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This paper presents a complex variable solution for the effective transport properties of composites with a doubly-periodic
array of fiber pairs. By using the centrosymmetry of the problem, the method of Rayleigh and Natanzon-Filshtinsky’s
approach can be simply extended to the problems with two fibers per unit cell. The infinite system constructed in this
paper only slightly complicates Rayleigh’s system for the problems with one fiber per unit cell. Approximate analytical
formulae of the effective transport properties for different fiber-pair arrays are obtained. The influence of pairwise
interaction in fiber pairs on the effective transport properties is discussed in the numerical examples. As a special case of a
doubly-periodic array of fiber pairs, effective transport property of composites with a triangular array of fibers is obtained.
The obtained approximate analytical formulae are written in a concise form with good accuracy, thus are convenient
for engineering application in most cases, except for those approaching the limit case of percolation when the perfectly
conducting fibers become touching. Besides the square array and hexagonal array, the triangular fiber array (similar to
carbon atom arrangement in graphene) is another special symmetric fiber array which results into transversely isotropic
effective property. Therefore, the present solution for the triangular array is an extension of those for the square array and
hexagonal array. The comparison of the results for the three symmetric fiber arrays reveals that the triangular fiber array
has the highest conductivity. In addition, accuracy of the present solution is analyzed in the numerical examples.
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1 Introduction

Effective properties of composites play an important role in the design of composite structures in applications. In particular,
effective transport properties such as thermal conductivity, dielectric constant and fluid permeability, as well as their math-
ematically analogous properties such as elastic modulus, are key parameters characterizing the macroscopic characteristics
of composites [46]. The problems of predicting the effective transport properties of composites from their microstructure
are valuable for designing and evaluation of composites, so they have attracted a lot of researchers [29,30,35,46]. Based on
their research works, the main framework for solving such a problem has been established. For example, numerical methods
including FEM are outlined in [30], and various numerical and analytical methods based on the multipoint correlation
functions are discussed in [46]. However, analytical solutions are still useful in disclosing the inherent law of the relation
of effective transport properties to microstructures. Additionally, analytical methods are more effective in solving some
specific problems involving imperfect interface [24], interface cracks [47] or two approaching inclusions [28], because it
needs particular tricks for numerical methods to obtain accurate results of fields with high gradient or singularity at hot
spots.

As for fiber-reinforced composites, or more generally an array of cylinders in matrix, fiber/cylinder distribution is one of
the key factors which influence the effective transport properties. Among all the analytical solutions, the classical Maxwell-
Garnett estimation [29] is valid for dilute composites. This estimations are based on a model of one fiber embedded in
infinite matrix, thus are without parameters reflecting fiber distribution. As a result, this model cannot consider properly the
fiber interaction, especially at a high fiber volume fraction. It can be proved that this model gives a lower bound of effective
transport property [18]. Another kind of analytical solutions is based on a composite model with fibers in a regular array,
such as square array, hexagonal array, rectangular array, rhombic array and general periodic array. Perrins et al. [36] and
McPhedran et al. [27] modified and extended Rayleigh’s solution [38] for square array and hexagonal array. Mityushev et al.
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[11,13,32] applied the method of functional equations to the square array and hexagonal array, and discussed two extreme
cases of porous materials and superconducting cylinders. Rylko [42] and Mityushev [33] also applied this method to the
cases of rectangular array of cylinders. Castro et al. [3] applied the method of functional equations [5] to the cases of square
array with imperfect interface between matrix and inclusions. Jiang et al. [21] presented a solution for general doubly-
periodic array by using Eshelby’s equivalent inclusion concept integrated with the results from the doubly quasi-periodic
Riemann boundary value problems. Rodriguez-Ramos et al. [16, 17, 26, 40, 41] applied an asymptotic homogenization
method (AHM) to solve the anti-plane elastic modulus, plane elastic modulus and the piezoelectric modulus for the cases
of arbitrary doubly-periodic arrays. Godin [15] developed a method based on the use of elliptic function for the cases
of general doubly-periodic arrays. Andrianov and Mityushev [1] pointed out that this method is related to the method of
Natanzon-Filshtinsky for conductivity problems [6,7]. The authors also developed an eigenfunction expansion-variational
method (EEVM) [51] and a series method [50] extended from Rayleigh’s solution to solve the effective conductivity for
general periodic arrays, in order to obtain approximate analytical formulae with high accuracy and in a concise form. As
all above models are with uniform regular fiber distributions, the influence of fiber clustering was not considered.

Fiber\particle clusters are common in composites [30]. The influence of Fiber\particle clustering was investigated in
existing works [10, 30, 44] by using random microstructure model. A fiber pair can be seen as the simplest fiber cluster
containing two fibers, so the model of fiber pair can be used to investigate the influence of fiber clustering to certain extent.
McPhedran et al. [28] and Radchik et al. [37] discussed the cases of a pair of fibers in infinite matrix. Reuben et al. [39]
discussed the cases of a chain of fiber pairs in infinite matrix. Rylko [43] applied the method of functional equations to
calculate the conductivity of a rectangular array of cylinder pairs and discussed the effect of polydispersity. To the best of
our knowledge, solution for the case of a general doubly-periodic array of fiber pairs has not been reported. This motivated
us to extend the complex variable solution [50] for array of sole fibers to a general doubly-periodic array of fiber pairs.
The present complex variable method [50] is expressed in a series form and based on the elliptic function theory, thus,
which is related to other solutions based on the elliptic function theory, such as the exact method of functional equations by
Mityushev et al. [11, 13, 32, 33, 42], and the solutions by Jiang et al. [21] and by Godin [15]. When the series is truncated
to finite order, an approximate solution is obtained.

It is worth mentioning that Mityushev and Gluzman [12, 14, 34] presented a universal method of functional equations
for more general cases that a unit cell contains any number of randomly-distributed fibers (disks). Recently, Andrianov and
Mityushev [1] outlined the method of functional equations, as well as the above-mentioned methods of Rayleigh, Natanzon–
Filshtinsky, and asymptotic homogenization approaches. They pointed out that the method of functional equations stands
out against other methods in exact solution to 2D problems with one circular inclusion per cell. This method in discrete
form is equivalent to the series method that was demonstrated in [42]. When one applies this method to calculate effective
conductivities of composites with doubly-periodic array of fibers, the same problem occurs as it does in the series method
[50], that is, the sum S2 used by Eq. (13) in [50]) is conditionally convergent. The reason is that the value of the sum
S2 is dependent on the summation sequence. For symmetric fiber arrays (such as hexagonal array, square array, rhombic
array and rectangular array), the sum S2 can be expressed by the Eisenstein summation (defined by Eq. (5.105) in [32] and
denoted differently by S∗

2 in [50]) and then can be calculated by the Eq. (5.107) in [32] (or Eq. (23’) in [43]). However, for
general doubly-periodic arrays without symmetry, the sum S2 cannot be simply expressed by the Eisenstein summation,
but it should be eliminated by using a supplementary equation [50]. Therefore, the problem of calculating the effective
conductivity of composites with a general doubly-periodic array of multiple fibers still remains to be solved.

In addition, as a special case of a doubly-periodic array of fiber pairs, a triangular array of sole fibers can be seen as a
hexagonal array of special fiber pairs. Besides square array [27] and hexagonal array [36], triangular fiber array (similar
to carbon atom arrangement in graphene) is another special symmetric fiber array which results into transversely isotropic
effective property. Therefore, triangular fiber array is of interest in engineering application. For example, this kind of
special symmetric array appears in 2D photonic crystals [8, 22], porous medium model [4] and nuclear reactor [2]. From
hexagonal array to square array to triangular array, the limit volume fraction of fibers decreases. Therefore, solving the
transport problem of composites with triangular array of fibers is helpful to investigate the influence of fiber-distribution
uniformity on effective transport properties. Additionally, all fibers are equal in the triangular fiber array. This nature makes
it possible to derive concise approximate analytical formulae of effective transport properties, as it does for hexagonal fiber
array and square fiber array [50]. Concise analytical formulae, as we know, are convenient for engineering application.
However, approximate analytical formulae or even numerical results of effective transport properties for triangular fiber
array have not been reported. This also motivated us to carry out the present work.

Without loss of generality, the effective transport properties discussed here refer to thermal conductivities. This paper
is organized as follows: In Sect. 2, basic equations of the problem are formulated in complex variables, and then the
complex potential in matrix contains a doubly-periodic array of fiber pairs is constructed and expanded into Laurent series.
In Sect. 3, calculation of two kinds of summations involved in the expansion of the complex potential is introduced. In
Sect. 4, fiber-matrix interface condition and unit-cell boundary condition of the problem are introduced, through which
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linear equations about the unknown expansion coefficients are derived. In Sect. 5, effective conductivities are calculated
by average field method, also a series of approximate analytical formulae of effective conductivities are given for different
fiber-pair arrays including the triangular fiber array. In Sect. 6, numerical examples are taken to verify the validity and
accuracy of the present solution, and to investigate the influence of pairwise interaction in fiber pairs. Finally, numerical
results of effective conductivities for the triangular fiber array are given and compared in Sect. 6.4.

2 Basic equations and the complex potential in matrix

Consider a composite with a doubly-periodic array of fiber pairs, whose transverse section is shown in Fig. 1. Each fiber is
of radius R. The doubly-periodic array of fiber pairs can be seen as two identical doubly-periodic arrays of fibers generated
by translating one doubly-periodic array of fibers by a complex translation δ. Two fundamental complex periods of the
array are denoted by ω1 and ω2, and then an arbitrary complex period ωrs of the doubly-periodic array can be expressed
by

ωrs = rω1 + sω2, (1)

where r and s are integers. Without loss of generality, unit area is assumed for the fundamental unit cell, that is

1

2i
(ω̄1ω2 − ω1ω̄2) = 1. (2)

The fibers have transversely isotropic conductivity and are placed in a matrix of isotropic conductivity. For steady-state
heat conduction in a media with isotropic conductivity k, the in-plane temperature field satisfies Laplace’s equation [20].
The temperature T, heat flux components {q1, q2} and heat transfer rate � can be formulated by a complex potential f (z)
and its derivative:

q1 − iq2 = −kf ′(z), (3a)

T = 1

2

[
f (z) + f (z)

]
, (3b)

� = −k

2i

[
f (z) − f (z)

]B

A
, (3c)

where i2 = −1, z = x1 + ix2 is a complex variable, the over bar denotes the complex conjugate, the prime denotes the
derivative with respect to z, [·]BA denotes the difference of the values of the bracketed function from point A to point B.

Fig. 1 Transverse section of a composite with a doubly-periodic array of fiber pairs. ABCD is aunit cell of arbitrary
shape containinga fiber pair. ω1 and ω2 are two fundamental complex periods. δ is a complex translation from one fiber
to another in the fiber pair.

The complex potential in each circular fiber region can be expressed in a Taylor series [51]. The matrix region surrounding
fibers are multiply connected, in which the complex potential will be constructed by using superposition method in the
following. The temperature, gradient and flux expressed by the constructed potential and its derivative should satisfy the
quasi-periodicity/periodicity condition, fiber-matrix interface condition and the boundary condition of prescribed external
gradient.
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If there is no fiber in matrix, the internal gradient in the matrix subjected to the external gradient H 0
j (j = 1, 2) should

be uniform. Therefore the complex potential fm(z) in the matrix contains fibers should include two parts:

fm(z) = A0z + fm0(z), (4)

where the first part is corresponding to the uniform internal gradient results from the external gradient, that is

A0 = H 0
1 − iH 0

2 . (5)

The second part in (4) is induced by the appearance of the two doubly-periodic arrays of fibers as depicted in Fig. 1, so it
can be divided into two parts:

fm0(z) = fm01(z) + fm02(z − δ), (6)

where fm01(z) and fm02(z − δ) are, respectively, induced by the appearance of the fibers located at ωrs and ωrs + δ.
Due to the centrosymmetry of the problem about the point located at δ/2, the derivatives of fm01(z) and fm02(z) satisfy
f ′

m01(z) = f ′
m02(−z). The constants in fm01(z) and fm02(z) do not influence the gradient, thus can be neglected, then it can

be obtained that

fm02(z) = −fm01(−z). (7)

Therefore, Eq. (6) can be rewritten as

fm0(z) = fm01(z) − fm01(−z + δ). (8)

Due to the periodicity with periods ωrs of the fiber array, fm01(z) can be expressed by a summation

fm01(z) = f0(z) +
∑
r,s

′f0(z − ωrs), (9)

where
∑′

r,s means the sum taken over all r2 + s2 �= 0, the same below. Then the second part in (4) can be expressed by a
summation:

fm0(z) = f0(z) − f0(−z + δ) +
∑
r,s

′ [f0(z − ωrs) − f0(−z + ωrs + δ)]. (10)

The complex potential f0(z − ωrs) is induced by the appearance of the fiber located at ωrs , which approaches 0 when
z − ωrs → ∞. Thus f0(z) can be expanded as follows:

f0(z) =
∞∑

n=1

An

1

zn
, (11)

where An are the unknown expansion coefficients. Therefore

fm0(z) =
∞∑

n=1

An

1

zn
−

∞∑
n=1

An

1

(−z + δ)n +
∑
r,s

′
[ ∞∑

n=1

An

1

(z − ωrs)
n −

∞∑
n=1

An

1

(−z + ωrs + δ)n

]
. (12)

Note that

1

(z − ωrs)
n = 1

(−ωrs)
n +

∞∑
j=1

(−1)j Cj
n+j−1

1

(−ωrs)
n+j

zj , (13a)

1

(−z + δ)n = 1

δn
+

∞∑
j=1

Cj
n+j−1

1

δn+j
zj , (13b)

1

(−z + δ + ωrs)
n = 1

(δ + ωrs)
n +

∞∑
j=1

Cj
n+j−1

1

(δ + ωrs)
n+j

zj , (13c)

with

Cj
n+j−1 = (n + j − 1)!

j !(n − 1)!
. (14)
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Then Eq. (12) can be expanded as

fm0(z) =
∞∑

n=1

An

(
1

z

)n

+
∞∑

n=1

An

∞∑
j=1

Cj
n+j−1

[
− 1

δn+j
+ (−1)j

∑
r,s

′ 1

(−ωrs)
n+j

−
∑
r,s

′ 1

(δ + ωrs)
n+j

]
zj

+
∞∑

n=1

An

[
− 1

δn
+
∑
r,s

′ 1

(−ωrs)
n −

∑
r,s

′ 1

(δ + ωrs)
n

]
. (15)

After neglecting the constant, Eq. (15) can be rewritten as

fm0(z) =
∞∑

n=1

An

1

zn
+

∞∑
n=1

An

∞∑
j=1

Cj
n+j−1 [(−1)n

Sn+j − En+j (δ)] zj (16)

with

Sk = Sk(ω1, ω2) =
∑
r,s

′ 1

ωk
rs

, k ≥ 2, (17)

Ek(δ) = Ek(ω1, ω2; δ) = 1

δk
+
∑
r,s

′ 1

(δ + ωrs)
k
, k ≥ 2. (18)

The calculations of the two summations will be discussed in Sect. 3. Note that the summation used here is different to the
Eisentein summation [48], because the summation sequence is not given. However, when k ≥ 3, they are equal, because
in these cases the summation is absolutely convergent and independent to the summation sequence [25].

With Eq. (16), the complex potential in matrix (4) can be written in the following Laurent series:

fm(z) =
∞∑

n=1

An

1

zn
+

∞∑
n=1

⎧⎨
⎩A0δ1,n +

∞∑
j=1

Aj Cn
j+n−1

[
(−1)j

Sj+n − Ej+n(δ)
]⎫⎬
⎭ · zn, (19)

where δ1,n is the Kronecker delta symbol, being unity for n = 1 and zero otherwise.
The constructed complex potential fm(z) expressed by Eqs. (4) and (12) is quasi-periodic, which will be proved in

Sect. 4.4. Therefore, the temperature gradient and heat flux fields expressed by its derivative satisfy the doubly-periodicity
conditions. The unknown coefficients in the Laurent expansion (19) of the complex potential will be determined by the
interface condition between fiber and matrix, and the unit-cell boundary condition in Sect. 4.

3 Calculation of the summations Sk and Ek(δ)

The calculation of the sum Sk defined by (17) are detailed in the references [19, 31], as well as in the previous paper [50].
Note that S2 is conditionally convergent, and S2k+1 = 0 for k ≥ 1.

Now let’s calculate the summation Ek(δ) defined by (18). When k = 2, E2(δ) is also conditionally convergent, which
is related to the Weierstrass ℘ function [19]:

℘(δ) = ℘(ω1, ω2; δ) = 1

δ2
+
∑
r,s

′
[

1

(δ − ωrs)
2 − 1

ω2
rs

]
. (20)

That is

℘(δ) = ℘(−δ) = E2(δ) − S2. (21)

When k ≥ 3, Ek(δ) is absolutely convergent. From (18) and (20), we have

Ek(δ) = (−1)k−2 1

(k − 1)!
℘(k−2)(δ) for k ≥ 3, (22)

where

℘ ′(δ) = d℘(δ)
dδ

, ℘ ′′(δ) = d2℘(δ)
dδ2

, ℘ ′′′(δ) = d3℘(δ)
dδ3

, ℘(k−2)(δ) = d(k−2)℘(δ)
dδ(k−2)

, (23)

and (k − 1)! = 1 × 2 × 3 × · · · × (k − 2) × (k − 1).
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Note that there exists the following equation [25]:

℘ ′2(δ) = 4℘3(δ) − 60S4℘(δ) − 140S6. (24)

Through deriving it, we have

℘ ′′(δ) = 6℘2(δ) − 30S4, (25)

and the following recursive formulae:

℘(k)(δ) = 12
k−3∑
j=0

Cj
k−3℘

(k−3−j)(δ)℘(j+1)(δ) for k ≥ 3. (26)

Then from (22) and (26), Ek(δ) (k ≥ 3) can eventually be expressed by ℘(δ) and ℘ ′(δ). The first four expressions are as
follows:

E3(δ) = −1

2
℘ ′(δ), (27a)

E4(δ) = 1

6
℘ ′′(δ) = ℘2(δ) − 5S4, (27b)

E5(δ) = − 1

12
℘ ′′′(δ) = −℘(δ)℘ ′(δ), (27c)

E6(δ) = 1

60
℘(4)(δ) = 2℘3(δ) − 18S4℘(δ) − 28S6. (27d)

The values of the two elliptic functions ℘(δ) and ℘ ′(δ) can be calculated directly in mathematical software Mathematica
[49], or from their Fourier Expansions [25].

4 Interface condition and boundary condition

4.1 Interface condition

Heat transfer rate � and temperature T expressed by the constructed complex potential and its derivative, should also
satisfy the fiber-matrix interface condition. For the case of perfect interface, the heat transfer rate and temperature across
the interface are continuous:

�f = �m, Tf = Tm, at |z| = R, (28)

where the subscripts “m” and “f” denote matrix and fiber, respectively. By substituting the complex potentials into (3), and
then into (28), the coefficient equations are obtained as [51]:

Ān = ηnR
2n

⎧⎨
⎩A0δ1,n +

∞∑
j=1

Aj Cn
j+n−1

[
(−1)j

Sj+n − Ej+n(δ)
]⎫⎬
⎭ , n = 1, 2, 3 . . . , (29)

where ηn is a constant equal to (km − kf)/(km + kf) for perfect interface. kf and km are the conductivities of fiber and
matrix, respectively. Note that the present problem is not centrosymmetric about the origin, thus both the odd terms and
even terms exist, which is different from Eq. (15) in Yan et al. [50].

For the cases of contact resistance interface and coating interface between fibers and matrix, Eq. (29) is the same, but
ηn is not a constant, which is given similarly in Yan et al. [50].

4.2 Boundary condition of prescribed external gradient

Because the coefficient equations (29) involve the conditionally convergent sums S2 and E2(δ), the expansion coefficients
cannot be determined by now. Thus, a supplementary equation is needed.

The complex potential fm(z) constructed in Sect. 2 is for the matrix in a composite under a prescribed external gradient
H 0

j , so its expansion coefficients in (19) must satisfy this boundary condition. Due to the periodicity, average gradient 〈Hj 〉
over any unit cell should be equal to the average gradient over the whole transverse section of the composite, and that
should be equal to the prescribed external gradient H 0

j . Therefore, considering Eq. (5), we have

〈H1〉 + i 〈H2〉 = H 0
1 + iH 0

2 = Ā0. (30)
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Equation (30) is a supplementary equation to the coefficient equations (29), which makes the solution complete.
Before applying the supplementary equation (30), the average gradient 〈Hj 〉 should be expressed by the coefficients in

(19), which will be completed in the following.

4.3 Relation of average gradient to average flux

Consider an arbitrary unit cell ABCD containing a fiber pair as shown in Fig. 1. The area and the boundary of the unit cell
are denoted by V and ∂V , respectively. Without loss of generality, the boundaries of the unit cell are always assumed to
be located at the matrix. The relation of the average gradient and average flux in complex form can be expressed by the
complex potential in matrix [50]:

〈q1〉 + i 〈q2〉 − km(〈H1〉 + i 〈H2〉) = km

V

i

2

∮
∂V

[fm(z) − f ′
m(z)z]dz, (31)

where

〈qi〉 = 1

V

∫
V

qidV , 〈Hi〉 = 1

V

∫
V

HidV , i = 1, 2. (32)

From (4) and (12), and according to the Residue theorem,∮
∂V

[fm(z) − f ′
m(z)z] dz = 2π i

{
Res [fm(z) − f ′

m(z)z, 0] + Res [fm(z) − f ′
m(z)z, δ]

} = 2π i · 4A1. (33)

If V = 1, Eq. (31) can be rewritten as

〈q1〉 + i 〈q2〉 − km (〈H1〉 + i 〈H2〉) = −km · 4πA1. (34)

The left side of (34) is the difference between the average fluxes over the unit cells with and without a fiber pair,
under the same average gradient 〈Hj 〉. It can be seen that such a difference is only related to the first coefficient A1 in the
coefficient equation (29).

4.4 Average flux over a unit cell

Consider again the unit cell ABCD of unit area in Fig. 1. Due to the periodicity, complex coordinates at the three corners
A, B, and C satisfy

zB − zA = ω2, zC − zB = −ω1, (35)

By application of the Green theorem and the periodicity of the flux field, the average flux over the unit cell in complex
form can be expressed by

〈q1〉 + i 〈q2〉 = �ABω1 + �BCω2, (36)

where �ABand �BC are the heat transfer rate � across boundaries AB and BC, respectively. From Eq. (3c), they can be
calculated from the complex functions at the corners:

�AB = kmIm [fm(zB) − fm(zA)] , �BC = kmIm [fm(zC) − fm(zB)] . (37)

According to the Weierstrass ς function [25]

ζ (z) = ζ (ω1, ω2; z) = 1

z
+
∑
r,s

′
(

1

z − ωrs

+ 1

ωrs

+ z

ω2
rs

)
, (38)

and Eq. (17a), we have

1

z
+
∑
r,s

′ 1

z − ωrs

= ζ (z) −
∑
r,s

′ 1

ωrs

− S2z, (39a)

1

z2
+
∑
r,s

′ 1

(z − ωrs)
2 = −ζ ′(z) + S2, (39b)

1

zn
+
∑
r,s

′ 1

(z − ωrs)
n = (−1)n−1 1

n!
ζ (n−1)(z), n ≥ 3. (39c)
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From Eq. (39), the potential fm(z) (4), (12) can be expressed by ζ (z) and its derivatives:

fm(z) = A0z +
∞∑

n=1

An

1

(n − 1)!

[
(−1)n−1

ς (n−1)(z) + ς (n−1)(z − δ)
]

−2A1

(∑
r,s

′ 1

ωrs

+ S2z

)
+ A1S2δ. (40)

Note that the series (39a, b) are not absolutely convergent because the sum S2 is conditionally convergent, which will be
dealt with in Subsect. 4.5. The sum

∑′
r,s

1
ωrs

from (39a) and (40) is also not convergent, but since it doesn’t appear in the
derivative of fm(z), it doesn’t affect the heat flux and gradient fields. The relation (40) can be considered as a generalization
of Filshtinsky’s representation [1,7] for a doubly-periodic array of sole fibers to the case of a doubly-periodic array of fiber
pairs.

Because Weierstrass ς function is quasiperiodic and all its derivatives are doubly-periodic, it can be obtained that

fm(zB) − fm(zA) = A0ω2 + 2A1

[
2ζ
(ω2

2

)
− S2ω2

]
, (41a)

fm(zC) − fm(zB) = A0(−ω1) + 2A1

[
−2ζ

(ω1

2

)
+ S2ω1

]
. (41b)

As we can see, the right sides of the two Eqs. (41a, b) are constants, so it is proved that constructed complex potential
fm(z) expressed by (4) and (12) is quasi-periodic. By substituting (41) into (37) and then into (36), one obtains that

〈q1〉 + i 〈q2〉 = kmĀ0 − 2km
(
πA1 + S̄2Ā1 − ε̄Ā1

)
, (42)

where

ε = ε(ω1, ω2) = 1

i

[
ς
(ω2

2

)
ω̄1 − ς

(ω1

2

)
ω̄2

]
. (43)

It can be seen from (42) that the average flux is only related to A0 (= H 0
1 + iH 0

2 ) and the first coefficient A1. The
values of ε for some typical arrays are listed in Yan et al. [50]. Note that the value of the conditionally convergent sum
S2 is dependent to the summation sequence. Therefore, for given external gradient H 0

j , the average flux and average
gradient calculated from the potential (40) are dependent to the summation sequence of S2. There exists a value of S2

in the constructed potential (40), which makes the average gradient meet the boundary condition, i.e., the supplementary
equation (30).

4.5 Complete coefficient equations

By substituting (34) and (42) into the supplementary equation (30), it is derived that the value of S2 which makes the
average gradient meet the boundary condition, satisfies:

S2 = π
Ā1

A1
+ ε. (44)

By substituting (44) into the coefficient equations (29), we obtain the complete coefficient equations without S2 and
E2(δ): ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ā1 = λη1

2π(1 + λη1)

⎧⎨
⎩A0 − A1[2ε + ℘(δ)] +

∞∑
j=2

Aj C1
j

[
(−1)j

Sj+1 − Ej+1(δ)
]⎫⎬
⎭

Ān = ηn

(
λ

2π

)n ∞∑
j=1

Aj Cn
j+n−1

[
(−1)j

Sj+n − Ej+n(δ)
]
, n ≥ 2

, (45)

where λ (= 2πR2) is the fiber volume fraction for V = 1. The coefficient equations (45) can be expressed in a vector and
matrix form, just as it is detailed in Yan et al. [50]. By applying a square truncation to order N , the first N expansion
coefficients in the potential fm(z) are obtained

It is worth noting that when δ is equal to the half of any of the periods, the considered case of a doubly-periodic array
of fiber pairs is reduced into the case of a doubly-periodic array of sole fibers with the fundamental periods halved.
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5 Effective conductivities

After the expansion coefficients are determined through the coefficient equations (45), the average flux and average gradient
can be calculated by (34) and (42). And then the effective conductivities 〈kjk〉 are calculated by using the average field
method: 〈

qj

〉 = − 〈
kjk

〉 〈Hk〉 , j, k = 1, 2. (46)

Detailed derivation of the formulae of the effective conductivities is given similarly in the previous paper [50], thus will
not be repeated here.

When an appropriate truncation to an enough high order for (45) is applied, high-order numerical results of desired
accuracy are obtained. When a truncation to finite order N is applied, approximate analytical formulae of the effective
conductivities of order N are obtained, which are given with a moderate length for different fiber-pair arrays in the following.

5.1 General doubly-periodic array of fiber pairs

For the case of a general doubly-periodic array of fiber pairs as shown in Fig. 1, the effective conductivities are anisotropic
in general. By a square truncation to order N, the approximate analytical formula in complex form is obtained as:

〈k11〉 + i 〈k12〉 = km
aN

bN

, (47)

where the parameters aN and bN are from square truncation of the coefficient equation (45) for order N. When N = 1,

a1 = 1 −
[

1 − 1

π
(2ε̄ + ℘̄) + 1

4π2
|2ε + ℘|2

]
η2

1λ
2, (48a)

b1 = (1 + η1λ)2 − 1

4π2
|2ε + ℘|2η2

1λ
2. (48b)

When N = 2,

a2 = 1 −
[

1 − 1

π
(2ε̄ + ℘̄) + 1

4π2
|2ε + ℘|2

]
η2

1λ
2 − 1

2π3
|E3|2 η1 η2 λ3 − 9

16π4
|E4 − S4|2]η2

2λ
4

+ 1

64π6

[∣∣2E2
3 − 3(2ε + ℘) (E4 − S4)

∣∣2 + 12π (E4 − S4)
(
2Ē2

3 − 3 (2ε̄ + ℘̄)
(
Ē4 − S̄4

))
+ 36π2|E4 − S4|2

]
η2

1η
2
2λ

6, (49a)

b2 = (1 + η1λ)2 − 1

4π2
|2ε + ℘|2η2

1λ
2 − 1

2π3
|E3|2 η1 η2 λ3 −

[
1

2π3
|E3|2η2

1
η2 + 9

16π4
|E4 − S4|2η2

2

]
λ4

− 9

8π4
|E4 − S4|2 η1 η2

2λ
5 + 1

64π6

[∣∣2E2
3 − 3(2ε + ℘)(E4 − S4)

∣∣2 − 36π2|E4 − S4|2
]
η2

1η
2
2λ

6, (49b)

where ℘ and En (n = 3, 4, 5, . . . ) denote ℘(δ) and En(δ)for short, respectively. Among all the parameters in the formulae
(48) and (49), ηn (n = 1, 2, 3, . . . ) are the material parameters, λ is the total fiber volume fraction, ε, Sn, ℘, and En are
the geometric parameters. Among the four geometric parameters, ε and Sn are related to the doubly-periodicity of fiber
distribution, while ℘ and En are additionally related to the fiber clustering. ε, Sn, ℘, and En are complex numbers for
general doubly-periodic arrays and generally-oriented fiber pairs. The calculations of En are discussed in Sect. 3.

The four geometric parameters are the functions of the fundamental complex periods (ω1 and ω2) and the complex
translation δ, and then aN and bN in (47) are the functions of ω1, ω2, and δ. When an doubly-periodic array is rotated by
an angle of 90 degrees, that is, ω1, ω2, and δ are replaced by iω1, iω2, and iδ, the directions of the effective conductivities
are rotated by an angle of 90 degrees, correspondingly. Therefore, it can be derived as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
〈k11〉 + i 〈k12〉 = km

aN (ω1, ω2, δ)
bN (ω1, ω2, δ)

〈k22〉 − i 〈k12〉 = km
aN (iω1, iω2, iδ)
bN (iω1, iω2, iδ)

. (50)
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5.2 Orthotropic doubly-periodic array of fiber pairs

For orthotropic fiber arrays symmetric about x1 axis or about x2 axis, such as the rectangular or rhombic array of fiber pairs
as shown in Fig. 2a, b, we have

ε̄ = ε, (51)

S̄2m = S2m, S2m−1 = 0, for m ≥ 2, (52)

℘(δ) = ℘(δ), (53)

E2m(δ) = E2m(δ), for m ≥ 2, (54)

E2m−1(δ) =
{

E2m−1(δ), arrays symmetric about x1 axis
−E2m−1(δ), arrays symmetric about x2 axis,

for m ≥ 2. (55)

Therefore, it can be concluded that for such orthotropic fiber arrays, the geometric parameters ε, S2m, ℘(δ), and E2m(δ)
are real. E2m−1(δ) are real for arrays symmetric about x1 axis, while are pure imaginary for arrays symmetric about x2 axis.

Fig. 2 Two kinds of orthotropic doubly-periodic array of fiber pairs: (a) Rectangular array of fiber pairs;
(b) Rhombic array of fiber pairs. The complex period ω1 is parallel to the x1 axis.

For fiber arrays symmetric about x1 axis, all the geometric parameters are real, and the coefficient equation (45) can be
simplified [50]. As a result, the approximate analytical formula of the transverse effective conductivities can be written in
the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈k11〉 = 〈
k11(ε, S4, S6, ℘, ηn)

〉 = km

cN

(
1 − η1λ + 2ε+℘

2π
η1λ

)
+ dNη1λ

3

cN

(
1 + η1λ + 2ε+℘

2π
η1λ

)
+ dNη1λ3

〈k22〉 = k2
m〈

k11(ε, S4, S6, ℘,−ηn)
〉

〈k12〉 = 0,

n = 1, 2, 3, . . . , N, (56)

where the parameters cN and dN are from square truncation of the coefficient equation (45) for order N. It can be seen from
(56) that the effective conductivities in two principle directions satisfy the reciprocal relation [23,36], which also holds for
orthotropic arrays of sole fibers [50].

When N = 1, it is obtained that c1 = 1, d1 = 0. Then the obtained first order approximate analytical formula is

〈k11〉 = km
1 − η1λ + 2ε+℘

2π
η1λ

1 + η1λ + 2ε+℘

2π
η1λ

, (57)

which can be seen as a further modification of the first order approximate analytical formula [50] for orthotropic array of
sole fibers, by introducing the parameter ℘ to consider the influence of the fiber clustering. The latter is a modification of
the classical Maxwell-Garnett estimation [29], by introducing the parameter ε to consider the influence of the orthotropic
fiber distribution. When N = 2,

c2 = 1 + 3

4π2
(E4 − S4) η2λ

2, d2 = − 1

4π3
E2

3η2. (58)

When N = 3,

c3 = c2 + 5

4π3
(E6 + S6) η3λ

3 − 3

16π5

(
4E2

5 − 5E4E6 + 5E6S4 − 5E4S6 + 5S4S6
)
η2η3λ

5, (59a)

www.zamm-journal.org C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



322 P. Yan et al.: Effective transport properties of composites

d3 = d2 − 3

16π4
(E4 + S4)

2
η3λ

− 1

64π6

[
9E3

4 + 9E2
4S4 − 24E3E5S4 − 9S3

4 − 3E4
(
8E3E5 + 3S2

4

)+ 20E2
3 (E6 + S6)

]
η2η3λ

3. (59b)

In contrast, for fiber arrays symmetric about x2 axis, E2m−1(δ) are pure imaginary, the simplification of the coefficient
equation (45) provided similarly in Yan et al. [50] is not applicable. However, the arrays symmetric about x2 axis can always
be rotated to be symmetric about x1 axis, by an angle of 90 degrees. Corresponding to the rotation, the geometric parameters
ε, S2m, ℘(δ), E2m(δ), and E2m−1(δ) in Eqs. (56)–(59) should be replaced by −ε, (−1)mS2m, −℘(δ), (−1)mE2m(δ), and
i(−1)m−1E2m−1(δ), respectively.

5.3 Triangular array of fibers

As shown in Fig. 3c, a triangular array of sole fibers can be seen as a hexagonal array of special fiber pairs. The
two fundamental periods and the complex translation satisfy ω2 = eiπ/3ω1 and δ = (ω1 + ω2)/3. Such a special array
is symmetric about x2 axis and rotationally symmetric by 120 degrees. We have ε = (ei2π/3)2ε, S2m = (ei2π/3)2mS2m,
℘(δ) = (ei2π/3)2℘(δ), and Em(δ) = (ei2π/3)mEm(δ), thus ε = 0, ℘(δ) = 0, S2m = 0 for 2m �= 6l (m ≥ 2, l ≥ 1) and
Em(δ) = 0 for m �= 3l (m ≥ 3, l ≥ 1). Additionally, from (24) and (27), we have S6 = − 1

35E2
3 . Considering these properties

of the geometric parameters, the approximate analytical formulae can be written as

〈k12〉 = 0, 〈k11〉 = 〈k22〉 = km
cN (1 − η1λ) + dNη1λ

3

cN (1 + η1λ) + dNη1λ3
, (60)

It can be seen that the transverse conductivity is isotropic, which agrees with the prediction from the rotational symmetry
of the triangular array. When the order N = 1, it can be obtained that c1 = 1, d1 = 0. The obtained first order approximate
analytical formula is exactly the classical Maxwell-Garnett estimation [29]:

〈k11〉 = 〈k22〉 = km
1 − η1λ

1 + η1λ
. (61)

For order N = 4,

c4 = 1 − 225

1568π6
E4

3η2η4λ
6, d4 = 1

4π3
E2

3η2, (62)

For order N = 8,

c8 = c4 + 1

224π9
E6

3(35η4η5 + 2η2η7)λ9 − 225

831014912π12
E8

3(373030η5η7 + 131769η4η8)λ12

+ 9801

87808π15
E10

3 η7η8λ
15 + 641731205

93073670144π18
E12

3 η2η4η5η7λ
18

− 1099917225

93073670144π21
E14

3 η2η4η7η8λ
21 + 255957890096205

49327555997597696π24
E16

3 η4η5η7η8λ
24, (63a)

d8 = d4 − 169

15680π6
E4

3η5λ
3 + 1

3136π9
E6

3η8λ
6 + 123245

4917248π12
E8

3η2η4η5λ
9

− 1

16620298240π15
E10

3 η2(369442766η5η7 + 127765125η4η8)λ12

+ 1

14520489728π18
E12

3 (2429045η4η5 + 421654016η2η7)η8λ
15

+ 783272169

930736701440π21
E14

3 η5η7η8λ
18 + 135586583950205

197310223990390784π27
E18

3 η2η4η5η7η8λ
24, (63b)

where E3 = −11.5449i. It can be seen that, cN and dN contain only the terms λl which have l divisible by three.
Interestingly, comparing the present approximate analytical formula (60) for triangular array (Fig. 3c) with those [50]

for square array (Fig. 3b) and hexagonal array (Fig. 3a), we can see that they have similar forms. The difference among
them reflects different symmetric characteristics of the three special symmetric arrays.
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Fig. 3 Three special symmetric fiber arrays: (a) Hexagonal array; (b) Square array; (c) Triangular array.

6 Comparisons of results and discussions

6.1 Comparisons with the known formulae

As mentioned in the introduction, Rylko [43] applied the method of functional equations to calculate the conductivity of
a rectangular array of cylinder pairs and obtained approximate analytical formulae of effective conductivities of perfectly
conducting cylinders. In order to compare the present formulae with the known formulae (Eqs. (25), (26) in [43]), the
conjugation of the approximate analytical formula (47) is expanded into Taylor series

〈k11〉 − i 〈k12〉
km

= 1 − 2η1 λ + 1

π
(2ε + ℘)η2

1λ
2

+ 1

2π2

[
2π(2ε̄ + ℘̄ − 2ε − ℘) − |2ε + ℘|2] η3

1λ
3 + O(λ4). (64)

This formula is for a general doubly-periodic array of generally-oriented fiber pairs.
For a rectangular array of generally-oriented fiber pairs, ε̄ = ε, then Eq. (64) is rewritten as

〈k11〉 − i 〈k12〉
km

= 1 − 2η1 λ + 1

π
(2ε + ℘)η2

1λ
2 + 1

2π2

[
2π(℘̄ − ℘) − |2ε + ℘|2] η3

1λ
3 + O(λ4). (65)

For a rectangular array of fiber pairs symmetric about x1 axis, ℘̄ = ℘ in addition, then Eq. (65) becomes

〈k11〉 − i 〈k12〉
km

= 1 − 2η1 λ + 1

π
(2ε + ℘)η2

1λ
2 − 1

2π2
(2ε + ℘)2η3

1λ
3 + O(λ4), (66)

where for a square array, ε = 0 in addition.
Note that η1 = −1 for perfectly conducting cylinders (fibers). Considering the relations of the different parameters and

comparing Eqs. (65), (66) with the Eqs. (25), (26) in [43], it can be concluded that, for the case of rectangular array of fiber
pairs symmetric about x1 axis, the present approximate analytical formula coincides with the formula (25) in [43].

6.2 Validity and accuracy

In order to verify the validity and accuracy of the present solutions, variations of effective conductivities with the truncation
order N for different fiber arrays are listed in Table 1. Perfect fiber-matrix interface is considered. The fiber-matrix
conductivity ratio kf/km = 50 or 120 for the convenience of comparing with available results in the references [17,21,36,51].
For different fiber arrays, the limiting volume fractions, λlim, corresponding to the case of fibers touching with each other,
are also given in the table. With the volume fraction, λ, approaching the limiting value, the truncation order N required to
reach a given accuracy increases. In Table 1, volume fractions are chosen to obtain convergent results to the accuracy shown
in the table within N = 20. It can be seen that such volume fractions are very close to the limiting values. The underlined
values in Table 1 are calculated from (49), (59), and (63), from which high accuracy of the approximate analytical formulae
can be observed.

Note that a doubly-periodic array of sole fibers can be seen as a special case of a doubly-periodic array of fiber pairs
with one of the fundamental periods doubled, so the present solution is also applicable for a doubly-periodic array of sole
fibers, such as the hexagonal array, square array and rhombic array. Perfect agreement can be seen with the results by
Perrins et al. [36] and Jiang et al. [21], as well as the results by using EEVM [51] and AHM [17].
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6.3 Influence of the fiber pair

A fiber pair can be seen as a fiber cluster containing two fibers. The influence of fiber/particle clustering is investigated
in existing works [10, 30, 44] by using random microstructure model. In the present study using periodic model, the fiber
clusters, i.e. fiber pairs, are in a fixed doubly-periodic array, in order to investigate the influence of pairwise interaction in
fiber pairs, separately.

Two kinds of orthotropic doubly-periodic fiber-pair arrays: rectangular array of fiber pairs (Fig. 2a) and rhombic array
of fiber pairs (Fig. 2b), are taken for example. As shown in Fig. 2, ω1 and δ are real, ω2 = i

2ω1 for the rectangular array in

Fig. 2a and ω2 =
√

2
2 ei π

4 ω1 for the rhombic array in Fig. 2b. Initially, δ = 1
2ω1, all the fibers are in a square array (Fig. 2a)

and in a rotated square array (Fig. 2b), so the effective conductivities in two orthotropic directions are the same. With
the two fibers in fiber pairs approaching, variations of dimensionless effective conductivities are depicted in Fig. 4a and
b at different fiber volume fraction, for the two fiber-pair arrays, respectively. The fiber-matrix conductivity ratio kf/km =
50. The distance of the pair of fibers is equal to δ, whose minimum value is 2R when the pair of fibers comes to contact.

Therefore, 1
2 ≤ 1 − δ

ω1
≤ 1 −

√
2λ
π

1
ω1

, where ω1 is determined by (2). It can be seen from Fig. 4 that for both of the two
fiber-pair arrays the effective conductivity along the fiber-pair orientation increases obviously, and it is more obvious as the
fiber volume fraction increases. In contrast, the effective conductivity perpendicular to the fiber-pair orientation remains
almost constant (decreases a little bit). That is, clustering of high-conductivity fibers increases the overall conductivity of
composites, especially when fiber volume fraction is high.

Fig. 4 Variations of dimensionless effectiveconductivities with two fibers in fiber pairs approachingfor different fibervol-
ume fraction, for two kinds of orthotropic doubly-periodic fiber-pairarrays: (a) Rectangular array of fiber pairs (Fig. 2(a));
(b) Rhombic array of fiber pairs (Fig. 2(b)). δ is equal to the distance of the two fibers in fiber pairs. Fiber-matrix
conductivity ratio kf /km = 50.

6.4 Triangular fiber array

Triangular fiber array (Fig. 3c) is another special symmetric array besides the square array (Fig. 3b) and hexagonal array
(Fig. 3a) which results into transversely isotropic effective property. From hexagonal array to square array to triangular
array, the fiber-distribution uniformity and limiting volume fraction λlim decrease. The limiting volume fractions for the
three fiber arrays are listed in Table 1. In Fig. 5, variations of the dimensionless effective conductivities for the three fiber
arrays with fiber volume fraction λ are shown and compared with the experimental data [45] of fiber glass reinforced
plastics (kf/km = 4.4) and graphite fiber reinforced plastics (kf/km = 666). The upper bound and lower bound are due to
Hashin and Shtrikman [18]. It can be seen from Fig. 5 that the effective conductivities predicted for the three fiber arrays
are within the two bounds. The effective conductivity increases rapidly with the volume fraction approaching the limiting
value. The reason is that when high-conductivity fibers approach to contact with each other, they tend to produce a path of
heat flow [9] and this would contribute to an increase in the effective conductivity. At a volume fraction within the limiting
values, the effective conductivity for the triangular array is larger than that for the square array, and that for the square
array larger than the hexagonal array. That is, the effective conductivity increases with the decrease of the fiber-distribution
uniformity.

In Table 2, values of dimensionless effective conductivity for the triangular array are listed for various values of the
fiber-matrix conductivity ratio kf /km and various fiber volume fractions λ. Table 3 gives the minimum truncation order N
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Table 2 For the triangular array, values of dimensionless effective conductivity for various values of the fiber-matrix conductivity ratio
kf/km and various fiber volume fractions λ. The limiting volume fraction of fiber is 0.60460 when fibers are in contact with each other.

<k11>/km = <k22>/km

λ kf/km = 2 kf/km = 3.5 kf/km = 5 kf/km = 10 kf/km = 20 kf/km = 50 kf/km = 100 kf/km = �

0.1 1.0690 1.1177 1.1429 1.1784 1.1991 1.2128 1.2176 1.2225

0.2 1.1430 1.2507 1.3091 1.3940 1.4457 1.4804 1.4927 1.5054

0.3 1.2230 1.4043 1.5082 1.6679 1.7704 1.8418 1.8676 1.8945

0.4 1.3104 1.5877 1.7595 2.0460 2.2468 2.3957 2.4515 2.5108

0.46 1.3674 1.7186 1.9504 2.3665 2.6838 2.9349 3.0327 3.1391

0.5 1.4075 1.8181 2.1037 2.6517 3.1052 3.4898 3.6462 3.8210

0.52 1.4283 1.8726 2.1910 2.8283 3.3852 3.8809 4.0892 4.3268

0.54 1.4497 1.9308 2.2876 3.0382 3.7408 4.4085 4.7022 5.0474

0.56 1.4718 1.9934 2.3959 3.2961 4.2192 5.1839 5.6393 6.2016

0.58 1.4944 2.0615 2.5193 3.6296 4.9297 6.5217 7.3781 8.5488

0.59 1.5060 2.0979 2.5885 3.8422 5.4605 7.7331 9.1213 11.2521

0.6 1.5178 2.1362 2.6643 4.1074 6.2641 10.1902 13.4008 20.4111

0.604 1.5225 2.1521 2.6969 4.2375 6.7657 12.6223 19.6251 57.2348

0.6045 1.5231 2.1541 2.7011 4.2552 6.8453 13.1973 21.8799 140.8420

0.60459 1.5233 2.1545 2.7019 4.2585 6.8602 13.3223 22.5019 450.5

Table 3 For the triangular array, the minimum truncation order N of the solution required to obtain effective conductivity to the accuracy
quoted in Table 2.

N

λ kf/km = 2 kf/km = 3.5 kf/km = 5 kf/km = 10 kf/km = 20 kf/km = 50 kf/km = 100 kf/km = �

0.1 1 2 2 2 2 2 2 2

0.2 2 2 2 2 2 2 2 2

0.3 2 2 5 5 5 5 5 5

0.4 2 5 5 7 8 8 8 8

0.46 5 7 8 8 10 10 10 10

0.5 5 8 10 11 11 13 13 13

0.52 5 9 10 13 13 14 14 14

0.54 7 10 11 13 16 16 16 17

0.56 8 11 13 16 19 20 20 22

0.58 8 13 16 22 25 28 28 31

0.59 8 14 19 25 31 37 37 40

0.6 10 16 22 34 46 58 64 73

0.604 10 16 25 43 73 121 151 211

0.6045 10 16 25 46 85 175 265 523

0.60459 10 16 25 46 88 202 367 1.5 × 103
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Fig. 5 The dimensionless effectiveconductivities are shown as a function of fiber volume fraction λ, for three kinds of
special symmetricfiber arrays (Hexagonal array, square array and triangular array), and compared with the experimental
data [45]: (a) fiber glass reinforced plastics (kf /km = 4.4); (b) graphite fiber reinforced plastics (kf /km = 666). The
upper bound and lower bound are due toHashin and Shtrikman [18].

of the solution required to obtain effective conductivity to the accuracy quoted in Table 2. It can be seen that the required
truncation order N increases with the volume fraction, λ, approaching the limiting value (λlim = 0.60460) and with the
increase of the fiber-matrix conductivity ratio kf/km. Table 3 also gives a reference to determine the region of applicability
of the approximate analytical formulae (60)-(63).

7 Conclusions

A complex variable method is proposed to calculate effective transport properties of composites with a doubly-periodic
array of fiber pairs. By using the centrosymmetry of the problem, the method of Rayleigh and Natanzon-Filshtinsky’s
approach can be simply extended to the problems with two fibers per unit cell. The infinite system constructed in this
paper only slightly complicates Rayleigh’s system for the problems with one fiber per unit cell. Approximate analytical
formulae of effective transport properties with moderate length for different fiber-pair arrays are obtained. In particular,
an approximate analytical formula for the triangular fiber array is obtained, which is an extension of those for the square
array and hexagonal array. Triangular fiber array is another special symmetric fiber array which results into transversely
isotropic effective property, thus is of interest in engineering application.

Numerical results reveal that clustering of high-conductivity fibers increases the overall conductivity of composites,
especially when fiber volume fraction is high. The comparison of the results for the three special symmetric fiber arrays
reveals that the triangular fiber array has the highest conductivity. The effective conductivity increases with the decrease
of the fiber-distribution uniformity. In addition, high accuracy and validity of the present approximate analytical formulae
is verified in the numerical examples.

Though the solutions are derived and discussed for the case of perfect fiber-matrix interface, they can be easily extended
and applied to the cases of contact resistance interface and coating interface between fiber and matrix.
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