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A B S T R A C T

A parametric evolutionary power spectrum model of fully nonstationary seismic ground motion is developed
based on the evolutionary spectrum estimation method via generalized harmonic wavelets. The model consists of
a frequency-domain energy distribution function and a series of normalized time-dependent envelop functions
for different frequencies. The frequency-domain energy distribution function describes the spectral character-
istics of the seismic ground motion. The nonstationarity is achieved by the normalized time-dependent envelope
functions. For a specific seismic ground motion record, the evolutionary power spectral density (EPSD) is esti-
mated via generalized harmonic wavelets. The parameters are identified by letting the model approximate to the
estimated EPSD of the realistic ground motion. By using the spectral representation method, the proposed EPSD
model can be used to synthesize the artificial seismic ground motion time histories for engineering purposes.

1. Introduction

Nonstationary characteristics of seismic ground motions have been
of interest to seismologists and earthquake engineers for a long time.
Generally, the realistic seismic ground motion exhibits two types of
nonstationarities, namely temporal and spectral nonstationarities [1].
The temporal nonstationarity refers to the time variation of the in-
tensity of the ground motion in the time domain and the spectral
nonstationarity refers to the time variation of the energy distribution of
the ground motion in the frequency domain. The physical factors
causing the nonstationarity of the seismic ground motion are complex,
including the onset and end of the earthquake fault rupture process, the
seismic wave propagation through the random earth medium and the
local site effect. As well known, both of the temporal and spectral
nonstationarities of the earthquake ground motion may have significant
effect on the response of nonlinear structure [2,3]. Hence, for the
seismic response analysis of nonlinear structure, there has been a
number of work regarding the modeling and the simulation of non-
stationary seismic ground motion [1,4–6].

Due to the complexity and randomness of the realistic earthquake
time history, seismic ground motion is usually treated as stochastic
process [7]. For engineering purposes, seismic ground motion is usually
modeled as filtered white noise with amplitude modulation in time.
Several amplitude envelope functions have been proposed to achieve
the temporal nonstationarity of the filtered white noise model [8–11].

However, the amplitude-modulated filtered white noise model can not
reflect the spectral nonstationarity of the realistic seismic ground mo-
tion. In 1965, Priestley defined the evolutionary power spectral density
(EPSD) to describe the time variation of the frequency-domain energy
distribution of the fully nonstationary stochastic process [12]. The
EPSD was introduced to model the seismic ground motion by Liu in
1970 [13]. At present, several EPSD models of fully nonstationary
seismic ground motions have been proposed [2,14–18]. For simulating
stochastic process samples by power spectra, the spectral representation
method, which was first presented by Shinozuka [19,20], has been
developed in recent decades [21–23]. Applying the spectral re-
presentation method, the EPSD models are available to synthesize the
artificial nonstationary and spectrum-compatible ground motion pro-
cesses for structural nonlinear response analysis and seismic reliability
evaluation.

Modeling of the EPSD of nonstationary seismic ground motion is
based on the EPSD estimation of realistic ground motion record. With
the development of the time-frequency analysis technology, especially
the wavelet transforms, several EPSD estimation methods have been
presented [24–26]. In 1994, Spanos and Failla proposed a general
method to estimate the EPSD of nonstationary stochastic process using
wavelets. Further, the harmonic wavelets (HW) and the generalized
harmonic wavelets (GHW), which were both proposed by Newland
[27,28], have been applied in the EPSD estimation of the nonstationary
stochastic process [25]. The development of the wavelet-based EPSD
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estimation technology has provided a basis for the EPSD modeling of
the nonstationary seismic ground motion.

In this article, an evolutionary power spectrum model of fully
nonstationary seismic ground motion is proposed, including: a). Within
the framework of evolutionary spectra estimation given by Spanos and
Failla [24], an EPSD estimation formula for nonstationary process is
derived based on the GHW. This EPSD estimation formula is expressed
by the GHW coefficients. For a realistic ground motion record at station
C00, the SMART-1 array, the GHW coefficients are computed and the
corresponding EPSD is obtained. b). An parametric EPSD model of
nonstationary seismic ground motion is proposed, consisting of a fre-
quency-domain energy distribution function and a series of normalized
time-dependent envelop functions for different frequency components.
c). The parameter identification method is given. The parameters of the
normalized time-dependent envelop functions should be respectively
identified for different frequencies. In order to simplify the model, the
parameters of the normalized envelop functions are treated as function
of frequency. d). Based on the spectral representation method, the
seismic ground motion acceleration samples are synthesized by using
the proposed EPSD model.

2. EPSD estimation via GHW

As defined by Priestley [12], a zero mean nonstationary process f t( )
can be expressed as

∫= ⋅ ⋅
−∞

+∞
f t A ω t e Z ω( ) ( , ) d ( )iωt

(1)

in which A ω t( , ) is a deterministic modulating function and Z ω( ) is a
spectral process with orthogonal increments. The evolutionary power
spectral density of f t( ) is defined as

= ⋅S ω t A ω t S ω( , ) ( , ) ( )ff f f
2 (2)

in which S ω( )f f is the power spectral density of the associated sta-
tionary process

∫= ⋅
−∞

+∞
f t e Z ω( ) d ( )iωt

(3)

and satisfies

= ⋅E Z ω S ω ω[ d ( ) ] ( ) df f
2 (4)

In Eq. (4), ⋅E [ ] represents the expectation operator. The EPSD re-
flects the time-varying frequency-domain energy distribution of the
nonstationary stochastic process and is a powerful tool to describe the
nonstationary properties of a realistic signal. For engineering applica-
tions, according to the algorithm in [22], the EPSD is available to si-
mulate the fully nonstationary process by spectral representation by the
following series as → ∞N

∑= ⋅ ⋅ +
=

−

f t S ω t Δω ω t Φ( ) 2 [2 ( , ) ] cos( )
n

N

ff n n n0
0

1
1/2

(5)

in which f t( )0 is the simulated process, = − ⋅ω n Δω( 1)n ,
= …n N1, 2, , , are the discrete frequencies and Φn, = …n N1, 2, , , are

the independent random phase angles uniformly distributed in the
range of π[0, 2 ].

Generally, the EPSD of a realistic process can be estimated via
wavelets [24]. The normalized wavelet transformW(a,b) of a function X
(t) is defined as

∫= ⋅ ⎛
⎝

− ⎞
⎠−∞

+∞
W a b

a
X t w t b

a
t( , ) 1 ( ) * d

(6)

in which w t( ) is the mother wavelet function, a is the scale parameter
and b is the time parameter. The asterisk denotes the complex con-
jugate. The kernel of wavelet transform (6) is the conjugation of the
mother wavelet function with dilatation a and translation b. Spanos and
Failla derived that [24], for a given scale parameter aj, the EPSD

S ω t( , )ff of a realistic stochastic process f t( ) satisfied

∫= ⋅ ⋅ ⋅
−∞

+∞
E W a b π a F ω a S ω b ω[ ( , ) ] 4 ( ) ( , ) dj j w j ff

2 2 2
(7)

in which F ω( )w was the Fourier transform of the mother wavelet
function w t( ), as

∫= ⋅ ⋅
−∞

+∞ −F ω
π

w t e t( ) 1
2

( ) dw
iωt

(8)

The EPSD, S ω t( , )ff , could be estimated by solving integral Eq. (7).
In this article, the GHW are used in the EPSD estimation. The GHW

function by time step −k n m/( ) is defined as

⎛
⎝

−
−

⎞
⎠

=
− − −

− −

− −

−

{ } { }( ) ( )
( )

w t k
n m

πni t πmi t

πi n m t

exp 2 exp 2

2 ( )
m n

k
n m

k
n m

k
n m

,

(9)

in which m, n are the scale parameters of the GHW and k must be an
integer. The dimensions of m, n are both Hz. The Fourier transform of
Eq. (9) is [28]

= ⎧
⎨⎩

− − ≤ <−F ω
iωk n m πm ω πn

( )
exp{ /( )}, 2 2

0, elsewhere
w π n m

1
2 ( )

m n,
(10)

Fig. 1a presents the Fourier spectrum of a single GHW of level m, n.
The Fourier spectra of the GHW of different levels are shown in Fig. 1b.
As derived by Newland [28], the GHW coefficients cm n k, , of a function X
(t) are

∫= − ⋅ ⋅ ⎛
⎝

−
−

⎞
⎠−∞

+∞
c n m X t w t k

n m
t( ) ( ) * dm n k m n, , , (11)

∫= − ⋅ ⋅ ⎛
⎝

−
−

⎞
⎠−∞

+∞
c n m X t w t k

n m
t( ) ( ) d͠ m n k m n, , , (12)

and X(t) can be expressed as

Fig. 1. Fourier amplitude spectra of a). a single GHW of level m, n and b). of the GHW of
different levels.
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⎠

⎫
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+∞
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(13)

The GHW transform Wm n k, , of a function X(t) is defined as

∫= ⋅ ⎛
⎝

−
−

⎞
⎠−∞

+∞
W X t w t k

n m
t( ) * dm n k m n, , , (14)

For the kernel of the GHW transform (14), the time translation is
−k n m/( ) and the dilatation is controlled by the scale parameters m, n

instead of a. Comparing Eq. (14) with the general form of wavelet
transform (6), it is obtained that b and a in Eq. (6) equal to −k n m/( )
and 1 respectively, and m, n control the dilatation of the wavelet
transform kernel. Hence, for the GHW transform, Eq. (7) is written as

∫= ⋅ ⎛
⎝ −

⎞
⎠

⋅
−∞

+∞
E W π F ω S ω k

n m
ω[ ] 4 ( ) , dm n k w ff, ,

2 2 2
m n, (15)

From Eqs. (11) and (14), we get

=
−

W
c

n mm n k
m n k

, ,
, ,

(16)

Further, taking Eqs. (10) and (16) into (15),

∫= ⎛
⎝ −

⎞
⎠

⋅E c S ω k
n m

ω[ ] , dm n k mπ

nπ
ff, ,

2
2

2

(17)

Eq. (17) can be expressed as

∫
−

=
⋅

−
−( )E c

π n m

S ω ω

π n m
[ ]

2 ( )

, d

2 ( )
m n k mπ

nπ
ff

k
n m, ,

2
2

2

(18)

The right side of Eq. (18) is the mean value of S ω t( , )ff in the fre-
quency interval mπ nπ(2 , 2 ] at the time step = −t k n m/( ). Here we use
the mean value

∫
=

⋅
−

S ω t
S ω t ω

π n m
( , )

( , ) d
2 ( )ff

mπ
nπ

ff2
2

(19)

as the estimated value of S ω t( , )ff . Thus, the EPSD of the stochastic
process f t( ) in the frequency interval mπ nπ(2 , 2 ] at the time step

= −t k n m/( ) can be estimated as

≈ =
−

S ω t S ω t
E c
π n m

( , ) ( , )
[ ]

2 ( )
͠ ff ff

m n k, ,
2

(20)

in which S ω t( , )͠ ff denotes the estimated value of the EPSD of f t( ).
In this article, the GHW of identical bandwidth, which means for

different levels the bandwidth, = −Δ n m, is a constant, is used to
estimate the EPSD. The Fourier spectra of these GHW are shown in
Fig. 2. From Eq. (20), the EPSD estimation formula can be written as

≈ =S ω t S ω t
E c

πΔ
( , ) ( , )

[ ]
2ff ff

m n k, ,
2

(21)

It should be noted that the estimated EPSD obtained by Eq. (21) is
the average of the realistic EPSD on the rectangular element

× ⎡⎣
+ )m n[ , ) ,k

Δ
k

Δ
1 in the frequency-time domain. The area of the rec-

tangular element in the frequency-time domain is

− × ⎛
⎝

+ − ⎞
⎠

= × =n m k
Δ

k
Δ

Δ
Δ

( ) 1 1 1
(22)

which indicates that it is impossible to improve the frequency-domain
estimation precision, Δ, and the time-domain estimation precision, Δ1/ ,
simultaneously. The little value of Δ will cause the high frequency-
domain resolution but the low time-domain resolution, and vice versa.

Eq. (21) can be used to estimate the EPSD of realistic ground mo-
tion. Fig. 3 shows the seismic ground motion acceleration recorded at
the center station C00 of the SMART-1 array, Taiwan, during Event 45
in the E-W direction. The estimated one-sided EPSD of this ground
motion is shown in Fig. 4. As mentioned above, the estimated EPSD is
the mean value of the realistic EPSD on the rectangular element in the
frequency-time domain. Thus, in this paper, the bar graph is used to
represent the estimated EPSD. In this example, the bandwidth, Δ, is
1 Hz and, from Eq. (22), the corresponding time interval of the rec-
tangular element is 1 s. Fig. 5 presents the artificial seismic ground
motion simulated using the estimated EPSD by Eq. (5). Intuitively, the
nonstationary characteristics of the simulated ground motion is con-
sistent with those of the realistic ground motion, which high frequency
components are significant before 25 s but the low frequency compo-
nent become remarkable after 25 s.

3. EPSD model of seismic ground motion

As mentioned above, an appropriate nonstationary seismic ground
motion model facilitates not only the stochastic response analysis of
structural systems, but also their performance assessment allowing for
the reliability evaluation of the system. For engineering purposes, the
EPSD model of seismic ground motion should be able to describe the
frequency-domain energy distribution and the intensity variations of
different frequency components of the realistic ground motion record.
In the field of seismology, the Fourier amplitude spectrum is usually
used for modeling the earthquake source, path and site [29]. For a

Fig. 2. Fourier amplitude spectra of the GHW of identical bandwidth.
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Fig. 3. Acceleration time history recorded at station C00, the SMART-1 array, Taiwan,
during Event 45 in the E-W direction.

Fig. 4. Estimated EPSD of the earthquake ground motion record presented in Fig. 3.
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specific ground motion record, the power spectrum is proportional to
the square of the Fourier amplitude spectrum [30]. In this article, the
EPSD of the nonstationary seismic ground motion acceleration is ex-
pressed as

=S ω t A ω t( , ) ( , )g g
2

(23)

Physically, the spectral characteristics of the seismic ground motion
are affected by earthquake source, path, site and instrument [29]. Here,
the effects of the earthquake source and the local site on the ground
motion spectrum are considered, so that A ω t( , )g can be represented as

= ⋅ ⋅ ⋅ ⋅A ω t ω A A ω H ω a ω t( , ) ( ) ( ) ( , )g s
2

0 (24)

in which, A0 is a constant named as amplitude parameter, A ω( )s is the
shape function of the seismic source displacement spectrum, H ω( ) is
the spectral transfer function of the local site, a ω t( , ) is the normalized
time-dependent envelope function of the frequency component of ω,
which satisfies the normalization condition

∫ ⋅ =
+∞

a ω t t( , ) d 1
0

2
(25)

The energy distribution function of the seismic ground motion can
be derived by Eq. (23), as

∫
∫

= ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

+∞

+∞

E ω S ω t t

ω A A ω H ω a ω t t

ω A A ω H ω

( ) ( , ) d

( ) ( ) ( , ) d

( ) ( )

g

s

s

0

4
0

2 2 2
0

2

4
0

2 2 2 (26)

Taking Eqs. (24) and (26) into (23), the EPSD model can be re-
written as

= ⋅S ω t E ω a ω t( , ) ( ) ( , )g
2 (27)

For the EPSD model presented as Eq. (27), A0, A ω( )s and H ω( )
determine the energy distribution of the seismic ground motion in the
frequency domain, and a ω t( , ) determines the temporal and spectral
nonstationarities of the seismic ground motion.

The most commonly used model of the seismic source spectrum is
the ω–square model, which is first presented by Aki [31]. Based on Aki's
model, several empirical and semi-empirical seismic source spectrum
models have been proposed for the modeling and simulation of the
seismic ground motions [32–34]. Here, the shape function of the At-
kinson and Boore's spectrum model is used to describe the effect of the
seismic source on the ground motion spectral characteristics [32]. The
shape function of the seismic source spectrum is

=
⎡

⎣

⎢
⎢
⎢

−

+
+

+

⎤

⎦

⎥
⎥
⎥( ) ( )

A ω ε ε( ) 1

1 1
s

ω
πf

ω
πf2

2

2

2

a b (28)

in which ε is the seismic moment ratio and fa, fb are the corner fre-
quencies.

The local site effect, which is determined by the soil condition of the
site, is largely independent of the seismic source and path and is usually
simplified as a filter. In this article, a single-degree-of-freedom system

filter is used to describe the effect of the local site. The transfer function
of this filter is

=
+

⎡
⎣⎢

− ⎤
⎦⎥

+

( )
( ) ( )

H ω
ξ

ξ
( )

1 4

1 4

g
ω

ω

ω
ω g

ω
ω

2
2

2 2
2

2

g

g g (29)

in which ξg and ωg are respectively the equivalent damping ratio and
natural circular frequency of the site soil.

The normalized time-dependent envelope function, a ω t( , ), de-
scribes the intensity variation of different frequency components, which
reflects the temporal and spectral nonstationarities of the seismic
ground motion. A variety of envelope function models have been pro-
posed in the artificial seismic ground motion simulation. However,
most of these models are applied to modify the intensity variation of the
whole ground motion process instead of each frequency component. In
this article, according to Amin and Ang's envelope function model [10],
the normalized time-dependent envelope function of different fre-
quency components is expressed as

=

⎧

⎨
⎪

⎩
⎪

< ≤
< ≤
< ≤

⋅ <− −

a ω t

t t
I t t t t t
I t t t
I e t t

( , )

0 0
( / )

ω

ω ω ω ω

ω ω ω

ω
c t t

ω

0,

1,
2

0, 1,

1, 2,
( )

2,ω ω2. (30)

and the corresponding cumulative energy function is

∫= ⋅

= ⋅

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

< ≤

− − < ≤

−
⋅

− < ≤

⋅ − ⋅ −
+ − <

− −

h t a ω τ τ

I

t t

t t t t t t t

t
t t

t t t

t t t e
c

t t

( ) ( , ) d

0 0
1
5

( ) /( )

4
5 5

5 4
5

1
2

ω
t

ω

ω

ω ω ω ω ω

ω ω
ω ω

ω ω ω c t t

ω
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2
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5

1, 0,
4
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1, 0,
1, 2,

2, 1, 0, 2 ( )
2,

ω ω2,

(31)

In Eqs. (30) and (31), t ω0, is the starting time of the frequency
component of ω. The amplitude of this frequency component is in-
creasing in a t-square form from t ω0, to t ω1, , keeps steady from t ω1, to t ω2, ,
and is decreasing in a exponential form after t ω2, . cω is the attenuation
parameter of the exponentially decreasing stage. The peak value Iω is
not independent and can be determined by the normalization condition
(25). When → +∞t , the cumulative energy of the frequency compo-
nent of ω is

∫

⎜ ⎟

⎜ ⎟

⋅

= ⎧
⎨⎩

⋅⎛
⎝

−
⋅

− + − ⎞
⎠

⎫
⎬⎭

= ⋅⎛
⎝

− − + ⎞
⎠

+∞

→∞

− −

a ω t t

I t
t t e

c

I t t t
c

( , ) d
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2

t
ω ω

ω ω c t t

ω

ω ω ω ω
ω

0
2

2
2,

1, 0, 2 ( )

2
2, 1, 0,

ω ω2,

(32)

The normalization condition (25) indicates that the cumulative
energy of each frequency component should equal to 1. For Eq. (32),
the normalization condition requires

⎜ ⎟⋅⎛
⎝

− − + ⎞
⎠

=I t t t
c

4
5

1
5

1
2

1ω ω ω ω
ω

2
2, 1, 0,

(33)

Iω can be derived from Eq. (33), as

=
− − +

I
t t t

1
ω
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Fig. 5. Simulated ground motion acceleration using the estimated EPSD.
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4. Parameter identification

Generally, for a specific seismic ground motion record, the para-
meter identification of the EPSD model includes three main steps, as

Step 1. Estimation of the EPSD of the ground motion record.
Step 2. Let the frequency-domain energy distribution function,
E ω( ), as shown by Eq. (26), approximate to the actual frequency-
domain energy distribution of the realistic seismic ground motion
record.
Step 3. For different frequency components, let the cumulative
energy function, h t( )ω , as shown by Eq. (31), approximate to the
actual cumulative energy curve of the realistic seismic ground mo-
tion.

The actual EPSD of the seismic ground motion record can be esti-
mated by Eq. (20). Let ∼E ω( ) and h t( )͠ ω denote the actual frequency-
domain energy distribution and the cumulative energy function. Both
∼E ω( ) and h t( )͠ ω can be calculated by the estimated EPSD of the realistic
seismic ground motion, as

∫= ⋅∼ +∞
E ω S ω τ τ( ) ( , ) d͠ ff0 (35)

∫
∫

∫
=

⋅

⋅
=

⋅
∼+∞h t

S ω τ τ

S ω τ τ

S ω τ τ

E ω
( )

( , ) d

( , ) d

( , ) d

( )
͠

͠

͠

͠
ω

t
ff

ff

t
ff0

0

0

(36)

According to Eqs. (26) and (31), E ω( ) includes the parameters
= A ε f f ξ ωα ( , , , , , )a b g g0 , and for different frequencies, h t( )ω

includes the parameters = t t t cβ ( , , , )ω ω ω ω ω0, 1, 2, . Let α̂ and β̂ω de-
note the identified values of α and βω respectively. The least-squares
approximation is used during the parameter estimation. In the second
step, the identified values of the parameters, α̂ , minimize the integrated
squared difference between E ω( ) and ∼E ω( ), i.e.

∫= − ⋅∼E ω E ω ωα̂ arg min [ ( ) ( )] d
ω

α 0
2u

(37)

in which ωu is the upper cutoff circular frequency. Similarly, in the third
step, β̂ω is obtained by minimizing the integrated squared difference
between h t( )ω and h t( )͠ ω , i.e.

∫= − ⋅
+∞

h t h t tβ̂ arg min [ ( ) ( )] d͠
ω ω ω

β 0
2

ω (38)

For the seismic ground motion record shown in Fig. 3, the first line
of Table 1 presents the identified values of the parameters in the fre-
quency-domain energy distribution function. The comparison between
the actual energy distribution of the ground motion record and the
fitted model, shown in Fig. 6, indicates that Eq. (26) can well describe the frequency-domain energy distribution of the realistic ground mo-

tion.
For different frequencies, the parameters in the normalized cumu-

lative energy functions are estimated, shown in Table 2. Fig. 7 presents
the comparison between the actual normalized cumulative energy
curves of the ground motion record and the fitted models in different
frequency bands. Fig. 8 presents the corresponding temporal variations
of the energy of the realistic ground motion and those of the fitted
model. The modeling results show that the normalized time-dependent
envelope function (30) can describe the general tendency of the tem-
poral energy variation of different frequency components. The EPSD
model of the realistic ground motion is shown in Fig. 9. However, some
details of the energy variation are lost during the identification. Fig. 10
shows the comparisons between the estimated ESPD of the realistic
ground motion record and the fitted EPSD model from 8 to 17 s. As a
smoothed approximation of the actual EPSD, the fitted model can well
describe the general spectral variation of the seismic ground motion
record in the frequency domain, but can not reflect the peak and valley
values of the actual EPSD quite exactly, such as during 14–15 s and
15–16 s shown in Fig. 10.

Table 1
Identified parameter values of energy distribution function E ω( ).

Station A0/ ⋅ ⋅g s rad5/2 2 ε fa/Hz fb/Hz ξg ωg/rad/s

C00 0.294 0.046 0.051 0.134 0.623 9.406
I01 0.294 0.026 0.057 0.074 0.812 9.136
I07 0.291 0.046 0.053 0.131 0.617 7.962
M01 0.209 0.025 0.065 0.071 0.693 8.133
M07 0.275 0.050 0.047 0.175 0.486 10.150
O01 0.280 0.048 0.046 0.145 0.646 10.288
O02 0.268 0.044 0.044 0.133 0.466 19.675
O04 0.306 0.042 0.055 0.111 0.697 8.753
O06 0.268 0.028 0.061 0.075 0.818 7.6474
O07 0.240 0.029 0.060 0.081 0.680 8.837
O08 0.283 0.042 0.049 0.112 0.861 8.705
O10 0.277 0.049 0.049 0.148 0.607 7.968
O12 0.308 0.038 0.057 0.098 0.760 7.462
Mean 0.276 0.040 0.053 0.114 0.674 9.548
Coefficient of

variation
0.098 0.236 0.118 0.290 0.178 0.332
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Fig. 6. Frequency-domain energy distribution of the actual ground motion record and
fitted model.

Table 2
Identified parameter values of a ω t( , ) in different frequency bands.

Frequency band/Hz t ω0, /s t ω1, /s t ω2, /s cω/ −s 1

0–1 2.941 9.673 26.134 0.158
1–2 0.000 12.598 14.986 0.128
2–3 0.000 16.046 16.047 0.173
3–4 0.000 12.289 12.289 0.155
4–5 0.000 7.766 17.759 0.206
5–6 0.000 12.922 16.494 0.180
6–7 0.000 10.245 15.633 0.154
7–8 0.000 5.937 15.516 0.109
8–9 0.000 7.229 17.378 0.230
9–10 0.000 5.357 19.982 0.227
10–11 0.000 11.717 17.189 0.365
11–12 0.000 12.194 17.606 0.284
12–13 0.000 7.805 18.494 0.191
13–14 0.000 7.457 18.542 0.249
14–15 0.000 8.026 17.848 0.170
15–16 0.000 7.019 18.453 0.106
16–17 0.000 7.646 14.853 0.095
17–18 0.000 11.691 15.599 0.106
18–19 0.000 6.872 15.838 0.118
19–20 0.000 3.200 17.967 0.050
20–21 0.000 5.745 20.164 0.089
21–22 0.000 10.855 18.537 0.097
22–23 0.000 3.396 16.404 0.054
23–24 0.000 0.001 20.597 0.058
24–25 0.000 6.655 16.849 0.063
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300 seismic ground motion samples are simulated by the spectral
representation method using the fitted EPSD model. Fig. 11 presents
one of the ground motion samples. The corresponding response spectra
of these 300 samples are also computed. The comparison between the
response spectrum of the realistic ground motion record and the mean
response spectrum of the 300 samples are shown in Fig. 12.

It should be noted that, for different frequencies, t ω0, , t ω1, , t ω2, and cω
are identified independently, which causes that the EPSD model of the
seismic ground motion includes too many independent parameters. In
order to reduce the number of the parameters, we assume that t ω0, , t ω1, ,
t ω2, and cω are the power functions of ω, as

= ⋅
= ⋅
= ⋅
= ⋅

− ⋅

− ⋅

− ⋅

− ⋅

t P Q
t P Q
t P Q

c P Q

ω
R ω

ω
R ω

ω
R ω

ω c c
R ω

0, 0 0

1, 1 1

2, 2 2
c

0

1

2

(39)

To obtain the reasonable values of the parameters in Eq. (39), the
other seismic ground motions recorded at the SMART-1 array during
Event 45 in the E-W direction are modeled. All the ground motions are
aligned by the peaks of the cross correlation functions to eliminate the
wave-passage effect [30]. The identified values of A0, ε, fa, fb, ξg and ωg
are shown in Table 1. The Coefficients of variation of those parameters
are in the range of 0.09–0.34. The identified values of t ω0, , t ω1, , t ω2, , cω
and the corresponding mean values of different frequencies are pre-
sented in Fig. 13. The parameters in Eq. (39) are identified by letting
Eq. (39) approximate to the mean values of t ω0, , t ω1, , t ω2, and cω. Table 2
has presented the identified values of t ω0, , t ω1, , t ω2, and cω by the least-
squares approximation. Fig. 14 shows the comparisons between the
mean values and the fitted models of t ω0, , t ω1, , t ω2, and cω respectively.
The modeling results show that Eq. (39) is available to describe the
intensity variation of different frequency components in the time do-
main. However, as shown in Fig. 13, the discreteness of the identified
values of these parameters is significant.
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Fig. 7. Normalized cumulative energy curves of the actual ground motion record and fitted models in different frequency bands.
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5. Conclusions

In this paper, a parametric evolutionary power spectrum model of
fully nonstationary seismic ground motion is presented. This model
consists of a frequency-domain energy distribution function and a series
of normalized time-dependent envelope functions for different fre-
quencies. The effects of the earthquake source and the local site are
both considered in the modeling of the frequency-domain energy dis-
tribution. The normalized envelope functions are used to model the
temporal energy variation of different frequency components of the
seismic ground motion. The identification of the parameters in the
EPSD model is divided into three steps. First, the actual EPSD of the
seismic ground motion record is estimated via the generalized harmonic
wavelets. Then, the amplitude parameter, A0, and the parameters in
A ω( )s are identified by letting the frequency-domain energy distribu-
tion function of the EPSD model approximate to the actual frequency-
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Fig. 9. Fitted EPSD model of the seismic ground motion presented in Fig. 3.
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domain energy distribution of the ground motion record. The actual
frequency-domain energy distribution could be calculated by the esti-
mated EPSD of the ground motion record. Further, for different fre-
quencies, the parameters in the normalized envelope functions are
identified by letting the corresponding normalized cumulative energy
function of the EPSD model approximate to the actual normalized cu-
mulative energy curves of the realistic ground motion. These actual
normalized cumulative energy curves can also be calculated by the
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Fig. 10. The comparisons between the estimated EPSD of the actual ground motion record and the fitted model during 8–17 s.
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Fig. 13. Identified values of t ω0, , t ω1, , t ω2, , cω at different stations and the corresponding mean values.
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estimated EPSD of the ground motion record.
The modeling results show that the proposed EPSD model is avail-

able and effective to describe the temporal and spectral nonstationary
characteristics of the realistic seismic ground motion. By the spectral
representation method, this EPSD model could be used to synthesize
artificial nonstationary earthquake time histories.

It should be noted that the parameters in the amplitude envelope
functions are identified independently for different frequencies. At
present, a type of deterministic power functional model is proposed to
reflect the general tendency of these parameters varying with fre-
quency. In the future, a stochastic model will be presented to describe
the variation of the statistical characteristics of these parameters for
different frequencies. In this way, the spectral nonstationarity of the
seismic ground motion will be modeled more accurately in a statistical
sense, and the proposed EPSD model will be more effective for en-
gineering application.
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