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Parallel computing techniques have been introduced into digital image correlation (DIC) in recent years and leads to a surge in
computation speed. The graphics processing unit (GPU)-based parallel computing demonstrated a surprising effect on accel-
erating the iterative subpixel DIC, compared with CPU-based parallel computing. In this paper, the performances of the two
kinds of parallel computing techniques are compared for the previously proposed path-independent DIC method, in which the
initial guess for the inverse compositional Gauss-Newton (IC-GN) algorithm at each point of interest (POI) is estimated through
the fast Fourier transform-based cross-correlation (FFT-CC) algorithm. Based on the performance evaluation, a heterogeneous
parallel computing (HPC) model is proposed with hybrid mode of parallelisms in order to combine the computing power of GPU
and multicore CPU. A scheme of trial computation test is developed to optimize the configuration of the HPC model on a specific
computer. The proposed HPC model shows excellent performance on a middle-end desktop computer for real-time subpixel DIC
with high resolution of more than 10000 POIs per frame.
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1 Introduction

Iterative algorithms have occupied a dominant position in
subpixel digital image correlation (DIC) thanks to their su-
perior accuracy (i.e. lower systematic error and random er-
ror) over the non-iterative algorithms [1,2]. However, these
iterative algorithms suffer from the low computation effi-
ciency (one order of magnitude lower than their non-iterative
counterpart) as the iterative procedure is very time con-
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suming. The demanding of high speed subpixel DIC without
loss of accuracy becomes urgent in recent years due to the
rapid advance of digital cameras with high speed and high
resolution, which leads to the proliferation of images as well
as the pixels in each image to be processed. Moreover, the
intensive study on the deformation process (particularly the
crack propagation during fracture or fatigue tests) also cre-
ates a growing demand for real-time DIC [3,4].

In the past decade, various approaches have been devel-
oped to speed up the iterative subpixel DIC. Among the
effort devoted to optimizing the DIC algorithm, the in-
troduction of the inverse compositional Gauss-Newton (IC-

tech.scichina.com link.springer.com


https://doi.org/10.1007/s11431-017-9168-0
https://doi.org/10.1007/s11431-017-9168-0
http://tech.scichina.com
http://link.springer.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11431-017-9168-0&amp;domain=pdf&amp;date_stamp=2017-11-29

Huang J W, et al.

GN) algorithm into DIC could be considered as a milestone
[5,6]. The IC-GN algorithm [7], mathematically equivalent
to the classic forward additive Newton-Raphson (FA-NR)
algorithm [8], uses a smart alignment strategy during the
iterative procedure, which makes it 3—5 times faster than the
FA-NR algorithm [6], while keeping the high accuracy and
resistance to noise [9—11]. In addition, the application of the
precomputed global look-up table of interpolation coeffi-
cients [12,13] eliminates the repetitive calculation during the
construction of the warped target subset in iterations and
leads to a speed-up of another several times. Nevertheless,
the iterative subpixel DIC with the aforementioned im-
provements achieves a speed of only thousands of points of
interest per second (POI/s) [14,15], which is still far below
the expectation.

Further exploitation of computing hardware, i.e. parallel
computing technology, sheds light on the solution to high
speed iterative subpixel DIC [16,17]. The multicore CPUs
(central processing units) and GPU (graphics processing
unit) devices equipped in current computers demonstrated
unprecedented power in boosting the computation efficiency
of iterative DIC for even orders of magnitude. The multicore
CPU parallel computing has been introduced into iterative
DIC by Correlated Solutions Inc since 2009 (http://www.
correlatedsolutions.com/installs/Vic-2D-2009-Manual.pdf).
Recently, Shao et al. [9] and Pan et al. [10] reported their
study almost simultaneously about the acceleration of IC-GN
algorithm-based DIC using multicore CPU. In their im-
plementation, multiple POIs are processed in parallel by
CPU threads. It is noteworthy that the initial guess transfer
scheme is used by both groups for the IC-GN algorithm,
which may limit the parallelism. But actually the number
POIs fed into the queue to be processed increases geome-
trically with the number of processed POIs, which makes the
processing reach the maximum parallel degree of a multicore
CPU in a very short time. A dramatic speed-up of about
seven times (30414-43667 POU/s, using a 21x21-pixel sub-
set) was achieved by using eight parallel threads on a quad-
core CPU, compared with the implementation using a single
CPU thread.

The application of GPUs has been far beyond their ori-
ginally designed purpose for accelerating the visualization of
3D sceneries. The developments of computing platform and
programming model for GPU parallel computing, in parti-
cular the compute unified device architecture (CUDA) re-
leased by NVIDIA (https://en.wikipedia.org/wiki/CUDA),
stimulate the extensive use of GPUs in a wide variety of
areas [18,19]. Acceleration of DIC using GPU parallel
computing could be traced back to 2009 when Leclerc et al.
[20] introduced GPU into the mesh procedure for finite
element-based DIC. The implementation reduced the com-
putation time for a 1024x1024-pixel image pair down to
seven hundred seconds. Leclerc et al. [21] further extended
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the application of GPU parallel computing to their voxel-
based digital volume correlation (DVC) method, in which
GPU is used to solve the linear system including millions of
degrees of freedom.

In comparison with the global DIC and DVC methods
based on finite elements, local DIC and DVC methods based
on subsets (or sub-volumes) seem to be more suitable for
parallel computing technology due to their nature of wind-
owed processing. GPU parallel computing can be simply
used in cross-correlation-based integer-pixel DIC algorithms
for magnetic resonance image processing [22], crack pro-
pagation analysis [23] and deformation measurement of
human body (wrist and calf) [24]. The speed-up ratio of the
GPU version to the serial CPU version attained in refs. [21—
24] varies from 10 to 23.

The GPU parallel computing shows the surprising cap-
ability to speed up the iterative subpixel DIC. Zhang et al.
[25] proposed a GPU-accelerated path-independent DIC
(PiDIC) method, which estimates the initial guess for the IC-
GN algorithm at each POI independently using the fast
Fourier transform-based cross-correlation (FFT-CC) algo-
rithm [15]. The implementation achieved a computation
speed of 1.6x10° POI/s (33x33-pixel subset) without sacri-
fice of high accuracy using a low-end graphics card (NVI-
DIA GTX 760). This high computation efficiency makes the
real-time subpixel DIC feasible at a video recording rate (e.g.
30 fps). Very recently, an extremely high record of compu-
tation speed (2.5x10° POI/s) was created by Le Besnerais et
al. [26], who implemented an iterative Lucas-Kanade algo-
rithm-based DIC method on a high-performance GPU board
(NVIDIA Titan). This success could be attributed to two
factors: (i) zero-order shape function (a simplified model for
translation) is used, as the method is inspired by particle
image velocimetry; (ii) texture memory on GPU device is
employed for interpolation of intensity at subpixel location.

Local DVC methods also get benefit from GPU parallel
computing. The reported implementations are all developed
with the path-independent strategy [27-29]. The integer-
voxel displacement at each POI is estimated through CC-
based algorithms and fed to various iterative subpixel DVC
algorithms. Compared with the serial CPU implementation
of same DVC method, the GPU implementation can gain an
improvement in computation speed by up to dozens of times
(https://en.wikipedia.org/wiki/Hyper-threading) [29].

Although GPU parallel computing has demonstrated a
significant superiority in computation efficiency for iterative
subpixel DIC/DVC over its multicore CPU counterpart
[9,10,25,26,29], the heterogencous parallel computing
(HPC), which combines the strengths of GPUs and multicore
CPUs, can be considered as a better solution due to the
following reasons: (i) GPU cannot work independently in
current computer architecture. Idling of multicore CPU when
GPU is performing intensive computation is apparently a
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waste of resource; (ii) current high-performance CPU with
up to 24 cores that support 48 parallel threads shows a
computation efficiency comparable to middle-end GPU. A
well designed HPC model including the two kinds of pro-
cessing units provides the possibility to fully exploit the
computer performance. Gates et al. [28] implemented a path-
independent DVC method, which consists of FFT-CC algo-
rithm for integer-voxel registration and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm for sub-voxel registra-
tion, on a cluster equipped with 120 nodes (each has two 6-
core CPUs and three GPUs). In their implementation, the
GPUs are used to estimate the normalized cross-correlation
objective function and its gradient at POIs, and the multi-
core CPUs handle the BFGS iteration as well as the integer-
voxel registration. Their experiments show that the colla-
boration of 24 GPUs and 96 CPU cores can be 8 times faster
than 96 CPU cores.

In this paper, the PiDIC method proposed in our previous
study [15,25] is accelerated using HPC. The main differences
between the study in ref. [28] and this paper can be sum-
marized as following two points: (i) the implementation in
ref. [28] is designed for cluster, whereas ours is oriented to a
personal computing platform with single GPU and a multi-
core CPU, which is more accessible to common DIC users;
(i1) hybrid parallelism combining data parallelism and task
parallelism is used in our HPC model, unlike the pure task
parallelism employed in ref. [28], to achieve an optimized
computation efficiency of GPU and CPU for DIC calcula-
tion. The construction of HPC model and its performance
evaluation are explained in detail based on the experimental
study.

2 Principle and implementation
2.1 Principle of PiDIC method

Figure 1 illustrates the principle of the PiDIC method. The
integer-pixel displacement vector (P, = [u,0,0,v,0, o7,
where u and v are the displacements along x-axis and y-axis,
respectively) is estimated at each POI using the FFT-CC
algorithm and then fed as the initial guess into the IC-GN

algorithm to get subpixel deformation vector
_ T
(P=[u,u,u,v,v,v,]', where u, u, v, v, represent the

gradients of wu-component and v-component, respecti-
vely). The iterative procedure of the IC-GN algorithm
continues until any of the two convergence conditions
is satisfied. In this study, the convergence conditions
are set as (i) the incremental deformation vector

(AP = {Au, Au,, Au,, Av, Av, Avyr) becomes less than 0.001

pixels; (ii) the maximum iteration number (20) is reached.
Compared with path-dependent DIC method, which usually
adopted an initial guess transfer scheme, the PiDIC method

is completely immune to the issue of error spreading caused
by the deformation discontinuity or invalid areas. Further-
more, the breakage of dependence between the POIs makes
the PiDIC method very suitable for highly parallel proces-
sing. For more details about the principle, the readers can
refer to ref. [15].

To avoid the redundant computation in the iterative pro-
cedure of the IC-GN algorithm, the gradient maps of the
reference image (before deformation) are precomputed using
the fourth-order central difference method, and a global
look-up table of bicubic B-spline interpolation coefficients is
built to speed up the construction of gray map in the warped
target subset (after deformation). These operations are car-
ried out at the beginning of the PiDIC method, hence called
precomputation.

2.2 Programming models of GPU and CPU parallel
computing

A brief introduction about the programming models of CPU
parallel computing and GPU parallel computing as well as
the mapping from the programming models to hardware are
given in this section, which helps the readers understand the
design and implementation of the heterogeneous parallel
computing model.

In this study, CPU parallel computing is developed based
on OpenMP, which is one of the SIMD (single instruction,
multiple data) models. This model splits a problem into in-
dependent sub-problems that can be solved by threads in
parallel. Each thread is mapped to a CPU core for execution.
Benefiting from the Intel Hyper-Threading technology
(HTT) [30], one physical CPU core can support two logical
parallel threads. It means that on an HTT-available Intel CPU
with n cores, up to 2n logical threads can be run simulta-
neously. Although HTT might not accelerate computational
intensive applications or even cause performance degrada-
tion in case of cache access conflict (http://www.sem.org/
dic-challenge/), the proposed PiDIC method, fortunately, is
one of the applications that take substantial advantage of
HTT. Our experiments show that the peak speed of PiDIC on
CPU with HTT is approximately 30% higher than that
without HTT.

GPU parallel computing is developed on CUDA. In this
model, a problem is also split into independent sub-pro-
blems. These sub-problems are solved by blocks in parallel.
Differing from CPU parallel computing, each sub-problem
can be further split and solved by the synergic threads within
a block. In the architecture of NVIDIA GPU, the blocks are
mapped to the streaming multiprocessors (SMs) for execu-
tion, while each thread within these blocks is mapped to a
streaming processor (SP) on the SMs. a SM can support
multiple blocks simultaneously. The upper limit of block
number on a SM depends on the number of registers and
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Figure 1 (Color online) Principle of the PiDIC method.

shared memory available for allocation.

A GPU contains hundreds to thousands of SPs, whereas
the number of cores on a CPU is usually less than thirty.
However, the number of concurrent tasks on GPU is usually
close to that on CPU, because a GPU block generally con-
sists of tens or hundreds of threads, which limit the max-
imum number of active blocks on a SM. It should be
mentioned that the performance gap between GPU and CPU
for a randomly chosen algorithm, if its implementation is
sufficiently optimized, may not be hundreds of times huge
(as advertised in commercial propaganda) [31].

2.3 Heterogeneous parallel computing model for PiDIC

In a HPC model, GPU and CPU can be managed through
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task-parallelism or data-parallelism. In the former, the sub-
tasks split from the major task are categorized according to
their characteristics. GPU generally takes the computing-
intensive sub-tasks, while CPU handles the ones containing
complex logic instructions. In the latter, the data are split into
two parts and assigned to GPU and CPU, which process the
data with same instructions. As all the three stages in our
PiDIC method (i.e. precomputation, integer-pixel registra-
tion and subpixel registration) are computing-intensive tasks,
which can be processed several times faster on GPU than on
CPU, the task-parallelism may not be a wise option. In fact,
the HPC model for DVC in ref. [28] developed with a task-
parallelism strategy on a super cluster with high performance
computing cards (NVIDIA Tesla M2090) shows insignificant
superiority in computation efficiency over a single GPU
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parallel computing model on a desktop computer equipped
with a low-end graphics card (NVIDIA GTX 680) [29].

Figure 2 illustrates the HPC model proposed in this study,
which uses a hybrid mode combing task-parallelism and
data-parallelism. The precomputation stage is handled totally
by GPU. This arrangement may avoid unnecessary memory
access and communication between the processing units,
since the precomputation can be finished very quickly by
GPU, only occupies around 1% of the overall computation
time, as discussion in Section 3.2. In the image registration
stages, the POIls are split into two groups according to the
computing performance of GPU and CPU. Then GPU
tackles x% of POIs and CPU takes the rest.

Optimal proportion of POIs that assigned to the two kinds
of processing units guarantees the high performance of the
HPC model. This proportion depends on the computation
efficiency of GPU and CPU. However, it is hard to construct
a general model for the equivalent computation efficiency of
GPU and CPU, which is influenced by various factors, in-
cluding frequency, number of processing cores, instructions
per cycle, bandwidth, and processor architecture etc. In the
case of a specific computer, the optimal configuration of
HPC is associated with the parameters of DIC method, which
can be achieved through a series of trial tests.

Figure 3 shows the coarse-grained parallelism of the image
registration on the two kinds of processing units. The number
of active GPU blocks (or CPU threads) »n, limited by the
hardware, is far less than the total number of POIs m. In the
implementation, each GPU block (or CPU thread) should
process a queue of POIs in a serial fashion. If m is not an
integer multiple of n, there will be k£ (k=m mod n) GPU
blocks or CPU threads that need to process one more POI
than the others.

3 Experimental study

Figure 4 shows two grayscale speckle images used in the
experiments. Figure 4(a) is a 1280%x480-pixel speckle image
of the epoxy plate surface (Example 1). It is translated in the
Fourier domain according to the shift theorem [32] to gen-
erate twenty target images, with a pre-set subpixel dis-
placement along the x-axis ranging from 0 to 1 pixel. The
deformation between every two successive images is set to
0.05 pixels. Figure 4(b) shows the first speckle image of an
image series appreciatively obtained from the website of the
Society for Experimental Mechanics (Digital Image Corre-
lation Challenge, Sample 12) (http://www.sem.org/dic-
challenge/) (Example 2). The image series records the de-
formation of a plate specimen (with a round hole in the
middle) subjected to unidirectional tension along x-axis. For
the convenience of display in the paper, the original images
with a size of 400x1040 pixels are rotated by 90° clockwise.
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Figure 3 (Color online) Coarse-grained parallelism of image registration
on GPU and CPU.

Figure 4(a) and (b) are set as the reference image for Ex-
ample 1 and Example 2, respectively. The rectangular re-
gions of interest are set as 960%320 pixels and 280x900
pixels, respectively.

The HPC model for the PiDIC method is programmed
using C++ language. GPU parallel computing and CPU
parallel computing are developed based on CUDA 6.5 and
OpenMP 2.0, respectively. The number of threads in a GPU
block is set as 128. A desktop computer equipped with an
Intel 17-6950K CPU (3.0 GHz, 10 Cores and 20 Threads),
16 GB RAM and a NVIDIA K40c computing card (2880

CUDA cores, 876 MHz, 12GB RAM, Bandwidth
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Example 1

Example 2

Figure 4 Two examples for experimental study: (a) a speckle image of
epoxy plate, which is used as the reference image to generate a series
images with translation along x-axis; (b) the first image of an image series
recording the deformation of a CFRP plate with a round hole subjected to
uniaxial tension along x-axis (obtained from the Society for Experimental
Mechanics, http://www.sem.org/dic-challenge/). The solid-line rectangles
outline the ROIs for DIC computation.

288 GB's ') is used as the computation platform for experi-
mental study.

3.1 Single-precision floating-point versus double-pre-
cision floating-point

GPUs are designed to deliver optimal performance for pro-
cessing of single-precision floating-point data. However, the
high computation efficiency achieved with single-precision
floating-point risks the accuracy of results due to the accu-
mulation of round-off errors. Thus, a judicious choice of
number format should be the first issue addressed in the
development of GPU parallel computing. Unfortunately,
there still lacks a systematic comparison heretofore between
the two kinds of number formats in GPU-accelerated DIC.

Figure 5 compares the mean bias error (systematic error)
and standard deviation error (random error) obtained on
GPU and CPU for Example 1 (33x33-pixel subset, 15504
POIs), using single-precision floating-point format and
double-precision floating-point format respectively. The er-
rors obtained in the four conditions are nearly identical. The
mean bias errors and standard deviation error are less than
0.0063 pixels and 0.0012 pixels, which fall in the acceptable
range of experimental accuracy limits.

To compare further the results attained using the two kinds
of number formats, two indicators (i.e., mean absolute de-
viation e, and mean relative deviation e;) are defined as

(1)
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where N is the POI number. «° and . represent the u-com-
ponent obtained at the ith POI using single-precision float-
ing-point format and double-precision floating-point format,
respectively.

Figure 6 shows the mean absolute deviation and mean
relative deviation obtained on GPU and CPU. In Example 1,
e, stays at a stable level between 1.0x10° pixels and
1.2x10° pixels, which makes e, decrease when the measured
value of u-component becomes larger (Figure 6(a)). In most
cases, e, is below 0.01%. For u-component of 0.05 pixels, it
is still less than 0.02%. In Example 2 (33%33-pixel subset,
12375 POlIs), e, obtained on GPU increases considerably
from 1.1x10°° pixels to 1.3x10 ™, whereas that on CPU is
steadily below 1.0x10™* pixels, as shown in Figure 6(b). The
increase in e, can be attributed to the larger deformation in
Example 2, which is up to 12 pixels in the later stage. e,
attained for Example 2 is within 0.01% on GPU and CPU,
even lower than that for Example 1.

It is noteworthy that GPU and CPU with double-precision
floating-point format give identical results for the valid areas
in both examples. Only at several POIs in Example 2, which
fall in the middle hole (Figure 4(b)), GPU and CPU give
quite different results because the IC-GN algorithm cannot
converges to a specific value when dealing with those almost
completely dark subsets. Thus, the data obtained at those
POIs are excluded from the statistics. GPU with single-pre-
cision floating-point format seems to be more vulnerable to
the round-off errors (Figure 6(b)). Nevertheless, a compar-
ison between the results obtained on GPU and CPU with
single-precision floating-point format for the two examples
indicates that the relative difference could be negligible (less
than 0.005%).

Figure 7 compares the computation time consumed for the
two examples on GPU and CPU using the two kinds of
number formats. In both examples, use of single-precision
floating-point format leads to a significant increase in com-
putation speed on GPU, compared with its double-precision
counterpart. GPU with single-precision floating-point can be
around 2.2 times faster than GPU with double-precision
floating-point. However, single-precision floating-point does
not speed up the calculation on CPU. It even slows down the
program slightly (about 3%), since CPU treats the two kinds
of number formats as double precision floating-point and the
emulation of single precision floating-point costs extra time.

Based on the statistics mentioned above, it can be con-
cluded that the DIC algorithm with single-precision floating-
point achieves optimal computation efficiency on GPU at
trivial cost of accuracy, while CPU with single-precision
floating-point suffers slight loss of both efficiency and ac-
curacy. To facilitate the programming, this number format is
chosen in the HPC model for the operations of both GPU and
CPU.
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Figure 7 (Color online) Computation time consumed by GPU and CPU with single-precision and double-precision floating-point formats for (a) Example 1

and (b) Example 2.

3.2 Speed contest between GPU and CPU

Figure 8 shows the distribution of the computation time spent
by GPU and CPU in the three stages (Example 2, 33x33-
pixel subset, 20790 POIs). The overall computation time
consumed by GPU is only 28% of that by CPU. In particular,
the time share of the precomputation stage on GPU is much
lower than that on GPU, which benefits from the fine-
grained parallelism in GPU parallel computing. In this stage,

the 128 threads in a GPU block are further divided into 8
groups (each contains 16 threads). Each group is employed
to calculate the 16 interpolation coefficients for estimation of
intensity at any subpixel location in a 2x2-pixel grid in the
target image [13]. In contrast, in CPU parallel computing, the
16 interpolation coefficients for a 2x2-pixel grid are calcu-
lated by a thread in a serial fashion. The difference in par-
allelism makes GPU finish the precomputation stage in
1.38 ms, 15.7 times faster than CPU (21.68 ms). In the image
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Figure 8 (Color online) Distribution of the computation time consumed
by GPU and CPU in the three stages for Example 2.

registration stage, the fine-grained parallelism in GPU par-
allel computing also contributes its significant superiority
over CPU parallel computing. Even the parallel degree of
GPU and CPU are quite close at coarse-grained level, i.e. 22
on GPU and 20 on CPU respectively, GPU reaches a speed
3.3 times faster than CPU.

Figure 9 shows the flowcharts of the image registration
stage on the two kinds of processing units. The integer-pixel
and subpixel image registration at a POI is performed by one
thread in CPU parallel computing, whereas in GPU parallel
computing 128 threads in a block are involved in the same
work. During the integer-pixel registration, cuFFT (a CUDA
library for FFT) provides GPU the solution to calculate the
cross-correlation function in fined-grained parallelism, and
the position of maximum cross-correlation value can be lo-
cated through parallel reduction method. In the most time-
consuming subpixel registration, the fine-grained parallelism

CPU parallel computing
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on GPU accelerates the construction of the warped target
subset, which takes more than 70% of the computation time
in this stage (Figure 10). Although there is only 6 of 128
threads that participate the rest part in the IC-GN algorithm
and 122 threads are left idle, the waste of computation re-
source could be acceptably small. Arrangement of the con-
struction of the warped target subset and the rest part with a
task-parallelism strategy [28] may not leads to a better
computation efficiency, since the saved time could be offset
by the inter-block data exchange, as discussed in Section 2.3.

3.3 Parameter optimization of heterogeneous parallel
model

Assignment of POIs to the two kinds of processing units
plays a critical role in the HPC model to fully exploit the
computing resource. An optimal proportion of POlIs, i.e.
GPU takes x% and CPU takes (100—x)%, should guarantee
that GPU and CPU finish the processing task simultaneously.
Thus, an optimal ratio can be defined as

Vi
yzlog*x:vzx’ @
where v, and v, are computation speed of GPU and CPU
in the stage of image registration, respectively. For specific
hardware combination and DIC algorithm, the optimal ratio y
of HPC model is affected by the parameters of DIC calcu-
lation, i.e. subset size and POI number.

Figure 11 shows 1, and v, achieved for Example 2, with
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Figure 9 (Color online) Fine-grained parallelism in GPU parallel computing and CPU parallel computing in the image registration stage.
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Figure 10 (Color online) Distribution of the computation time consumed
by GPU and CPU in subpixel registration stage for Example 2.

POI number increasing from 120 to 20790 and commonly
used subset sizes ranging from 17x17 pixels to 41x41 pixels.
It is interesting that the computation speeds of both GPU and
CPU are at a relatively low level when processing small
numbers of POIs (e.g. 120 or 534). The computation speed of
CPU boosts to a relatively high but stable level (relative
fluctuation is less than 5%) when the POI number exceeds
1246, whereas GPU reaches its stable speed when the POI
number exceeds 5340.

The observed sensitivity of computation speed to POI
number can be attributed to the time consumed by the in-
itialization procedure that is irrelevant to POI number. In
CPU parallel computing, OpenMP needs to organize the
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computation resource and open the parallel region at the
beginning of computation [34]. This part takes a specific
amount of time, which occupies less and less share of the
overall computation time with increasing POI number. When
the time spent on the initialization procedure becomes neg-
ligible to the overall computation time, v, reaches a stable
level. In GPU parallel computing, the effect of the in-
itialization prcedure (including organization of computation
resource and transferring of data from host memory to shared
memory) seems more marked because the computation is
much faster than the memory access. Thus, GPU needs much
more POIs to make v, reach a stable level.

Based on this mechanism, the computation time ¢ in the
image registration stage can be divided into two parts: ¢,
irrelevant to POI number and ¢,(N) dependent on POI
number N. Figure 12 gives the plots of # versus N on GPU
and CPU. It can be observed that there is a quasi-linear re-
lationship between ¢, and N. Thus, a linear model of com-
putation time can be proposed as
t=1+t(N)=1+NAt, 3)
where At is the time required to process a POI. The values of
t. and Az can be estimated through linear fitting, as listed in
Table 1. For both GPU and CPU, ¢ increases considerably
with increasing subset size in a non-linear manner, indicating
a clear correlation of the initialization procedure with the
subset size. According to eq. (3), the computation speed of
GPU or CPU for any POI number can be estimated through a
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Figure 11 (Color online) Computation speed achieved by GPU and CPU for example 2 in processing various numbers of POIs with (a) 17x17-pixel subset,
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Huang J W, et al.

a
120 )17x17-pixel subset /’O
% 100 = GPU -
2 ™ o CPU
L 804/, =022+584x10°N .~
= >
S 607
E - _ ..
2 40- R T
g e T
O 204 - - _ 3 a;
T e Hgpy =054+ 2335107 N
ol
6 SdOU 10600 15600 20600
POl number
1 (c)
3507 ™ 33433 pixel subset 8
< 300+ = GPU e
E o CPU e
o 250 P
£ fooy =118+1.63x107N .7~
= 200 cPU o
i=] e
® 150+ e
3 ”
o P
E 100+ o _-m
O - -
o1 S 0954 46710 N
o w7t =0.95+4.67x N
0_&@’_, CPU
0 5000 10000 15000 20000
POl number

Sci China Tech Sci

January (2018) Vol.61 No.1 83

(b)
2509 ™ 25 25-pixel subset
. = GPU L©
£ 200+ o CPU e
2
S 1809 g =0T4+1.05% 107N -7
i .
8 &
£ 1004 -
3 ,/
£ - .
S 50 L -
S mem T i, =0.62+3.18x 107N
04 ;ﬂ_ - CPU
0 5000 10000 15000 20000
POI number
700
1@ 41x41-pixel subset
i i ®
- aooi = GPU e
£ 5004 < CPU N
2 o]
S 4007, =1.30+2.93x10°N .~
< @
S L
§ 300+ .
3 ’/
£ 2004 L
3 -~ e
100 . -
s w7 Tty =174 776%107N
9,3’,}%—” cPU 1
0 5000 10000 15000 20000
POI number
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Table 1  Parameters (7, and Af) of computation time model for GPU and CPU
. o GPU CPU
Subset size (pixel’)
t. (ms) At (ms) t. (ms) At (ms)
17x17 0.54 2.33x107° 0.22 5.84x10°°
25%25 0.62 3.18x107° 0.74 1.05x107°
33x33 0.95 4.67x107 1.18 1.63x10°°
41x41 1.17 7.76x107° 1.30 2.93x107°

couple of trial calculations.

Based on the trial computation test, the profile of optimal
ratio y can be constructed as a function of subset size and
computation time (Figure 13(a)), according to which the
optimal computation speed attained by the HPC model can
be estimated to make a performance profile (Figure 13(b)).
In practical applications, these profiles for a specific com-
puter can be obtained through a couple of trial computation
tests using two of the acquired images, with several POI
numbers and two or three subset sizes which may be used in
the test.

3.4 Real-time DIC

In this section, a demonstration test that simulates the ap-
plication of real-time DIC is carried out using example 2. If
the images are recorded at a video rate (24 fps), the com-
putation of each image pair in real-time DIC should be fin-

ished in 41.6 ms. According to the performance profile of the
HPC model (Figure 13), the upper limit of POI number and
optimal ratio y can be estimated for the selected subset size.
For instance, there can be up to 10353 POIs or 15542 POIs
set in the image when using 33%33-pixel subset or 25x25-
pixel subset, respectively. Optimal ratio y can be set as 3.5
and 3.3 in the two cases. It is noteworthy that the upper limits
of POI number are obtained according to the model con-
structed on the average computation time of the image series.
In practical applications, the computation time consumed for
every frame varies due to the changes in image quality or
deformation feature. Thus, a conservative estimation, e.g.
around 90% of the predicted maximum POI number, is
chosen in the test, i.e. 9720 POIs and 14198 POls, respec-
tively.

Figure 14 compares the computation time spent on each
image pair. The optimal ratio y guarantees the time per frame
satisfying the requirement of real-time DIC computation
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(less than 41.6 ms), whereas a 15% variation of y results in
failure to achieve the real-time processing speed at some
frames. It can also be found that HPC model is about 1.2
times faster than the mere GPU parallel computing, con-
sistent with the performance evaluation of the two kinds of
processing units.

4 Conclusions

A heterogeneous parallel computing model combing GPU
and multicore CPU was developed for iterative subpixel DIC
with a hybrid mode of task-parallelism and data-parallelism,
based on a systematic comparison between GPU parallel
computing and CPU parallel computing. The heterogeneous
parallel computing demonstrates outstanding performance
for the IC-GN algorithm-based subpixel DIC and makes the
high accuracy real-time DIC feasible with high resolution.
Some key conclusions can be summarized as follows:

(1) GPU parallel computing demonstrates much higher
computation efficiency than CPU parallel computing for the
iterative subpixel DIC of computing-intensive nature. This
superiority is ascribed to the fine-grained parallelism in GPU

parallel computing.

(2) A well designed HPC model can leads to further im-
provement of computation speed compared with GPU par-
allel computing. The optimization of the HPC model is
highly case-specific. On a specific computer, the data allo-
cation plays a critical role in fully exploiting the performance
of HPC. The optimal ratio of the POls assigned to GPU to
those assigned to CPU can be estimated through a simple
trial computation test.

(3) The HPC model shows lower computation efficiency
when processing small numbers of POI due to the pre-
computation and initialization of parallel computing, which
consumes a certain amount of time. The share of the two
parts in the overall computation time becomes smaller with
increasing POI number, which raises the computation effi-
ciency of the HPC model to a stable level. This factor should
be considered in the application of HPC.

It is noteworthy that the GPU parallel computing technique
is in an era of rapid development. Figure 15 shows the
computation speed achieved on a newly released NVIDIA
Titan Xp graphics card (3840 CUDA cores, 1582 MHz,
12 GB RAM, Bandwidth 548 GB's ') for Example 2. Al-
though the Titan Xp card contains only 30% more CUDA
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Figure 15 Computation time achieved by Titan Xp graphics card for
Example 2.

cores than the Tesla K40c card, the state-of-the-art archi-
tecture makes the former 2.5 times faster than the latter. In
this case, CPU parallel computing becomes an insignificant
option in the HPC model. However, multicore CPUs still
have the chance to make their exclusive contribution to the
performance of the HPC model when some complicated
processing strategies with substantial logic instructions are
introduced to ameliorate the robustness of the DIC methods.
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