB for use in practical applications. 

The above results show that the LDSE-powered MBB has better

omputational efficiency than the state-of-the-art symbolic tool,

ureqa. In fact, the efficiency could be much better because the

DSE-powered MBB was executed on a single processor in numeri-

al tests, whereas Eureqa was executed in parallel using eight pro-

essors. 
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Table 4 

Comparison of average efficiency of LDSE powered MBB and Eureqa for modeling 3 real-world cases. 

Case No. Dim LDSE powered MBB Eureqa 

No. block No. factor CPU time MSE CPU time MSE Remarks 

11 3 1 3 10 s ≤ εtarget 53 s ≤ εtarget 2 runs failed 

12 6 2 6 15 s ≤ εtarget � 7 m 3 s [ 2 . 04 , 5 . 63 ] × 10 −4 All runs failed 

13 5 2 6 16 s ≤ εtarget > 4 m 41 s [ 0 , 1 . 96 ] × 10 −5 11 runs failed 
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. Discussion 

So far, the proposed method has been described using functions

ith explicit expressions. In fact, MBB only works if we have full

ontrol over the underlying system and are free to take samples,

uch as when attempting to identify a simple function to approx-

mate a computationally expensive computational fluid dynamic

CFD) simulation or to identify a more concise equivalent formula

ith a given symbolic expression (known as exact simplification

nd transformation; see Stoutemyer, 2012 ). This is a limitation of

urrent MMB, although it could be modified in future studies. 

Note that Eureqa as well as most other symbolic regression al-

orithms and tools do not need to take samples while modeling.

hat is, Eureqa works with the data at hand and has broader ap-

lication fields in this sense. In other words, MMB can outperform

ureqa only if we have full control over the underlying system to

ake samples freely and the target model function processes some

ypes of separability features. 

. Conclusion 

Based on the observations of different separability types in

ractical engineering formulas, a more general concept of sepa-

ability is defined to handle repeated variables that appear more

han once in the target model. To identify the structure of a func-

ion with a possible GS feature, an MBB algorithm is proposed in

hich variables are distinguished as repeated variables and non-

epeated variables and the target model is decomposed into a

igher level of blocks and factors until they are confirmed to be

inimal blocks and factors. The minimal factors often involve only

 small number of variables (usually one or two) and are much less

omplex than the original target function. Thus, it is much easier to

e identified for most conventional GP or other non-evolutionary

lgorithms. The minimal blocks and factors are then assembled

roperly to form the target function. 

The newly proposed MBB is an improved version of BBP with

ore general application potential. The efficiency of MBB was

ested through a comparison with Eureqa, a state-of-the-art sym-

olic regression tool. Test results indicate that MBB is more effec-

ive, efficient, and can recover all investigated cases quickly and re-

iably. MBB is a promising algorithm to model engineering systems

ith separability features. 

In future work, we plan to study the robustness of the pro-

osed algorithm in practical applications with sample data that in-

olve noise (e.g., aerodynamic force/heating predictions using ex-

erimental data from wind tunnels in which measurement errors

nd/or system noise are inevitable). Special techniques are neces-

ary to make MBB applicable. For example, a soft BiCT might be

eveloped to replace the standard BiCT used in the current MBB

lgorithm. In soft BiCT, the correlation coefficient | ρ| could be de-

ned as | ρ| = 1 − ε (where ε is a small positive number) instead

f | ρ| = 1 in standard BiCT. In addition, the noise could be fur-

her suppressed via multiple BiCTs, where each variable is fixed

o more pairs of vectors (currently one pair in standard BiCT). Fi-

ally, a preconditioning step should be designed to provide sam-

le points for the MBB method. For practical applications in aero-
ynamic prediction, this step might include a set of CFD simula-

ions ( Blazek, 2015 ) or a sufficiently accurate surrogate model of

he dataset ( Forrester, Sobester, & Keane, 2008 ). The CFD simula-

ion or surrogate model could be used to take samples for block

etection in MBB. Detailed discussions will be provided in future

tudies. 

cknowledgements 

This work was supported by the National Natural Science Foun-

ation of China (Grant No. 11532014). The authors would like to

hank the anonymous reviewers for their valuable comments and

uggestions on the earlier versions of this manuscript. 

ppendix A. 10 toy cases of Section 6.1 

The target models which are tested in Section 6.1 with all the

inimal blocks boxed are given as follows: 

Case 1. f ( x ) = 0 . 5 ∗ e x 1 ∗ sin 2 x 2 , where x i ∈ [ −3 , 3 ] , i = 1 , 2 . 

Case 2. f ( x ) = 2 ∗ cos x 1 + sin ( 3 x 2 − x 3 ) , where x i ∈
[ −3 , 3 ] , i = 1 , 2 , 3 . 

Case 3. f ( x ) = 1 . 2 + 10 ∗ sin 2 x 1 − 3 ∗ x 2 2 ∗ cos x 3 , where x i ∈
[ −3 , 3 ] , i = 1 , 2 , 3 . 

Case 4. f ( x ) = x 3 ∗ sin x 1 − 2 ∗ x 3 ∗ cos x 2 , where

x i ∈ [ −3 , 3 ] , i = 1 , 2 , 3 . 

Case 5. f ( x ) = 2 ∗ x 1 ∗ sin x 2 ∗ cos x 4 − 0 . 5 ∗ x 4 ∗ cos x 3 ,

where x i ∈ [ −3 , 3 ] , i = 1 , 2 , 3 , 4 . 

Case 6. f ( x ) = 10 + 0 . 2 ∗ x 1 − 0 . 2 ∗ x 2 5 ∗ sin x 2 +

cos x 5 ∗ ln ( 3 x 3 + 1 . 2 ) − 1 . 2 ∗ e 0 . 5 x 4 , where x i ∈ [ 1 , 4 ] , i =
1 , 2 , · · · , 5 . 

Case 7. f ( x ) = 2 ∗ x 4 ∗ x 5 ∗ sin x 1 − x 5 ∗ x 2 + 0 . 5 ∗
e x 3 ∗ cos x 4 , where x i ∈ [ −3 , 3 ] , i = 1 , 2 , · · · , 5 . 

Case 8. f ( x ) = 1 . 2 + 2 ∗ x 4 ∗ cos x 2 + 0 . 5 ∗
e 1 . 2 x 3 ∗ sin 3 x 1 ∗ cos x 4 − 2 ∗ cos ( 1 . 5 x 5 + 5 ) , where 

x i ∈ [ −3 , 3 ] , i = 1 , 2 , · · · , 5 . 

Case 9. f ( x ) = 0 . 5 ∗ cos ( x 3 x 4 ) 

e x 1 ∗ x 2 2 
∗ sin ( 1 . 5 x 5 − 2 x 6 ) , where x i ∈

[ −3 , 3 ] , i = 1 , 2 , · · · , 6 . 

Case 10. f ( x ) = 1 . 2 − 2 ∗ x 1 + x 2 
x 3 

∗ cos x 7 + 0 . 5 ∗

e x 7 ∗ x 4 ∗ sin ( x 5 x 6 ) , where x i ∈ [ −3 , 3 ] , i = 1 , 2 , · · · , 7 . 
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