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Abstract The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation-
time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model
to resolve intermittent behaviors on small scales in isotropic turbulent flows. The high-
order scaling exponents of the velocity structure functions, the probability distribution
functions of Lagrangian accelerations, and the local energy dissipation rates are investi-
gated. The self-similarity of the space-time velocity structure functions is explored using
the extended self-similarity (ESS) method, which was originally developed for velocity
spatial structure functions. The scaling exponents of spatial structure functions at up
to ten orders are consistent with the experimental measurements and theoretical results,
implying that the LBM can accurately resolve the intermittent behaviors. This valida-
tion provides a solid basis for using the LBM to study more complex processes that are
sensitive to small scales in turbulent flows, such as the relative dispersion of pollutants
and mesoscale structures of preferential concentration of heavy particles suspended in
turbulent flows.
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1 Introduction

Turbulent flows are characterized by a broad range of both time and space scales, with inter-
mittency occurring on small scales. It is well known that some important processes in turbulent
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flows are very sensitive to the intermittent behaviors. The sling effects or singularities in the
concentration field of rain droplets in warm clouds are one such example, whereby particles
may be accelerated in the regions with locally extremely high dissipation rates and collide with
other particles, leading to rapid rain formation[1]. The probability of singularities in the con-
centration field is determined by the probability of large and persistent flow velocity gradients.
The intermittency on small scales leads to non-Gaussian properties of the quantities, such as
the fluid velocity derivative, the local kinetic energy dissipation rate, and the acceleration of
fluid particles with higher probabilities of rare events. To investigate different roles played
by the motions on various scales in the transport and mixing of materials in turbulent flows,
we need to understand the physical properties of the turbulent motions on different scales[2].
For example, the energy-containing large-scale motions determine the transport of heavy par-
ticles in turbulent flows, while the small-scale motions with high enstrophy play crucial roles
in the formation of preferential concentration of heavy particles[3]. Direct numerical simulation
(DNS) is a powerful tool for understanding the full scales of turbulent motions by solving the
Navier-Stokes equations[4]. Based on the kinetic theory of the Boltzmann equation, the lattice
Boltzmann method (LBM) has become a popular tool in computational fluid dynamics (CFD)
in the last two decades for solving various fluid problems, including turbulent flows and two-
phase flows[5]. Using the LBM, we solve the first-order equation for the mesoscopic particle
distribution function and get the macroscopic hydrodynamic variables from the particle distri-
bution function. The LBM can recover the Navier-Stokes equations at low Mach numbers[6–7].
The advantages of the LBM over conventional CFD methods include low numerical dissipation
and dispersion[8]. The ability of the LBM to resolve turbulent flow motions has been assessed
by comparing it with the highly accurate pseudospectral (PS) method. Chen et al.[9] compared
the energy spectra of decaying three-dimensional isotropic turbulent flows with those obtained
from the PS method. The energy spectra from the two methods are in good agreement with
each other at low wavenumbers. Peng et al.[10] compared the instantaneous velocity and vor-
ticity fields, total energy and energy spectrum, the dissipation rate, the root-mean-squared
(RMS) pressure fluctuation, the pressure spectrum, and the skewness and flatness of the veloc-
ity derivative obtained from the LBM with those obtained from the PS method. The results
from both methods agree well with each other except for the pressure fluctuation and pressure
spectrum. Eggels[11] performed a DNS and a large-eddy simulation (LES) of turbulent flows
in a channel and in a baffled stirred tank reactor, respectively, using the LBM. He produced
results about the mean velocity profile and RMS velocity profile in the channel flow that are
consistent with the classic numerical results of Kim et al.[12]. The mean and RMS profiles of the
radial and axial velocities in the LES are in good agreement with the experimental data in the
literature. Dorschner et al.[13] used the entropic LBM to model turbulent flows with complex
boundaries, and they found that the mean and RMS velocity profiles are in good agreement
with spectral element DNS and experimental data. Wang et al.[14] compared the LBM and the
discrete unified gas-kinetic scheme (DUGKS) for DNS of decaying isotropic turbulent flows and
Kida vortex flows at low and moderate Reynolds numbers. The velocity field, energy spectrum,
dissipation rate spectrum, velocity derivative skewness, and flatness were compared. These
studies mainly focused on low-order statistics such as the mean and RMS velocity and the
energy spectrum. The studies demonstrated that the LBM is an alternative to the conventional
method for turbulence simulations. The objective of this study is to further assess the predictive
capability of the LBM on high-order statistics in isotropic turbulent flows. For this purpose, we
shall mainly focus on the scaling exponents of velocity structure functions at up to ten orders,
the probability density functions (PDFs) of Lagrangian accelerations of fluid particles, and the
local kinetic energy dissipation rates.

The remainder of this paper is organized as follows. In Section 2, the lattice Boltzmann
scheme and large-scale forcing are introduced. In Section 3, the scaling exponents of the velocity
structure functions, the self-similarity of two-point, two-time space-time velocity structure func-
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tions, and the PDFs of the acceleration and local kinetic energy dissipation rate are discussed.
Finally, conclusions are presented in Section 4.

2 Numerical schemes

2.1 Lattice Boltzmann simulation

In this study, we shall use the LBM coupled with the multiple-relaxation-time (MRT) colli-
sion model[15] and the three-dimensional 19-discrete-velocity (D3Q19) model[6] to simulate the
forced isotropic turbulent flows in a three-dimensional periodic domain. At each lattice point xj

(j represents an arbitrary discrete lattice node) and time t, the mesoscale distribution function
f(xj , t) is governed by[15]

f(xj + eαδt, t + δt) = f(xj , t) − M−1 · S · (m(xj , t) − meq(xj , t)), (1)

where eα(α = 0, 1, · · · , 18) represents 19 discrete velocities in three dimensions in the present
study, the vector f(xj , t) = (fα(xj , t), α = 0, 1, · · · , 18), and δt is the time step. S is the
diagonal relaxation matrix, and its diagonal elements represent the relaxation rates. m(xj , t)
and meq(xj , t) are vectors with 19 components and represent the moments, and meq(xj , t)
denotes the equilibrium moment. M is the 19 × 19 matrix transforming f(xj , t) from the
discrete velocity space to the moment space m(xj , t). For details about the construction of
M , m(xj , t), and meq(xj , t), please refer to d’Humières et al.[15]. The product M · M−1

is diagonal. Thus, M−1 can be computed easily. The transformations between f(xj , t) and
m(xj , t) are

{

m = M · f ,

f = M−1 · m.
(2)

The D3Q19 discrete velocity model can be expressed as[6]

eα =











(0, 0, 0), α = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1), α = 1, 2, · · · , 6,

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), α = 7, 8, · · · , 18.

(3)

The macroscopic variables are obtained from the moments of the distribution function
f(xj , t). The fluid density fluctuation δρf is

δρf =

18
∑

α=0

fα, (4)

and the density is

ρf = ρf0 + δρf (5)

with the mean density ρf0 = 1. The momentum ρf0u is

ρf0u =

18
∑

α=0

fαeα. (6)

2.2 Spectral forcing in the LBM

To obtain statistically steady quantities, we shall add a random force F as a power input to
stir the fluid at large scales and to maintain the turbulent intensity. The forcing method used
in this work was developed by Alvelius[16]. This random volume force F is constructed in the
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spectral space, where it acts within prescribed small wavenumbers. The force is constructed to
be divergence free, ∇ · F = 0, to prevent it from affecting the pressure directly. The random
force constructed in the spectral space is transformed into the physical domain by using the
inverse Fourier transform and is then added on the right-hand side of Eq. (1). The force Φα at
the direction α is

Φα(x, t) = ωαδt
eαiFi(x, t)ρf0

c2
s

, i = 1, 2, 3, (7)

where the weight coefficients are ω0 = 1/3, ω1−6 = 1/18, and ω7−18 = 1/36, the speed of sound
is cs =

√

1/3, and eαi denotes the component of eα along the i-axis (i = 1, 2, 3).

3 Numerical results and discussion

3.1 Parameter setting

Isotropic turbulent flows at different Reynolds numbers are carried out in a cubic box with
periodic boundary conditions. Grid numbers are 128×128×128, 256×256×256, and 512×512×
512, and the corresponding Taylor’s Reynolds numbers Reλ are 40, 112, and 184, respectively.
The resolution of the turbulent flows is ηkmax > 1.5. Table 1 gives the parameters used in the
simulations. The power input Pinput is balanced by the dissipation rate. Therefore, ǫ = Pinput.
The Kolmogorov length scale is η = (ν3/ǫ)1/4, where ν is the kinematic viscosity. In Fig. 1, the
normalized energy spectrum E and the dissipation spectrum D are given at Taylor’s Reynolds
number Reλ = 184. At the same time, the forcing spectrum is also given. The line with a −5/3
slope denotes an inertial subrange when the flow is in a statistically steady state.

Table 1 Parameter setting of the forced turbulent flows

Case Grid Reλ Pinput(ǫ) ν ηkmax

1 128 × 128 × 128 40 1.95 × 10−6 1.25 × 10−2 3.138
2 256 × 256 × 256 112 9.78 × 10−7 3.94 × 10−3 1.589
3 512 × 512 × 512 184 6.11 × 10−8 1.56 × 10−3 1.576

Fig. 1 The energy spectrum E = E(k)/(ε
2

3 η−
5

3 ) (solid line), dissipation spectrum D = D(k)/(εη)

(dash-dot-dotted line), and forcing spectrum F = F (k)/(ε
2

3 η−
1

3 ) (solid line with open circles)
at Reλ = 184. The dashed line with the −5/3 slope denotes the inertial subrange
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3.2 Two-point correlation functions

In isotropic turbulent flows, the longitudinal autocorrelation function f(r) and the transverse
autocorrelation function g(r) have the following relationship due to the continuity equation:

g(r) = f(r) +
r

2

∂f(r)

∂r
, (8)

where f(r) = 〈u1(x + e1r)u1(x)〉/
〈

u2
1

〉

and g(r) = 〈u2(x + e1r)u2(x)〉/
〈

u2
2

〉

. u1 is along the
e1-axis, and u2 is perpendicular to e1.

We can use the above theoretical relationship (8) to validate our simulation results. In
Fig. 2, g′(r) denotes the transverse autocorrelation function, based on Eq. (8) and f(r) from the
numerical simulation. g′(r) is in excellent agreement with g(r) from the numerical simulation
at small scales. There is some deviation between g′(r) and g(r) at larger scales. This deviation
was also found in the simulation by Cate et al.[17].

'

'

Fig. 2 The longitudinal correlation function f(r) and transverse correlation function g(r) in turbulent
flows of Case 2. g′(r) is the value computed from f(r) and Eq. (8)

3.3 Scaling exponents of velocity spatial structure functions

In this subsection, we shall study the scaling exponents of the velocity spatial structure
function to verify that the LBM can be used to calculate high-order statistics in the inertial
subrange. At low Reynolds numbers, the velocity spatial structure functions of turbulent flows
usually show a power law of the separation r only over a limited inertial subrange, and it is
difficult to accurately obtain the scaling exponents. To overcome this defect, we shall use the
extended self-similarity (ESS) method[18] to study the scaling exponents of the velocity spatial
structure functions.

According to the theory of Kolmogorov (K41)[19], in the inertial subrange, the scaling be-
havior of the longitudinal velocity structure functions can be expressed as











Sp(r) ≡ 〈(u1(x + e1r) − u1(x))p〉 ≡ 〈δu1(r)
p〉 ∼ rζp ,

ζp =
p

3
,

(9)

where u1(x) and u1(x + e1r) are velocities along the e1-axis, and r is the space separation.
However, extensive experimental measurements[20] and numerical studies[21] have shown that

ζp deviates from p/3 for p > 3 due to the strong intermittent character of turbulent flows. The
well-known She-Leveque (S-L) model[22] shows that

ζp =
p

9
+ 2

(

1 −
(2

3

)p/3)

. (10)
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According to the ESS method, we plot the pth-order velocity structure function versus the
third-order one, and the ESS method implies that

Sp ∼ S
ζp/ζ3

3 = S
ζp

3 (11)

since ζ3 = 1.
Thus, we obtain the scaling exponents of velocity spatial structure functions. Figure 3 gives

the comparison between our numerical results and the experimental or theoretical results[23] up
to ten orders. We can observe that the high-order statistics can be obtained exactly from the
simulation results using the D3Q19 MRT-LBM.

-

Fig. 3 Scaling exponents from theoretical prediction, experimental measurements, and numerical cal-

culations. The square indicates the S-L model[22], the right triangle indicates the experimental
results[23], and the dashed line represents the K41 theory. The dash-dot-dotted line indicates
our simulation at Reλ = 112

In this paper, we limit our study in isotropic turbulent flows. However, in wall-bounded
turbulent flows, the velocity spatial structure functions at different orders depend on both
spatial separation in the streamwise direction and the distance from the wall[24–25]. The low-
order statistics, such as the profile of mean streamwise velocity and the profile of the Reynolds
stress using the D3Q19 MRT-LBM, have been recently reported by Wang et al.[26]. All results
are in good agreement with the previous spectral simulation data. The high-order statistics,
such as the scaling exponents of velocity spatial structure function, were investigated by Toschi
et al.[25] and Amati et al.[27]. Due to the complexity of the structure functions in different
regions in wall-bounded turbulent flows[24], the scaling exponents of velocity spatial structure
functions using the D3Q19 MRT-LBM need to be further studied.
3.4 Self-similarity of velocity space-time structure functions

Following the self-similarity of velocity spatial structure functions, we further explore the
self-similarity of the two-point, two-time velocity space-time structure functions. The pth-order
velocity space-time structure function is defined as

Sp(r, τ) ≡ 〈|(u1(x + e1r, t + τ) − u1(x, t))|p〉 , (12)

where r is the space separation, and τ is the time lag. In Fig. 4, we plot space-time struc-
ture functions of different orders against the space-time structure function of the third order,
at different space separations and time lags and at Reλ = 112. The range of separation r is
[2η, 90η], and the range of separation time τ is [0.015τk, 10.515τk]. From Fig. 4, we can observe
that the graph of the pth-order (p = 2, 4, 6, and 8) space-time structure function against the
third-order function is a straight line at different space separations and time lags. This obser-
vation demonstrates the self-similarity of the two-point, two-time velocity space-time structure
functions.
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3.5 PDFs of the Lagrangian accelerations and kinetic energy dissipation rates

The intermittency of turbulent flow can also manifest in the tails of the PDFs of Lagrangian
accelerations and local energy dissipation rates. Figure 5 shows the PDFs of one of components
of accelerations at various Reynolds numbers, Reλ = 40, 112, and 184. We can observe that the
tails of the PDF become increasingly wide as the Reynolds number increases. This observation
confirms the results previously reported by Voth et al.[28], Mordant et al.[29–30], Bec et al.[31],
and Biferale et al.[32]. As the Reynolds number increases, the PDF of the acceleration becomes
closer to the log-normal distribution. The tails become wider and wider, implying that the
Lagrangian acceleration becomes a very intermittent quantity with the increase in the Reynolds
number[28].

Fig. 4 The velocity space-time structure functions Sp(r, τ ) (p = 2, 4, 6, 8) versus S3(r, τ ) at different
space separations r and time lags τ

-

Fig. 5 The PDF of one component of accelerations az at various Reynolds numbers, Reλ = 40, 112,
and 184. The gradient symbol denotes the experimental data at Reλ = 485 from Mordant
et al.[29]. Only positive values of the acceleration are shown. At the same time, we show the
log-normal distribution with variance 1 (dash-dotted line)
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Figure 6 shows the PDFs of the local energy dissipation rates ε/
〈

ε2
〉

1

2 at different Reynolds
numbers. At the same time, the log-normal distribution is plotted for comparison. We can
observe that the local dissipation rate is also a very intermittent quantity.

-

Fig. 6 The PDF of the local dissipation rate at various Reynolds numbers. At the same time, we
show the log-normal distribution with variance 1 (dash-dotted line)

4 Conclusions

In this work, we perform numerical studies on the high-order statistics of the spatial structure
functions of longitudinal velocities, intermittent properties of Lagrangian accelerations, and
local energy dissipation rates using the LBM.

We find that the scaling exponents of the spatial structure functions at up to ten orders
are consistent to a high degree of accuracy with experimental measurements and theoretical
expectations. It shows that the LBM can capture the intermittent events of large longitudinal
velocity increments in an inertial subrange. We further demonstrate the self-similarity of the
two-point, two-time space-time structure functions based on the concept of the ESS method
that was originally developed for velocity spatial structure functions.

The tails of the PDFs of the Lagrangian accelerations and local energy dissipation rates
become broader with increasing Reynolds numbers, showing that the intermittent events of
large Lagrangian acceleration and local dissipation rate become more and more frequent with
increasing Reynolds numbers.

The LBM can resolve not only the low-order statistics such as the energy spectrum and
the mean and RMS velocity profiles reported in the previous studies but also the high-order
statistics shown in the present study. This study provides a solid basis for the LBM to further
simulate more complex flows related to small-scale phenomena such as the relative dispersion
of pollutants and the preferential concentration of heavy particles in turbulent flows.
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Supercomputer Center in Tianjin, China.
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