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Non-probabilistic reliability based multidisciplinary design optimization (NRBMDO) offers a powerful tool 
for making reliable decisions with the consideration of uncertain-but-bounded uncertainties for complex 
engineering systems. However, the prohibitive computation and convergence difficulties caused by the 
directly coupling of uncertainty based multidisciplinary analysis (UMDA), non-probabilistic reliability 
analysis (NRA) and MDO would seriously hamper the application of NRBMDO. In this paper, an efficient 
single loop strategy for NRBMDO (SLS_NRBMDO) is developed to decouple the nested issue and thus 
improve the computational efficiency. The key idea of the proposed strategy is decoupling NRBMDO with 
several cycles of sequential MDO, UMDA, NRA and translating distance calculation (TDC). For UMDA, 
three methods, i.e., the first order interval Taylor expansion method, the interval vertex theorem, the 
direct optimization approach are formulated. Besides, NRA is conducted on the basis of the expanded 
non-probabilistic stress–strength interference model and the volume ratio thought, which provides a 
clear and definite assessment criterion for the structural safety with uncertain-but-bounded parameters. 
Furthermore, the translating strategy based on the performance measure approach is proposed to shift 
and update the constraints, and the expression of the translating distance is mathematically derived to 
accelerate the design procedure. Eventually, the effectiveness and efficiency of the proposed method are 
illustrated with one numerical case and one practical supersonic wing optimization design problem.

© 2017 Elsevier Masson SAS. All rights reserved.
1. Introduction

Due to the increasing complexity of modern structural systems, 
multidisciplinary design optimization (MDO) is widely acknowl-
edged as an effective approach to designing the coupled engi-
neering systems in recent years. Numerous successful examples 
of MDO applications have been reported in complex engineering 
systems, such as aerospace system [1,2], vehicle design [3,4] and 
fluid–structure problem [5,6]. The input variables in the traditional 
MDO are assumed to be non-varying and the multidisciplinary sys-
tem are assumed to behave as an analysis model predicts [7]. How-
ever, large scale structures are always significantly influenced by 
plenty of uncertain factors included in model, specification, envi-
ronment and so on [8]. Thus, reliability is an important issue in the 
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design phase that should be addressed by comprehensively taking 
potential uncertainties into account [9]. To ensure the high reliabil-
ity in complex systems design, techniques of reliability based MDO 
(RBMDO) have been recently developed as advanced methodology 
to address the multidisciplinary system with uncertainties [10–12].

The conventional approach for solving a reliability-based opti-
mization (RBO) problem is to conduct a double-loop strategy. The 
reliability analysis and the deterministic optimization are nested 
in such a way that the inner loop performs the reliability analy-
sis and the outer loop executes the optimum search. Obviously, the 
double-loop strategy may lead to unbearable calculation amount in 
actual engineering structures. Therefore, various techniques have 
been developed to improve the efficiency. For example, the sen-
sitivity analysis methods [13,14] have been used to reduce the 
design variables and uncertain parameters to decrease the com-
plexity. Approximation methods have been used to replace the 
complicated disciplinary analysis model with simple approximate 
functions to cut down the calculation. In addition, considering 
the computational burden attributed to the traditional double-loop 
procedure, several strategies [15–21] have been proposed to de-
couple the nested process into a single level procedure. Among 
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these, the sequential optimization and reliability analysis (SORA) 
[20] method formulates the deterministic constraint by shifting 
the inverse most probabilistic point at the current design at least 
onto the deterministic boundary which ensures the constraint fea-
sibility in the next deterministic optimization satisfying required 
reliability. The safety-factor based approach [21] converts the re-
liability constraints into the equivalent deterministic constraints 
with safety factors and the sequential optimization strategy is ap-
plied. The high computational efficiency of single loop strategies 
was testified by numerical examples compared with conventional 
double-loop procedures.

Based on the single loop strategy in RBDO, many researchers 
focus on applying this decoupling theory on the RBMDO problems 
to reduce the huge calculation caused by the coupled multidis-
ciplinary system, and many significant achievements have been 
made. Du et al. [22] proposed a methodology of sequential opti-
mization and reliability assessment for MDO to improve the ef-
ficiency of RBMDO, in which the reliability analysis is based on 
the first-order reliability method (FORM). Li et al. [23] proposed 
a sequential multidisciplinary reliability analysis (SMRA) approach 
that integrates the concurrent subspace optimization strategy and 
the performance measure approach, in which the multidisciplinary 
analysis, system sensitivity analysis and reliability analysis are de-
coupled and arranged sequentially. Zhang and Huang [24] pro-
posed formulations of mixed variables (random and fuzzy vari-
ables) multidisciplinary design optimization, and then a method 
within the framework of sequential optimization and reliability as-
sessment was also presented.

Note that, most studies of RBMDO are based on the probabil-
ity theory which needs sufficient information to determine the 
probability density function. Nevertheless, experimental samples 
are often inadequate in practical engineering. Compared with the 
probability theory, the non-probabilistic theory only needs the ap-
proximations of the bounds of uncertain information, which is 
well suitable for the poor information situations. Considering that, 
the non-probabilistic theory was proposed to deal with the anal-
ysis and optimization problems with limited uncertain informa-
tion and the original investigations were conducted by Ben-Haim 
and Elishakoff [25–27] in the early 1990s. Since then, the non-
probabilistic theory has been further developed and widely applied 
in both practical engineering and theoretical research [28–32].

As for the non-probabilistic reliability issue, the reliability in-
dexes can be divided into two sorts. For one thing, the minimum 
distance quantified by the infinity norm from the origin to the 
failure surface is considered as a measure of non-probabilistic reli-
ability by Kang et al. [33] and Guo et al. [34]. This reliability index 
is similar to the first-order reliability method (FORM) in probabil-
ity theory, which means the minimum distance from the origin 
to the failure hypersurface, namely, the distance from the origin 
to the most probable point (MPP). Obviously, the unbearable com-
putational cost caused by the nested double loop structure is still 
the key problem that needs to be solved. Therefore, inspired by 
SORA, an efficient decoupled strategy handling the deterministic 
optimization and non-probabilistic reliability analysis sequentially 
for NRBDO convex models was developed by Meng et al. [35]. For 
another, Jiang et al. [36] employed a satisfaction degree of inter-
val to deal with the uncertain constraints. The satisfaction degree 
which represents the possibility that one interval is smaller than 
another is derived from an order-relation of interval numbers [37]. 
This kind of interval reliability index provides a clear and definite 
assessment criterion for the structural safety with uncertain-but-
bounded parameters, where Re = 0 stands for absolute failure, 
Re = 1 stands for absolute safety, 0 < Re < 1 stands for the degree 
of safety (Re denotes the non-probabilistic reliability). Further-
more, Wang [38] expanded this thought into multi-dimensional 
cases and proposed a measure of structural non-probabilistic inter-
Fig. 1. Illustration of the design region in NRBDO.

val reliability based on the volume ratio theory, which provides a 
clear physical definition. However, as illustrated in Fig. 1, there ex-
ist non-gradient regions for this kind of reliability index in NRBDO 
problems, the traditional gradient-based optimization algorithms 
will be inapplicable. Under this circumstance, the global optimiza-
tion algorithms should be an alternative, however, the calculation 
will sharply increase. To sum up, there are two major difficulties in 
dealing with RBDO under this non-probabilistic reliability index: 
(1) prohibitive computation caused by the nested optimization; 
(2) convergence difficulties caused by the non-gradient regions. 
Therefore, in order to address these problems, developing efficient 
solution strategies has become one of the most important issues 
that need to be resolved urgently.

Besides, it should be noticed that the non-probabilistic model 
has only been primitively applied to solving UMDO problems 
in the presence of uncertain-but-bounded parameters. Li et al. 
[39] proposed an uncertain multi-objective MDO methodology, 
which employs the interval model to represent the uncertain-but-
bounded parameters. Notwithstanding, compared with the proba-
bilistic reliability based MDO problems, studies on RBMDO based 
on non-probabilistic theory are still rare at present, let alone the 
efficient methodology integrating MDO, uncertainty based multi-
disciplinary analysis (UMDA), non-probabilistic reliability assess-
ment (NRA) and single loop strategy.

In view of all above statements, in this paper, a single loop ap-
proach is proposed to improve the efficiency of RBMDO for the 
multidisciplinary systems with interval parameters. Borrowing the 
decoupling idea, the proposed method develops an architecture 
where the MDO, UMDA, NRA and translating distance calculation 
(TDC) are performed in a sequential manner, and thus, the number 
of function calls are indeed reduced.

The reminder of the paper is structured as follows. First, the 
multidisciplinary system with interval uncertainty is briefly re-
viewed. Second, three uncertainty propagation analysis methods in 
multidisciplinary system are introduced, followed by the elabora-
tion of reliability analysis in multidisciplinary system. Third, the 
single loop strategy is expounded, and the execution procedure is 
elaborated in detail. Fourth, one numerical example and one prac-
tical hypersonic wing dimensional design problem are conducted 
to demonstrate the validation of the proposed methods. Finally, 
this paper is closed with some conclusion remarks.

2. Multidisciplinary system with interval uncertainties

In this section, the introduction of general multidisciplinary 
system with interval uncertainties is conducted. A typical four-
discipline system is taken as an example to clarify the issue and 
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Fig. 2. Multidisciplinary system consisting of 4 coupled disciplines with interval uncertainties.
the interrelation in the multidisciplinary system is showed in 
Fig. 2, where each block represents a simulation program that be-
longs to a discipline. Furthermore, the notations utilized in the 
following content are explained as below.

Discipline, represents the basic module in the coupled mul-
tidisciplinary system. All the disciplines comprise the integrated 
multidisciplinary system by mutually exchanging the data and in-
formation. Moreover, the number of the disciplines is n.

X s—System design variables, represents the design variables 
that are involved in more than one discipline.

X i —Disciplinary design variables, represents the design vari-
ables that are only involved in discipline i.

Obviously, X s and X i are mutually exclusive sets that consti-
tute the design variables. For example, with regards to the mul-
tidisciplinary optimization design of aircraft, in the aerodynamic 
disciplinary, the disciplinary design variables are the torsion an-
gles of wing-root and wing-tip, etc. In the structure disciplinary, 
the disciplinary design variables are the dimensions of beams and 
ribs, the thickness of skin and so on. Furthermore, the system de-
sign variables refer to the span-chord ratio, the taper ratio, the 
wing area, etc. Note that, considering machining error, assembly 
variation, etc., in real projects, it is reasonable to treat the design 
variables as uncertainties as well.

P s—System uncertain parameters, represents the uncertain pa-
rameters that are involved in more than one discipline.

P i —Disciplinary uncertain parameters, represents the uncer-
tain parameters only involved in discipline i.

Similarly, P s and P i are mutually exclusive sets that make 
up the input uncertain variables. The disciplinary uncertain pa-
rameters include the environmental parameter in the aerodynamic 
disciplinary, material property parameters in the structure disci-
plinary and so on. The system uncertain parameters include the 
load uncertainty, geometry dimension uncertainty, etc.

Y i j(i �= j)—Linking variables, which are those functional out-
puts calculated in discipline i, at the same time, are required as 
inputs to discipline j, such as the surface pressure distribution in 
the aerodynamic disciplinary and surface deformation in the struc-
ture disciplinary.

Z i —System outputs, which represent outputs of discipline i, 
such as lift coefficient, drag coefficient, pitch moment coefficient 
and lift-drag-ratio in the aerodynamic disciplinary, structure stress 
and strain in the structure disciplinary.

For simplification, we denote Y i = {Y i j | j = 1, . . . , n; j �= i}
as the set of linking variables generated as outputs from disci-
pline i and taken as inputs to the other disciplines and Y •i =
{Y 1,i, . . . , Y i−1,i, Y i+1,i, . . . , Y n,i} as the set of linking variables 
generated as outputs from each of the discipline except discipline 
i and taken as inputs to discipline i.

For discipline i, based on the discipline simulation model Fyi(•), 
the linking variables can be derived as:

Y i = Fyi(X s, X i, Y •i, P s, P i) (1)

Equally as well, the general output of discipline i, Z i (i =
1, . . . , n), can be derived as:

Z i = Fzi(X s, X i, Y •i, P s, P i) (2)

3. Reliability analysis in multidisciplinary system with interval 
uncertainties

As the key stages of NRBMDO, uncertainty analysis methods as 
well as reliability assessment approaches in multidisciplinary sys-
tem are discussed in this section.

3.1. Uncertainty propagation analysis in multidisciplinary system

Three multidisciplinary uncertainty analysis methods i.e. the 
first order interval Taylor series expansion method, the interval 
vertex approach and the direct optimization theorem are studied 
in this section.

3.1.1. First order interval Taylor expansion method based on global 
sensitivity equation

It is well known that interval Taylor series expansion is one 
of the most common methods to deal with the interval uncer-
tainty propagation analysis for single discipline [40,41]. When the 
outputs are either linear or nearly linear with the inputs in the 
discipline, the first-order Taylor expansion method is a good choice 
to obtain the bounds of the outputs with high efficiency and ac-
curacy. Based on this, the first-order Taylor expansion method is 
further studied to apply in multidisciplinary system.

In order to express the method more clearly, all the involved 
uncertainties are divided into two categories, namely, system un-
certainties U s and disciplinary uncertainties U d_i (i = 1, . . . , n). 
The expressions of U s and U d_i are formulated as follows:

U s = X s ∪ P s, U d_i = X i ∪ P i (i = 1, . . . ,n) (3)

For convenience, uncertain parameters can be described by the 
following expressions.
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

U c
s = U s + U s

2
, U r

s = U s − U s

2
,

U s = U c
s − U r

s, U s = U c
s + U r

s

U c
d_i = U d_i + U d_i

2
, U r

d_i = U d_i − U d_i

2
,

U d_i = U c
d_i − U r

d_i, U d_i = U c
d_i + U r

d_i

(4)

where U c
s and U c

d_i are the median values of U s and U d_i ; U r
s

and U r
d_i are the interval radius values; U s and U d_i are the lower 

bounds; U s and U d_i are the upper bounds. Note that, in the whole 
paper, the following rules of symbols are utilized. The superscript 
“r” means the radius value, the superscript “c” means the median 
value, the overline “ ” stands for the upper bound, the underline 
“ ” stands for the lower bound.

Then, rewrite Eq. (1) and Eq. (2) as

Y i = Fyi(U s, U d_i, Y •i) (5)

Z i = Fzi(U s, U d_i, Y •i) (6)

Enlightened by the derivation process of the well-known global 
sensitivity equation (GSE) [42], we can approximate Y i at the me-
dian value of U s , U d_i and Y •i by utilizing the first order Taylor 
expansion method [43]:

Y i = Y c
i + ∂Fyi

∂U s

(
U s − U c

s

) + ∂Fyi

∂U d_i

(
U d_i − U c

d_i

)
+ ∂Fyi

∂Y •i

(
Y •i − Y c

•i

)
= Y c

i + ∂Fyi

∂U s

(
U s − U c

s

) + ∂Fyi

∂U d_i

(
U d_i − U c

d_i

)

+
n∑

j=1
j �=i

∂Fyi

∂Y j,i

(
Y j,i − Y c

j,i

)
(7)

Obviously, the median values of Y i can be acquired by one time 
of multidisciplinary analysis:

Y c
i = Fyi

(
U c

s, U c
d_i, Y c

•i

)
(8)

Based on the interval arithmetic, the upper and lower bounds 
of Y i can be obtained:

Y i = Y c
i +

∣∣∣∣∂Fyi

∂U s

∣∣∣∣(U s − U c
s

) +
∣∣∣∣ ∂Fyi

∂U d_i

∣∣∣∣(U d_i − U c
d_i

)

+
n∑

j=1
j �=i

∣∣∣∣ ∂Fyi

∂Y j,i

∣∣∣∣(Y j,i − Y c
j,i

)

Y i = Y c
i +

∣∣∣∣∂Fyi

∂U s

∣∣∣∣(U s − U c
s

) −
∣∣∣∣ ∂Fyi

∂U d_i

∣∣∣∣(U d_i − U c
d_i

)

−
n∑

j=1
j �=i

∣∣∣∣ ∂Fyi

∂Y j,i

∣∣∣∣(Y j,i − Y c
j,i

)
(9)

Then, the radii of the coupled state variables can be deduced 
by

Y r
i =

∣∣∣∣∂Fyi

∂U s

∣∣∣∣U r
s +

∣∣∣∣ ∂Fyi

∂U d_i

∣∣∣∣U r
d_i +

n∑
j=1

∣∣∣∣ ∂Fyi

∂Y j,i

∣∣∣∣�Y r
j,i (10)
j �=i
Rewrite Eq. (10) with matrix form as follows:⎡
⎢⎢⎢⎢⎢⎢⎣

I1 −∣∣ ∂Fy1
∂Y 21

∣∣ . . . −∣∣ ∂Fy1
∂Y n1

∣∣
−∣∣ ∂Fy2

∂Y 12

∣∣ I2 . . . −∣∣ ∂Fy2
∂Y n2

∣∣
...

...
. . .

...

−∣∣ ∂Fyn
∂Y 1n

∣∣ −∣∣ ∂Fyn
∂Y 2n

∣∣ . . . In

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
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Y r
1

Y r
2
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n

⎤
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=

⎡
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...∣∣ ∂Fyn

∂U s
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⎤
⎥⎥⎥⎥⎥⎥⎦

U r
s + diag

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣ ∂Fy1
∂U d_i

∣∣∣∣ ∂Fy2
∂U d_i

∣∣
...∣∣ ∂Fyn

∂U d_i

∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

U r
d_i (11)

where “diag” means the diagonal matrix.
Similarly, Z i can be approximated as

Z i = Z c
i + ∂Fzi

∂U s

(
U s − U c

s

) + ∂Fzi

∂U d_i

(
U d_i − U c

d_i

)

+
n∑

j=1
j �=i

∂Fzi

∂Y j,i

(
Y j,i − Y c

j,i

)
(12)

where Z c
i = Fzi(U c

s, U c
d_i, Y

c
•i).

And then, the upper and lower bounds of Z i can be calculated 
as

Z i = Z c
i +

∣∣∣∣ ∂Fzi

∂U s

∣∣∣∣(U s − U c
s

) +
∣∣∣∣ ∂Fzi

∂U d_i

∣∣∣∣(U d_i − U c
d_i

)

+
n∑

j=1
j �=i

∣∣∣∣ ∂Fzi

∂Y j,i

∣∣∣∣(Y j,i − Y c
j,i

)

Z i = Z c
i +

∣∣∣∣ ∂Fzi

∂U s

∣∣∣∣(U s − U c
s

) −
∣∣∣∣ ∂Fzi

∂U d_i

∣∣∣∣(U d_i − U c
d_i

)

−
n∑

j=1
j �=i

∣∣∣∣ ∂Fzi

∂Y j,i

∣∣∣∣(Y j,i − Y c
j,i

)
(13)

Then, the radii of the coupled state variables can be deduced 
by

Z r
i =

∣∣∣∣ ∂Fzi

∂U s

∣∣∣∣U r
s +

∣∣∣∣ ∂Fzi

∂U d_i

∣∣∣∣U r
d_i +

n∑
j=1
j �=i

∣∣∣∣ ∂Fzi

∂Y j,i

∣∣∣∣�Y r
j,i (14)

Rewrite Eq. (14) with matrix form as follows:

⎡
⎢⎢⎢⎣

Z r
1

Z r
2
...

Z r
n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
∣∣ ∂Fz1
∂Y 21

∣∣ . . .
∣∣ ∂Fz1
∂Y n1

∣∣∣∣ ∂Fz2
∂Y 12

∣∣ 0 . . .
∣∣ ∂Fz2
∂Y n2

∣∣
...

...
. . .

...∣∣ ∂Fzn
∂Y 1n

∣∣ ∣∣ ∂Fzn
∂Y 2n

∣∣ . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Y r
1

Y r
2
...

Y r
n

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣ ∂Fz1
∂U s

∣∣∣∣ ∂Fz2
∂U s

∣∣
...∣∣ ∂Fzn

∂U s

∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

U r
s + diag

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣ ∂Fz1
∂U d_i

∣∣∣∣ ∂Fz2
∂U d_i

∣∣
...∣∣ ∂Fzn

∂U d_i

∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

U r
d_i (15)
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Consequently, the radii of Y i and Z i can be obtained by solving 
Eq. (11) and Eq. (15) with matrix operations. Thus the bounds of 
the linking variables and outputs can be expressed as{

Y i = Y c
i + Y r

i

Y i = Y c
i − Y r

i

{
Z i = Z c

i + Z r
i

Z i = Z c
i − Z r

i

(16)

3.1.2. Interval vertex theorem
As stated in Ref. [44], based on the extreme theorem in con-

vex analysis, if the output is a convex (or concave) function of 
the inputs, the extreme values of the output will reached on 
the boundary vertices. Under this circumstance, from the interval 
mathematical view of point, the interval solution, computed by the 
vertex solution theorem, is exact. Therefore, when the linking vari-
ables Y i and system outputs Z i are either convex or concave to 
the input uncertainties X s, P s, X i, P i in the multidisciplinary, the 
interval vertex theorem can be utilized to obtain the accurate in-
terval solution. The implementation procedure can be organized 
as:

(1) Obtain the input vector of uncertain parameters, which can be 
mathematically written as

U = X s ∪ P s ∪ (X1 ∪ . . . ∪ Xn) ∪ (P 1 ∪ . . . ∪ P n) (17)

where the number of elements in U denotes Ntotal and rewrite 
Eq. (17) as:

U = [
U (1) U (2) . . . U (Ntotal)

]
(18)

(2) Combine the vertexes of the input parameters as the new set 
of certain input parameters through constructing the interval 
vertex array Mvertex shown in Eq. (19), which can be easily 
accomplished by use of self-complied programs.

Mvertex =
⎡
⎢⎣

1 + β1 . . . 1 + βNtotal
... 1 + β j(−1)<(i−1)/2Ntotal− j>

...

1 − β1 . . . 1 − βNtotal

⎤
⎥⎦

(< ∗ > represents integer less than ∗ .) (19)

where i and j represent the array row number and column 
umber as well as max i = 2Ntotal and max j = Ntotal . Each of the 
elements in β = [β1, β2, . . . , βNtotal ] corresponds to the devia-
tion factor of the elements in input vector U . And the devia-
tion factor is defined as the ratio of the radius to the median 
value for uncertain parameter.

(3) Then, the corresponding input vector U V can be calculated 
through Eq. (20).

U V = U Vertex MVertex (20)

where U Vertex = diag(U (1), U (2), . . . , U (Ntotal))

(4) Based on U V , calculate the outputs set through multidisci-
plinary analysis as follows:{

Y set = Fyi(U V , Y •i)

Z set = Fzi(U V , Y •i)
(21)

Obviously, the number of multidisciplinary analyses is 2Ntotal .
(5) Eventually, the maximum and minimum values in the output 

set should be selected as the upper and low bounds of the 
multidisciplinary outputs.{

Y i = max(Y set)

Y i = min(Y set)

{
Z i = max(Z set)

Z i = min(Z set)
(22)
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3. Direct optimization approach
It is widely acknowledged that interval analysis is essentially an 
imization issue. Based on this, in the section, the uncertainty 
pagation in multidisciplinary system are modeled as a deter-

nistic multidisciplinary optimization problem as follows:

find X s, P s, X i, P i
min/max Y i, Z i
s.t. Y i = Fyi(X s, X i, Y •i, P s, P i)

Z i = Fzi(X s, X i, Y •i, P s, P i)

X s ∈ [X s, X s], X i ∈ [X i, X i], P i ∈ [P i, P i], P s ∈ [P s, P s]
i = 1, . . . ,n) (23)

Apparently, solving Eq. (23) with existing optimization algo-
ms is a feasible way to acquire the exact bounds of outputs. On 
 one hand, when the optimization problem is continuous and 
modal, the sensitivity-based optimization methods, i.e., the fea-
le direction method, the deepest descent method, the sequential 
dratic programming and so on, are feasible and efficient. On 
 other hand, when the amount of the input variables is large 
 the gradient information is difficult to obtain, which is really 
mon in practical engineering, the non-gradient optimization 

thods, namely, the downhill simplex method, the direct search 
thod, the genetic algorithm, the particle swarm optimization al-
ithm etc., are introduced to address this issue.

4. Hybrid approach based on the concurrent strategy
Based on the above analysis, we can see that solving the bounds 
linking variables and system outputs are independent when the 
erval vertex theorem and the direct optimization approach are 
lied. That is to say, the interval bounds of any single output in 
ltidisciplinary system can be solved by selecting either the in-
val vertex theorem or the direct optimization approach in the 

e case. And obviously, the concurrent strategy can be utilized 
improve the efficiency under this circumstance. Therefore, a hy-
d approach, where both the interval vertex theorem and the 
ect optimization approach are utilized, can be proposed. For 
 implementation of the hybrid approach, we firstly separate 
 outputs, including the linking variables and the system out-
s into two categories according to the application conditions of 
 interval vertex theorem and the direct optimization approach. 
n, all the solving processes corresponding to the interval ver-
 theorem and the direct optimization approach are conducted 
parallel, which can greatly reduce the computational time. The 
cified implement procedure can be illustrated in Fig. 3.

5. Discussions on the four methods
In order to provide general guidelines for choosing the more 
ropriate technique among the four methods, the comparisons 

all the four methods are conducted on computational amount 
 accuracy.

As stated in section 3.1.1, the first order interval Taylor expan-
sion method is an approximation method that possesses high 
efficiency. However, this method is only suitable for the linear 
and nearly linear situations.
In actual engineering, the multidisciplinary systems are always 
highly nonlinear and the first order interval Taylor expansion 
method is no longer fit here. In this case, the later three meth-
ods, which can provide exact solutions in theory, are supposed 
to be utilized. Considering that the computational accuracy is 
the same for all the three method, the computational amount 
of the three methods is compared to choose the most appro-
priate one.
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Fig. 3. Procedure of the hybrid approach.
(A) For the interval vertex theorem, as explained in sec-
tion 3.1.2, the number of multidisciplinary analysis (MDA) 
is Ninterval = 2Ntotal .

(B) For the director optimization approach, denote the num-
ber of MDA involved in optimization procedure for any 
uncertain parameters is no_i (i = 1, . . . , Ntotal), then the 
number of MDA in the whole solving process can be writ-
ten as

Noptimization =
∑

i=Ntotal

no_i (24)

(C) For the hybrid approach, the numbers of uncertain param-
eters in category I and II are denote as Ntotal_I and Ntotal_I I

respectively. Then, the number of MDA in this methods 
can be expressed as

Nhybrid = 2Ntotal_1 +
∑

i=Ntotal_2

no_i (25)

Obviously, we can easily choose the best method by comparing 
Ninterval, Noptimization and Nhybrid .

To sum up, each of the four methods has its own merits, thus 
in actual engineering projects, we are supposed to choose which 
method to be utilized in light of actual situations.

3.2. Non-probabilistic reliability analysis in multidisciplinary system

As claimed in Ref. [29], when evaluating the non-probabilistic 
reliability for structures, the non-probabilistic set-theoretic stress–
strength interference model can give a clear and transparent ex-
planation for the state of uncertain stress and strength. In this 
paper, we expand this concept into multidisciplinary field so as to 
provide an appropriate non-probabilistic safety measure for multi-
disciplinary system.

First, the limit-state functions of multidisciplinary can be for-
mulated as

G i = Z i − Z 0
i (i = 1,2, . . . ,n) (26)

where G i denotes the limit-state function vector of discipline i, Z i
and Z 0

i respectively denotes the actual and allowable multidisci-
plinary responses of discipline i.

It is well known that Z i and Z 0
i are influenced by many un-

certain factors in practical engineering projects. Take the fluid–
structure coupling optimization design of aircraft design, for exam-
ple. The dynamic and static mechanical responses, including the 
stress level, displacement, fatigue life, frequency, etc., are always 
the major concerns in aircraft design. Distinctly, all the mechanical 
responses rely on many factors, including aerodynamic loads, ma-
terial properties, geometry size and so on. Besides, the following 
facts should be noted: (1) For the aerodynamic loads, the variabil-
ity will be triggered by the perturbation of atmosphere parameters 
(temperature, humidity, viscidity, etc.) and the instability of flight 
state (the angle of attack, sideslip angle, etc.). (2) For the mate-
rial properties, the inhomogeneity of microstructure and the flaw 
caused by machining are the main reasons that lead to the disper-
sion. (3) The machining tolerance and surface roughness in geom-
etry size as well as the cognitive dissonance of designers caused 
by the lack of knowledge are indeed the uncertain sources that 
cannot be ignored.

Consequently, the responses are supposed to be recognized 
as uncertainties in engineering design. In this paper, considering 
the fact that the sample information about uncertain parameters 
is always poor in reality, especially for the complex engineering 
projects, the uncertain parameters are described as the basic non-
probabilistic intervals. Therefore, after propagation, the multidisci-
plinary responses are uncertain-but-bounded and the element of 
Z i and Z 0

i can be expressed as

⎧⎨
⎩

Zi, j ∈ [
Zi, j, Zi, j

]
Z 0

i, j ∈ [
Z 0

i, j, Z 0
i, j

] i = 1,2, ...,n; j = 1,2, ...,mi (27)

where n represents the number of disciplines and mi represents 
the number of the limit-state functions involved in disciplinary i. 
Obviously, the total number of the limit-state functions is Nt =∑n

i=1 mi .
As shown in Eq. (26), the value of the limit-state function can 

be utilized to judge the system state. For some types of con-
straints, such as stress and displacement, the positive value of the 
limit-state function indicates the failure state while the negative 
value indicates the safe state. On the contrary, for some other con-
straints, such as fatigue life and lift-drag ratio, the positive value 
means the safe state while the negative value means the failure 
state. In order to make the following analysis process clear, we 
unify the limit-state functions vector as

M = R − R0 (28)

where M > 0, the state of the system is safe, otherwise, the system 
is dangerous. Apparently, the dimensions of M is Nt .

Actually, with the purpose of evaluating the failure possibility 
of each limit-state function in multidisciplinary system, an appro-
priate index that implies that an interval number is better than 
another but not that one is larger than another is needed. In this 
paper, the non-probabilistic index proposed in [29] is adopted for 
its clearer physical implication to measure the safety degree of 
structures with interval parameters. And then, the measure of the 
structural safety can be defined as the area ratio of the safe region 
Ssafe to the whole region Stotal . For generality, we define Eq. (27) as 
the typical limit-state function, and the mathematical expression 
of the reliability is described by Eq. (28) as well as the physical 
meaning illustrated by Fig. 4.
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Fig. 4. The six situations of the interval interference model.
M = R − R0 (29)

η(G > 0) = η
(

R − R0 > 0
) = Ssafe

Stotal
(30)

where η(•) denotes the non-probabilistic reliability.
Given the above understanding, the calculation of the reliability 

index is derived by considering the different locations of intervals. 
Because R and R0 are positive in actual engineering projects, all 
the six situations can be illustrated in Fig. 4(a) in one dimension 
coordinate system. In order to improve understandability and ex-
press the physical meaning more clearly, the situations shown in 
one dimension coordinate system are equivalently transformed in 
two dimension coordinate system in Fig. 4(b). Based on this, the 
corresponding mathematical expressions can be further derived 
and summarized in Eq. (29).

η =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 when: R < R ≤ R0 < R0

(R − R0)2/(8R0r Rr) when: R0 > R > R0 > R

(Rr − Rc + R0c)/(2Rr) when: R0 > R > R > R0

(R0r + Rc − R0c)/(2R0r) when: R > R0 > R0 > R

1 − (R0 − R)2/(8Rr R0r) when: R > R0 > R > R0

1 when: R > R ≥ R0 > R0

(31)

4. Decoupling approach for non-probabilistic reliability based 
multidisciplinary design optimization

The focus of our efforts is to work out the NRBMDO problem 
more efficiently. In order to achieve the goal, in this section, the 
single loop strategy is introduced to solve the NRBMDO problem 
by conducting MDO, UMDA, NRA in single level.

4.1. Non-probabilistic reliability index based multidisciplinary design 
optimization

As stated above, the multidisciplinary system contains n cou-
pled disciplines, the design variables X s and X i (i = 1, . . . , n) as 
well as the model parameters P s and P i (i = 1, . . . , n) are uncer-
tain. The general RBMDO problem can be expressed as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

find Xc
s, Xc

i

min f c(X s, X i)

s.t. η{M ≥ 0} ≥ η0

Y i = Fyi(X s, X i, Y •i, P s, P i)

Z i = Fzi(X s, X i, Y •i, P s, P i)

Xc
s ∈ [

X L
s , X U

s

]
, Xc

i ∈ [
X L

i , X U
i

]
i = 1, . . . ,n (32)

where Xc
s and Xc

i represent the media values of the uncertain 
design variables. η0 is the allowable non-probabilistic reliability 
vector for the constraints. f c(X s, X i) is the nominal value of the 
objective. X L

s and X U
s are the lower and upper limits of Xc

s . X L
i

and X U
i are the lower and upper limits of Xc

i , all these define the 
boundaries of design space. Additionally, the meaning of the other 
parameters can be found in section 2 and 3.

Apparently, the conventional non-probabilistic reliability index 
based multidisciplinary design optimization is a nested optimiza-
tion structure. The outer loop is a deterministic optimization, while 
the inner loop is a solving process of uncertainty propagation anal-
ysis and non-probabilistic reliability index. Considering that the 
non-gradient regions exist for this reliability index, the global op-
timization algorithms are always the first choice for solving the 
NRBMDO problem, which will indeed lead to enormous compu-
tation burden. Therefore, in this paper, the decoupled single loop 
strategy is developed to improve the efficiency.

4.2. Single loop strategy for NRBMDO (SLS_NRBMDO)

As stated in refs. [20,21], in order to improve the efficiency, the 
single loop strategy decouples the nested RBDO with a serial of 
cycles of deterministic optimization and reliability assessment. The 
reliability analysis is only conducted after the deterministic opti-
mization. More importantly, this approach adopts the shift strategy 
to enable all the boundaries of violates constraints to the feasible 
direction based on the information obtained in the previous cycle.

In this paper, based on the decoupling thought, a single loop 
strategy for NRBMDO (SLS_NRBMDO) is further developed, which 
sequentially conducts MDO, UMDA, NRA and translating distance 
calculation (TDC). To ensure the successful implementation of the 
scheme, the following key issues need to be tackled with.

(1) The existing MDO strategies, i.e. multidisciplinary feasi-
ble method (MDF), concurrent subspace optimization (CSSO), col-
laborated optimization (CO), bi-level integrated system synthesis 
(BLISS) and so on, are supposed to deal with the deterministic 
MDO problem.



X. Wang et al. / Aerospace Science and Technology 73 (2018) 148–163 155
Fig. 5. The sketch of translating limit-state plane in the proposed approach.

Fig. 6. The relationship between the original interval model and the normalized interval model.
(2) In order to efficiently assess the reliability of multidisci-
plinary system, the uncertainty propagation analysis in multidis-
ciplinary system is the key issue to be solved. In the paper, as 
stated in section 3.1, three uncertainty propagation analysis meth-
ods, i.e. interval Taylor expansion method, interval vertex method 
and the optimization method are developed to guarantee the com-
putational accuracy and efficiency.

(3) As claimed in section 3.2, a novel non-probabilistic relia-
bility index based on the volume ratio theory and the expanded 
non-probabilistic set-theoretic stress–strength interference model 
is introduced to evaluate the non-probabilistic reliability.

(4) The most important part in the proposed strategy is trans-
lating the boundaries of violated constraints based on the reli-
ability information acquired in previous circle. In the following 
section, the expressions of the translating distance are analytically 
deduced.

4.3. Derivation of the translating distance based on performance 
measurement approach

In the loop of the deterministic MDO for SLS_NRBMDO, some 
of the constraints may not satisfy the specified reliability require-
ments. Under this circumstances, inspired by Ref. [21], we translate 
the constraints without shape change to exactly meet the target 
reliability, and then, the non-probabilistic reliability increases from 
the current reliability ηc to the allowable reliability ηa . Fig. 5 illus-
trates the translation strategy when two design variables involved. 
This approach allows a quick conversion of a reliability constraint 
to an equivalent approximate deterministic constraint, thus signif-
icantly reduces the computation amount caused by an inner loop 
of UMDA and NRA.

In order to make the analytic process more clearly, the inter-
val model is converted into the normalized space. The relationship 
between the original interval model and the normalized interval 
model can be shown in Fig. 6 and mathematically described as 
follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δR = (
R − Rc

)
/Rr, where Rc = (R + R)/2

and Rr = (R − R)/2

δR0 = (
R0 − R0c

)
/R0r, where R0c = (

R0 + R0
)
/2

and Rr = (
R0 − R0

)
/2

(33)

where δR and δR0 are the normalized variables; Rc and R0c are 
the center values of R and R0; Rr and R0r are the radius of R
and R0. Obviously, just as displayed in Fig. 6, δR ∈ [−1, +1] and 
δR0 ∈ [−1, +1].

Hence, the initial limit-state function, namely, the performance 
function can be rewritten as follows by substituting Eq. (31) into 
Eq. (27).

G(δR , δR0) = RrδR − R0rδR0 + (
Rc − R0c) (34)

And, the translated limit-state function with distance d can be 
formulated as

G(δR , δR0) = RrδR − R0rδR0 + (
Rc − R0c) + d (35)

Then, we can deduce the translational distance by borrowing 
the basic idea of performance measure approach (PMA) [45]. In 
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Fig. 7. The sketch of translating constrain condition when R0r/Rr > 1.

Fig. 8. The sketch of translating constrain condition when R0r/Rr ≤ 1.
contrast to the reliability index approach (RIA) relying on evalua-
tions of the nonprobabilistic reliability index of the current design, 
the PMA determines whether a reliability constraint is satisfied 
according to the sign of the performance. It is found that the 
PMA is more efficient and stable than the regular RIA according 
to Ref. [45]. Therefore, the PIM is utilized to tackle this issue.

On this occasion, the translated limit-state function is the per-
formance function corresponding to the allowable reliability ηa . 
And then, the expressions the translational distance can be derived 
according to the different interference situations as follows.

(1) Condition I: R0r/Rr > 1

As shown in Fig. 7, when R0r/Rr > 1, the failure region is 
constructed with either right-angled triangle or right-angled trape-
zoid. Considering that, two situations need to be accounted ac-
cording to the states of allowable reliability, corresponding to the 
situation (a) and (b) in Fig. 7. In order to express the problem 
clearly and conveniently, the referential reliability ηr , which means 
that the limit-state plane goes through the point (−1, −1), is in-
troduced. Apparently, ηr can be calculated as

ηr = 1 − Rr/
(
2R0r) (36)

In situation (a), the allowable reliability is no less than the ref-
erential reliability, namely, ηa ≥ ηr . Then, corresponding to the 
translated limit-state plane, the failure region constructed of a 
right-angled triangle can be calculated as:

Sfailure = (Rr + R0r − Rc + R0c − d)2

2Rr R0r
(37)

Thus, the allowable non-probabilistic reliability can be formu-
lated as
ηa = 1 − Sfailure

Stotal
= 1 − (Rr + R0r − Rc + R0c − d)2

2Rr R0r

/
4 (38)

Then, the distance d can be obtained by solving Eq. (38) as fol-
lows:

d = Rr + R0r − Rc + R0c −
√

8R0r Rr(1 − ηa) (39)

Besides, in situation (b), the allowable reliability is less than 
the referential reliability, namely, ηa < ηr . Then, the failure region 
constructed of a right-angled trapezoid can be calculated as:

Sfailure = 2(R0r + R0c − Rc − d)

R0r
(40)

Thus, the allowable non-probabilistic reliability can be formu-
lated as

ηa = 1 − Sfailure

Stotal
= 1 − 2(R0r + R0c − Rc − d)

R0r
/4 (41)

Eventually, the distance d can be obtained by solving Eq. (41)
as follows:

d = (2ηa − 1)R0r + R0c − Rc (42)

(2) Condition II: R0r/Rr ≤ 1

As shown in Fig. 8, when R0r/Rr ≤ 1, similarly with condition 
I, two situations need to be considered according to the states of 
allowable reliability ηa . Under this circumstances, the referential 
reliability can be also easily obtained, ηr = 1 − R0r/(2Rr).

In situation (a), the allowable reliability is no less than the 
referential reliability, namely, ηa ≥ ηr . The failure region is con-
structed of a right-angled triangle and the allowable non-probabil-
istic reliability can be calculated as
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Fig. 9. Flowchart of SLS_NRBMDO.
ηa = 1 − Sfailure

Stotal
= 1 − (Rr + R0r − Rc + R0c − d)2

2Sr Rr
/4 (43)

Then, the distance d can be obtained by solving Eq. (43) as fol-
lows:

d = Rr + R0r − Rc + R0c −
√

8R0r Rr(1 − ηa) (44)

Similarly, in situation (b), the allowable reliability is less than 
the referential reliability, namely, ηa < ηr . Then, the failure region 
is constructed of a right-angled trapezoid and the allowable non-
probabilistic reliability can be calculated as

ηa = 1 − Sfailure

Stotal
= 1 − 2(Rr + R0c − Rc − d)

Rr
/4 (45)

Eventually, the distance d can be obtained by solving Eq. (45)
as follows:

d = (2ηa − 1)Rr + R0c − Rc (46)

All in all, the mathematical expressions of the translating dis-
tance can be summarized as
when:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0r

Rr > 1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ηa ≤ 1 − Rr

2R0r ⇒
d = (2ηa − 1)R0r + R0c − Rc

ηa > 1 − Rr

2R0r ⇒ d = Rr + R0r − Rc + R0c

− √
8R0r Rr(1 − ηa)

R0r

Rr ≤ 1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ηa ≤ 1 − R0r

2Rr ⇒
d = (2ηa − 1)Rr + R0c − Rc

ηa > 1 − R0r

2Rr ⇒ d = Rr + R0r − Rc + R0c

− √
8R0r Rr(1 − ηa)

(47)

4.4. Procedures and flowchart of the proposed single loop approach

In this section, the flowchart of the proposed approach is illus-
trated in Fig. 9 and the procedure is elaborated in detail as follows:

Step 1: Initialize the variables. In the proposed strategy, the 
values of the uncertainties are set to be the median values. More-
over, in view of that there is no information about the non-
probabilistic reliability and the translating distance for the deter-
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ministic optimization in the first loop, the shift distance in the first 
loop is set to be d(1) = 0.

Step 2: Construct and solve the MDO model. Translate the con-
straints in the direction of feasible region with distance d(k) . Con-
struct the deterministic MDO problem and the optimization model 
can be mathematically written as Eq. (48) shows when the strat-
egy of MDF is applied. The initial value of k is supposed to be 1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find Xc(k)
s , Xc(k)

i

min f
(

Xc(k)
s , Xc(k)

i

)
s.t. M − d(k) ≥ 0

Y i = Fyi
(

Xc
s, Xc

i , Y •i, P c
s, P c

i

)
Z i = Fzi

(
Xc

s, Xc
i , Y •i, P c

s, P c
i

)
Xc

s ∈ [
X L

s , X U
s

]
, Xc

i ∈ [
X L

i , X U
i

]
i = 1, . . . ,n (48)

Note that, in the k-th loop, the optimization is the regular MDO 
with the median values of all the uncertain parameters. The deter-
ministic MDO problem can be solved through conventional MDO 
framework, such as MDF, CSSO, CO, BLISS, etc. Consequentially, the 
optimal point (Xc(k)

s , Xc(k)
i ) can be obtained.

Step 3: Conduct uncertainty propagation in multidisciplinary 
system. Based on the optimal point obtained in k-th loop, that is, 
(Xc(k)

s , Xc(k)
i ), the interval range of the outputs Z (k)

i can be acquired 
through the uncertainty analysis methods proposed in section 3.1.

Step 4: Evaluate the non-probabilistic reliability. Based on the 
expanded non-probabilistic set-theoretic stress–strength interfer-
ence model and volume ratio principle, the reliability can be easily 
calculated through Eq. (30) derived in section 3.2. Then the relia-
bility vector η(k)

i of all constraint conditions is acquired.
Step 5: Check the convergence. If all elements of the obtained 

reliability vector ηi meet the reliability requirements, the entire 
optimization process stops and the optimal point (X c(k)

s , Xc(k)
i ) is 

perceived as the final optimal solution; otherwise, turn to step 5.
Step 6: Calculate the translating distances of the constraints.

As some of the constraints may not satisfy specified reliability re-
quirements, we translate the constraints in the direction of feasible 
region. According to the different situations of the constraints, the 
translation distances d(k) can be calculated by utilizing the strate-
gies proposed in section 4.2.

Step 7: Loop. Conduct step 2 to step 6 until the convergence is 
reached.

All in all, by using SLS_NRBMDO, the nested optimization is 
avoided and the convergence problem in traditional NRBMDO 
caused by the non-gradient region of reliability is solved, for that 
the non-probabilistic reliability no longer act as constraints in op-
timization model. Therefore, the two problems stated in section 1
can be well solved by the proposed decoupling strategy.

5. Demonstrative examples

In this section, the proposed SLS_NRBMDO is applied in both 
numerical example and engineering example. The regular MDO 
and UMDO methods are also utilized in the numerical example 
to illustrate the effectiveness and high efficiency of the proposed 
decoupled approach.

5.1. Case I: numerical example

The multidisciplinary system consisting of two subsystems, 
which are discipline1 and discipline2, is considered in this case. 
Z , X1, X2 are design variables. xs, x1, x2 are uncertain variables. 
The allowable reliability vector is set to be η0 = (0.9, 0.9). The 
functional relationships as well as the uncertain descriptions are 
displayed in Eq. (47):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find Z , X1, X2
minimize F = f1 + f2
subject to:

discipline 1: 4y12 = 2Z + 2ps − 3X1 + 2X2 − 4y21

objective 1: f1 = 0.5(Z + x̄s)
2 + X2

1

constraint 1:

{
g1 = Z + ps + 2X1 + 2y21 − p1

η1(g1 − g0
1 ≥ 0) ≥ 0.9

discipline 2: 4y21 = −2Z − 2ps − X1 + 2X2 + 4y12

objective 2: f2 = 0.5(Z + x̄s)
2 + X2

2

constraint 2:

{
g2 = 5Z − 5ps + 3X2 − 4y21 − p2

η2(g2 − g0
2 ≥ 0) ≥ 0.9

design variables:
0 ≤ X1, X2 ≤ 5
1 ≤ Z ≤ 5

uncertain parameters:

ps ∈ [0.90,1.10];
p1 ∈ [4.05,4.95];
p2 ∈ [0.95,1.05]
g0

1 ∈ [−0.60,0];
g0

2 ∈ [−1.00,1.00]

(49)

5.1.1. Optimization design based regular MDO
In the determine optimization, the uncertain effect is neglected 

and all the uncertainties are set as the median values. Thus, based 
on Eq. (49), the coupled multidisciplinary analysis model and opti-
mization model can be shown in Eq. (48) and Eq. (49) respectively.{

4y12 = 2Z + 2xs − 3X1 + 2X2 − 4y21

4y21 = −2Z − 2xs − X1 + 2X2 + 4y12
(50)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min F = f1 + f2 = (Z + 1)2 + X2
1 + X2

2

s.t. g1 = (Z + 1 + 2X1 + 2y21) − 4.5 ≥ 0

g2 = (5Z − 5 + 3X2 − 4y12) − 1 ≥ 0

0 ≤ Z ≤ 5 1 ≤ X1, X2 ≤ 5

(51)

In the problem, MDF is utilized to solve the optimization 
design problem. The converging process can be shown by the 
blue line in Fig. 10. The obtained optimal point is (X1, X2, Z) =
(1.2500, 1.6261, 0.6239) and the minimum value of objective func-
tion is F = 6.8438. Note that the non-probabilistic reliability at the 
optimal point can be calculated based on the volume ratio theory 
when the uncertainties are considered and the reliability vector is 
η = (η1, η2) = (0.7708, 0.8125). Obviously, the reliability require-
ments are not satisfied.

5.1.2. Optimization based on Regular UMDO
Based on Eq. (49), uncertain multidisciplinary design feasi-

ble method (UMDF) is utilized to solve the optimization de-
sign problem. The converging process can be shown in black 
line in Fig. 10. The obtained optimal point is (X1, X2, Z) =
(1.4289, 1.6287, 0.6292) and the minimum value of objective func-
tion is F = 7.3483. Note that the reliability vector at the optimal 
point can be calculated as η = (η1, η2) = (0.9, 0.9), which means 
that the reliability requirements have already been satisfied.
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Fig. 10. The converging process of traditional UMDF and SLS_NRBMDO.

Table 1
The optimum solutions of SLS_NRBMDO and traditional UMDF.

Design variables Object Constrain reliability Total 
multidisciplinary 
analyses

X1 X2 Z F η1 η2

SLS_NRBMDO 1.4289 1.6287 0.6292 7.3483 0.9 0.9 47
UMDF 1.4289 1.6289 0.6289 7.3483 0.9 0.9 388
5.1.3. Optimization based on the proposed approach
In this section, the proposed sing loop strategy is applied to 

solve this optimization problem and the analysis procedure can be 
organized as follows:

(1) Initial the values of design variables, coupled variables and re-
liability index;

(2) In the first circle, the deterministic optimization model can 
be formulated as Eq. (50) and Eq. (51). The optimal solu-
tion can be easily obtained as X1 = 1.2500, X2 = 1.6261 and 
Z = 0.6239 through MDF.

(3) Based on stress–strength interference model, the reliabil-
ity of the constraints can be calculated as η = (η1, η2) =
(0.7708, 0.8125), both of which are lower than the required 
values, which are, η0 = (0.9, 0.9).

(4) Translate the limit-state plane with distance d = (d1, d2) =
(0.1867, 0.2023), which is calculated based on the reliability 
information obtained in step (3) and theory proposed in sec-
tion 4.2.

(5) Reformulate the deterministic optimization problem for the 
second circle. Substitute d into Eq. (48), and the optimal so-
lution can be easily obtained as X1 = 1.4289, X2 = 1.6287 and 
Z = 0.6292 through MDF. In the optimization problem, the ini-
tial value of design variables is set to be the optimal point 
obtained in first circle to accelerate the convergence.

(6) The reliability of the constraints can be calculated as η =
(η1, η2) = (0.9, 0.9), which means that the reliability require-
ments are satisfied and the convergence is achieved. The con-
verging process can be shown in red line in Fig. 10. Then, the 
optimal point obtained in the second circle is considered to be 
the optimal solutions to this RBMDO problem, and the mini-
mum value of objective function is F = 7.3483.
The solutions of SLS_NRBMDO are compared with regular 
UMDF, which nested the uncertainty analysis into deterministic 
optimization. Obviously, both of the two methods can obtain the 
optimal solution. However, as listed in Table 1, the function calls of 
the nested method are significantly more than those of SLS_NRB-
MDO, which indeed verify the efficiency of SLS_NRBMDO. And the 
comparison of the converging processes between the traditional 
UMDO and SLS_NRBMDO can be clear expounded in Fig. 10.

5.2. Case II: design of hypersonic wing

In this case, the reliability based dimensional design of the hy-
personic wing is chosen as the practical engineering application to 
demonstrate the efficiency of SLS_NRBMDO. Considering that the 
mechanical state of hypersonic wing in harsh multi-field coupled 
environment during the re-entry process is one of the major con-
cerns for the high flight speed. Therefore, in this case, the hyper-
sonic wing is modeled as a multidisciplinary system where fluid 
and structures are highly coupled as shown in Fig. 11 to obtain 
the accurate responses. Obviously, there are two design variables 
(Lrib , Lbeam), two linking variables (Aerodynamic Shape, Aerodynamic 
Pressure), two system outputs (dactual

max , σ actual
max ) in the coupled fluid–

structure system.
In addition, as shown in Fig. 12, three components, namely, 

skin, frame and honeycomb sandwiches, constitute the typical hy-
personic wing structure. Specifically, (1) the wing surface is cov-
ered by titanium alloy skin so as to maintain the aerodynamic 
configuration; (2) the frame structure is made up of titanium alloy 
ribs and beams. (3) The sandwiches made with honeycomb paper-
board are filled between ribs and beams. All the three components 
are connected together by rivet joints and glue. And for the bound-
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Fig. 11. Information flow diagram of the engineering case.

Fig. 12. Illustration of the components for the hypersonic wing.

Table 2
Uncertain descriptions of input variables in case II.

Lrib Lbeam ET i dallowable
max σ allowable

max

Median value 20 mm∼50 mm 20 mm∼50 mm 1.0e–11 Pa 20 mm 1.0e–9 Pa
Radius 0.4 mm 0.4 mm 5.0e–10 Pa 0.4 mm 5e–7 Pa
ary conditions, the region which connects to fuselage is imposed 
by fixed constraints.

Moreover, in view of material dispersion, machining error, un-
certainty in measurement, cognitive bias etc. in practical engineer-
ing, we assume that elastic modulus of alloy materials (E T i ), the 
thickness of the ribs (Lrib) and beams (Lbeam), the allowable dis-
placement (dallowable

max ) and the allowable stress (σ allowable
max ) are un-

certain variables which are specifically described in Table 2.
In this case, ηdis denotes the non-probabilistic reliability that 

the actual maximum displacement dactual
max is less than the allow-

able displacement dallowable
max ; ηstress denotes the non-probabilistic 

reliability that the actual maximum stress σ actual
max is less than the 

allowable displacement σ allowable
max . The above reliability constraints 

are used to guide the design of the hypersonic wing and the ex-
pression of the reliability can be explained as

ηdis = η
(
dallowable

max − dactual
max ≥ 0

)
ηstress = η

(
σ allowable

max − σ actual
max ≥ 0

) (52)

The procedure of reliability-based design for hypersonic wing 
through SLS_NRBMDO is represented in Fig. 13. In order to set-
tle this complex engineering problem and implement the proce-
dure successfully, the solution strategy can be carried out by the 
integration of CATIA which provides parametric geometry model-
ing technology, ICEM which offers parametric CFD modeling tech-
nology, ANSYS which conducts finite element analysis, MATLAB 
which calculates the non-probabilistic reliability and the trans-
lating distance, the self-compiled program which calculates the 
aerodynamic pressure on the skin surface. All the module inter-
face strategies for data exchange can be achieved by iSIGHT as 
displayed in Fig. 14.

It should be pointed out that the flight environment in this 
case can be described as: (1) the altitude is 30 km; (2) the free 
stream Mach number is 6; (3) the angle of attack is 16◦ . Besides, 
considering that the system outputs, namely, dactual

max and σ actual
max are 

monotonous to the input variables, namely, Lrib and Lbeam , in the 
aerodynamic and structural coupling analysis. Hence, the interval 
vertex theorem is supposed to be applied in this case and the the-
orem is accomplished by utilizing the design of experiment (DOE) 
tool to obtain the interval vertex array.

Note that, in this complex engineering problem, the traditional 
UMDO methods is no longer suitable due to the huge amount of 
computation and the convergence difficulty. In this case, by utiliz-
ing SLS_NRBMDO, both the accuracy and efficiency of the NRBMDO 
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Fig. 13. Procedure of reliability-based design for hypersonic wing through SLS_NRBMDO.

Fig. 14. Illustration of the integration platform for SLS_NRBMDO based on iSIGHT.

Table 3
Iterative process of SLS_NRBMDO.

Step Lbeam Lrib m ηdis ηstress dc
max σ c

max d1 d2

1 0.02605 0.02000 590.2454 0.4999 0.7067 0.02000 9.7933e−8 1.7590e−3 3.0096e−7
2 0.03618 0.02000 630.3865 0.9843 0.9993 0.02000 9.7433e−8 7.5943e−5 −3.9516e−6
3 0.03661 0.0200 632.0676 0.9898 1.0000 0.02000 9.6886e−8 3.2938e−6 −5.4194e−6
4 0.03661 0.0201 632.1715 0.9900 1.0000 0.02000 9.6337e−8
problem can be ensured. The analysis results are listed in Table 3. 
Obviously, it needs only 4 steps of MDO, UMDA, and NRA, as well 
as 3 steps of TDC, then the optimal solution of UMDO can be 
obtained. Moreover, the convergence process can be illustrated in 
Fig. 15.

5.3. Discussion

From the results of the above two cases, the paper comes to 
the following conclusions:
(1) As shown in cases I, compared to the traditional double 
level UMDO strategy, SLS_NRBMDO has a higher efficiency 
for the reason that the reliability analysis and MDO are de-
composed and conducted in a recursive manner. Furthermore, 
in SLS_NRBMDO, efficient UMDA methods are introduced, ra-
tional non-probabilistic reliability index is proposed, and the 
expression of the translating distance for the deterministic 
constraint is mathematically deduced. Thus the computational 
efficiency is further improved for SLS_NRBMDO.
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Fig. 15. The converging process of hypersonic wing design through SLS_NRBMDO.
(2) As cases II demonstrated, in actual engineering problems, the 
traditional UMDO methodology is always not suitable due to 
the unbearable computational burden. In such a situation, the 
proposed SLS_NRBMDO can be a good choice. And by utilizing 
SLS_NRBMDO, both the accuracy and efficiency can be guaran-
teed.

(3) As both case I and case II indicated, in the proposed strat-
egy of SLS_NRBMDO, the optimal point obtained in the k-th 
MDO is taken as the initial design point the next circle, that is, 
the (k + 1)-th MDO. Consequently, the efficient gradient based 
optimization algorithms can be utilized to accelerate the con-
vergence process.

6. Conclusions

The tremendous computation and convergence difficulty in 
NRBMDO always hamper its application in practical engineering. 
To address these issues, a single loop strategy for solving the 
NRBMDO problems has been investigated to improve the effi-
ciency. In the proposed approach, MDO, UMDA, NRA and TDC 
are conducted sequentially and iteratively by updating the trans-
lating distance of constrains until the convergence is reached. In 
order to guarantee the high efficiency of the proposed SLS_NRB-
MDO method, the following aspects are researched in this work. 
First, three methods, i.e. the first order interval Taylor expansion 
method, the interval vertex theorem and the direct optimization 
approach, have been proposed to efficiently conduct the uncer-
tainty propagation in multidisciplinary system. Then, in order to 
evaluate the non-probabilistic reasonably in multidisciplinary sys-
tem, the expanded non-probabilistic set-theoretic stress–strength 
interference model and the volume ratio theory are introduced 
in this study. Furthermore, the translating distance based on the 
proposed non-probabilistic reliability index and the performance 
measure approach in SLS_NRBMDO is mathematically derived. Ap-
parently, SLS_NRBMDO is likely to converge in a few cycles, and 
therefore, the computational of efficiency will be much higher than 
the regular procedure where reliability analysis is applied directly 
with optimization. And the high efficiency is testified with one nu-
merical example and one engineering case.

Furthermore, considering the fact that there always exist some 
other types of non-probabilistic uncertainties in practical engi-
neering projects, such as ellipsoid model, hybrid model and so 
on, a further interesting issue to be investigated is extending 
the proposed methodology to other non-probabilistic models for 
uncertain-but-bounded uncertainties to improve the design opti-
mization efficiency for the complex structural systems.
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