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New Analytic Free Vibration
Solutions of Rectangular Thick
Plates With a Free Corner
by the Symplectic Superposition
Method
Seeking analytic free vibration solutions of rectangular thick plates without two parallel
simply supported edges is of significance for an insight into the performances of related
engineering devices and structures as well as their rapid design. A challenging set of
problems concern the vibrating plates with a free corner, i.e., those with two adjacent
edges free and the other two edges clamped or simply supported or one of them clamped
and the other one simply supported. The main difficulty in solving one of such problems
is to find a solution meeting both the boundary conditions at each edge and the condition
at the free corner, which is unattainable using a conventional analytic method. In this
paper, for the first time, we extend a novel symplectic superposition method to free vibra-
tion of rectangular thick plates with a free corner. The analytic frequency and mode
shape solutions are both obtained and presented via comprehensive numerical and
graphic results. The rigorousness in mathematical derivation and rationality of the
method (without any predetermination for the solutions) guarantee the validity of our
analytic solutions, which themselves are also validated by the reported results and
refined finite element analysis. [DOI: 10.1115/1.4038951]

Keywords: thick plate, free corner, free vibration, analytic solution, symplectic superposition
method

1 Introduction

Solving the free vibration problems of plate structures has been
an important topic in mechanical engineering, which is very use-
ful for the performance analysis and design of related engineered
devices and structures. Although many progresses have been
gained in seeking the solutions of plates with various shapes, as
summarized in Leissa’s seminal monograph [1], analytic solutions
are far from complete due to the mathematical challenge in treat-
ing the plate models such as the Kirchhoff thin plate and more
complex Mindlin/Reissner thick plate [2,3] or the others [4,5].
Conventional approximate/numerical methods include the finite
element method (FEM), finite difference method, Rayleigh–Ritz
method, Galerkin method, series method, etc. The reader is

referred to Leissa’s work [1] for more details, where comprehen-
sive results are available for vibration of thin plates.

Many recently developed novel numerical methods have been
explored for plates’ vibration problems. Some representative
methods are briefly reviewed in the following. Wu and Zhu [6]
developed a new global spatial discretization method to accurately
calculate natural frequencies and dynamic responses of two-
dimensional continuous systems such as membranes and thin
plates, where much fewer degrees-of-freedom and much less com-
putational effort are needed compared with the FEM and finite
difference method. Wang [7] presented the frequencies and mode
shapes for the rounded rectangular thin plate with completely free
edges by using a family of homotopy shapes with low powers,
which greatly facilitate differentiation and numerical integrations
for an efficient Ritz method. Leamy [8] proposed a phase closure
approach for finding semi-exact, closed-form expressions for the
natural frequencies of thin rectangular plates; the approach has the
advantage of yielding highly accurate, closed-form algebraic
expressions suitable for archiving in compilations such as
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handbooks and manuals. Waksmanski et al. [9] obtained an exact
closed-form solution for free vibration of a simply supported and
multilayered one-dimensional quasi-crystal plate by using the
pseudo-Stroh formulation and propagator matrix method; the
work is very useful for further expanding the applications of
quasi-crystal, especially when used for composite materials. Lai
and Xiang [10] applied the discrete singular convolution method
to investigate the buckling and vibration of heavy standing thin
plates and obtained accurate first-known vibration solutions for
elastically restrained vertical plates subjecting to body forces/self-
weight. Besides, Malekzadeh and Karami [11] presented a differ-
ential quadrature procedure for free vibration analysis of moder-
ately thick plates with variable thickness on two-parameter elastic
foundations under in-plane edge forces; accurate results were
obtained for higher-order modes of vibration with only few grid
points, which demonstrates the advantage of low computation
cost of the method. Cho et al. [12] applied the assumed mode
method and mode superposition method to develop a very simple,
fast, and accurate procedure for the forced vibration analysis of
plates and stiffened panels, which is especially appropriate for
early design stage when different dimensions of plates and stiff-
ened panels and their influence on dynamic response are exam-
ined. In addition to these, the Rayleigh–Ritz method is still
popular as a very efficient way to handle plates’ vibration prob-
lems. The updates on the method focus on the selection of some
novel admissible functions, yielding different expressions of dis-
placement components. For example, Zhou et al. [13] utilized the
admissible functions comprising the Chebyshev polynomials mul-
tiplied by a boundary function for free vibration analysis of rec-
tangular plates with any thicknesses. Pradhan et al. [14] expressed
the trial functions as the linear combinations of simple algebraic
polynomials to study free vibration of thick rectangular plates
based on new inverse trigonometric shear deformation theories.
Ye et al. [15] adopted a new form of trigonometric series expan-
sion to develop a modified Fourier solution for the free vibration
problems of moderately thick rectangular plates based on the first-
order shear deformation theory. Similar treatments were applied
by Jin et al. [16] to obtain three-dimensional solution for the free
vibrations of arbitrarily thick functionally graded rectangular
plates, and by Zhang et al. [17] for the free vibration analysis of
moderately thick rectangular plates with non-uniform boundary
conditions.

In comparison with the numerous numerical methods, analytic
approaches to plates’ vibration problems are much fewer. For rec-
tangular plates, it is known that the conventional semi-inverse
L�evy method is only applicable to those having at least two paral-
lel simply supported edges. Although some successful attempts
have been made in recent years on obtaining the analytic solutions
of intractable rectangular thin plate problems, including bending,
vibration, and buckling of plates without two parallel simply sup-
ported edges [18–20], there have been rare reports for analytic
vibration solutions of thick plates. Few available achievements
are found for rectangular thick plates with only clamped and/or
simply supported edges, as reported by Xing and Liu [21,22], or
for plates with only one free edge, as reported by Li et al. [23].
The free vibration of rectangular thick plates with a free corner,

i.e., with two adjacent edges free and the other two edges clamped
or simply supported or one of them clamped and the other one
simply supported, have not been solved analytically. The prob-
lems of this type are very interesting because not only the free
edges but also the free corner is involved, whose analytic solutions
are, however, very difficult to acquire due to the predicament in find-
ing a solution meeting both the boundary conditions at each edge
and the condition at the free corner. Therefore, seeking a novel ana-
lytic method becomes indispensable to settle these problems.

In recent years, a symplectic elasticity approach has been pro-
posed by Yao et al. [24]. Compared with the classic analytic
approaches such as the semi-inverse method, the symplectic
approach is conducted in the Hamiltonian system, in physics, and
in the symplectic space, in mathematics. Some useful techniques,
such as the separation of variables that is sometimes invalid in the
Euclid space, become valid in the symplectic space, which makes
it possible to explore newer analytic solutions. The approach has
been extended to many fields [25], among which the plate prob-
lems were further advanced by Lim et al. [26,27] and Li et al.
[18,19,23,28]. In this paper, we obtain the analytic free vibration
solutions of rectangular thick plates with a free corner by an ele-
gant symplectic superposition method, which combines the ration-
ality of the symplectic elasticity approach and generality of the
superposition method such that the focused problems could be
solved in a rigorous way, without any trial solutions predeter-
mined. In the following, we first construct a fundamental free
vibration problem, i.e., a vibrating plate with two adjacent edges
slidingly clamped and the other two edges simply supported. With
the Hamiltonian system-based variable separation in the symplec-
tic space, which triggers an eigenvalue problem, and the symplec-
tic eigen expansion, the analytic solution of the fundamental
problem is obtained. By superposition of two fundamental solu-
tions followed by its equivalence with the original problem, the
equation for determining the natural frequencies is achieved. The
mode shape associated with a frequency solution is then readily
obtained. Comprehensive numerical and graphic results are pro-
vided for the plates under consideration, which offer the bench-
marks for various emerging solution methods.

2 Fundamental Free Vibration Problem With

Solution in the Symplectic Space

In a recently published study [23], we have constructed the gov-
erning equations of a Mindlin theory-based thick plate’s free
vibration in the symplectic space in the rectangular coordinate
system xoy (Fig. 1(a)), which yields a Hamiltonian system-based
matrix-form expression, written by

@Z=@y ¼ HZ (1)

where

Z ¼ ½U;w;W; a;b; h�T (2)

is the state vector, incorporating the modal displacement w and
five other functions, i.e., U, W, a, b, and h, defined by

Fig. 1 Symplectic superposition for free vibration of a CCFF thick plate
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U ¼ @wx

@x
þ
@wy

@y
(3)

W ¼
@wy

@x
� @wx

@y
(4)

a ¼ D

qhx2

@U
@y

(5)

b ¼ @w

@y
(6)

and

h ¼ @W
@y

(7)

Here, wx and wy denote the rotating angles about the y- and x-
axes, respectively; q is the mass density of plate, h the thickness,
x the natural frequency, and D the flexural stiffness. The Hamilto-
nian matrix H has the form

H ¼
0 F

G 0

" #
(8)

with

F ¼
qhx2=D 0 0

0 1 0

0 0 1

2
664

3
775 (9)

and

G ¼

� D

qhx2

@2

@x2
1 0

1 � @2

@x2
� qhx2

C
0

0 0
10

h2
� @2

@x2

2
666666664

3
777777775

(10)

where C is the shear stiffness. If Eq. (1) is successfully solved, the
key quantities for a thick plate’s free vibration can be readily
obtained via w, U, and W. For example, besides w, the other two
general modal displacements wx and wy are obtained by

wx ¼
@w

@x
þ D

C

@U
@x
� 1� v

2

@W
@y

� �

wy ¼
@w

@y
þ D

C

@U
@y
þ 1� v

2

@W
@x

� � (11)

Then all other quantities can be obtained, e.g., the bending
moments Mx ¼ �Dð@wx=@xþ �@wy=@yÞ and My ¼ �Dð@wy=@y
þ�@wx=@xÞ, twisting moment Mxy ¼ �Dð1� �Þð@wx=@y
þ@wy=@xÞ=2, shear forces Qx ¼ Cð@w=@x� wxÞ and
Qy ¼ Cð@w=@y� wyÞ, with � as the Poisson’s ratio. Therefore, w,
U, and W are regarded as the governing functions in the present
solution system. The main advantage of the description in the
symplectic space via the Hamiltonian system-based governing
equation (1) is the applicability of some powerful mathematical
techniques such as the separation of variables and symplectic
eigen expansion, which are not necessarily attainable in the
Euclidean space [24]. As a result, seeking the analytic solutions to
some complex problems becomes probable.

For free vibration of the plates with a free corner, constructing
a fundamental problem is necessary in the symplectic superposi-
tion method. As shown in Fig. 1(b), we first investigate a
plate slidingly clamped at x ¼ 0 and simply supported at x ¼ a,
with a rotating angle wyjy¼0 and a bending moment Myjy¼b
imposed at the slidingly clamped edge y ¼ 0 and the simply sup-
ported edge y ¼ b, respectively. The boundary conditions of the
plate are

wxjx¼0 ¼ 0; Qxjx¼0 ¼ 0; Mxyjx¼0 ¼ 0

wjx¼a ¼ 0; wyjx¼a ¼ 0; Mxjx¼a ¼ 0
(12)

and

wyjy¼0 ¼
X1

m¼1;3;5;…

Em cosðamxÞ; Qyjy¼0 ¼ 0; Mxyjy¼0 ¼ 0

wjy¼b ¼ 0; wxjy¼b ¼ 0; Myjy¼b ¼
X1

m¼1;3;5;…

Fm cosðamxÞ

(13)

where wyjy¼0 and Myjy¼b are expressed by the Fourier expansion,
with am ¼ mp=ð2aÞ and the constants Em and Fm ðm ¼ 1; 3; 5;…Þ
to be determined later. A similar fundamental problem is shown
in Fig. 1(c), where the plate is slidingly clamped at y ¼ 0 and sim-
ply supported at y ¼ b, with a rotating angle wxjx¼0 and a bending
moment Mxjx¼a imposed at the slidingly clamped edge x ¼ 0 and
the simply supported edge x ¼ a, respectively. The boundary con-
ditions are

wyjy¼0 ¼ 0; Qyjy¼0 ¼ 0; Mxyjy¼0 ¼ 0

wjy¼b ¼ 0; wxjy¼b ¼ 0; Myjy¼b ¼ 0
(14)

and

wxjx¼0 ¼
X1

m¼1;3;5;…

Gm cosðbmyÞ; Qxjx¼0 ¼ 0; Mxyjx¼0 ¼ 0

wjx¼a ¼ 0; wyjx¼a ¼ 0; Mxjx¼a ¼
X1

m¼1;3;5;…

Hm cosðbmyÞ

(15)

where bm ¼ mp=ð2bÞ, Gm and Hm ðm ¼ 1; 3; 5;…Þ are the con-
stants to be determined. It is found that the second problem
(Fig. 1(c)) is actually the same as the first one (Fig. 1(b)) after the
coordinates exchange. Therefore, only the first fundamental prob-
lem needs to be solved.

In the symplectic space, the separation of variables is valid
[24], which implies that Z ¼ XðxÞYðyÞ can be applied to Eq. (1).
yielding dYðyÞ=dy ¼ lYðyÞ and HXðxÞ ¼ lXðxÞ, where XðxÞ ¼
½UðxÞ;wðxÞ;WðxÞ; aðxÞ; bðxÞ; hðxÞ�T is the eigenvector, with l as
the eigenvalue. Combining the boundary conditions expressed in
Eq. (12), we derive the eigenvalues

lð1Þ6m ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

m � �S �x2=a2

q

lð2Þ6m ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

m � �R �x2=a2

q

lð3Þ6m ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

m þ 10=h2

q
(16)

and the associated eigenvectors
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X
ð1Þ
6mðxÞ ¼

h
�R �x2 cosðamxÞ; a2 cosðamxÞ; 0; lð1Þ6m

�Ra4 cosðamxÞ; lð1Þ6ma2 cosðamxÞ; 0
iT

X
ð2Þ
6mðxÞ ¼

h
�S �x2 cosðamxÞ; a2 cosðamxÞ; 0; lð2Þ6m

�Sa4 cosðamxÞ; lð2Þ6ma2 cosðamxÞ; 0
iT

X
ð3Þ
6mðxÞ ¼

h
0; 0; sinðamxÞ; 0; 0; lð3Þ6m sinðamxÞ

iT

(17)

for m ¼ 1; 3; 5;…, where �x ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
, �R ¼ ðd�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=�x2 þ d2

q
Þ=2, and �S ¼ ðdþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=�x2 þ d2

q
Þ=2, with d ¼ D=ðCa2Þ. The solu-

tion of Eq. (1) is written as

Z¼
X1

m¼1;3;5;…

f ð1Þm elð1Þm yXð1Þm ðxÞþ f ð1Þ�me�lð1Þm yXð1Þ�mðxÞþ f ð2Þm elð2Þm yXð2Þm ðxÞþ f ð2Þ�me�lð2Þm yXð2Þ�mðxÞþ f ð3Þm elð3Þm yXð3Þm ðxÞþ f ð3Þ�me�lð3Þm yXð3Þ�mðxÞ
h i

(18)

where f
ð1Þ
6m to f

ð3Þ
6m (m ¼ 1; 3; 5;…) are the constant coefficients, determined by substitution of the required quantities obtained by w, U,

and W from Eq. (18) into Eq. (13). The resultant solutions of the governing functions for the first fundamental problem, denoted by w1,
U1, and W1, respectively, are

w1 ¼ a�
X1

m¼1;3;5;…

cos mp�x=2ð Þ
20dnmgm �x2 �R � �Sð Þ � / �mgmsechnmsh nm 1� �yð Þ½ �

�
�fmnmsechgmsh gm 1� �yð Þ½ �gEm

�
þ20dnmgm sechnmch nm�yð Þ � sechgmch gm�yð Þ

� �
�Fm

�
(19)

U1 ¼
1

a
�

X1
m¼1;3;5;…

cos mp�x=2ð Þ
20dnmgm

�R � �Sð Þ � / �S�mgmsechnmsh nm 1� �yð Þ½ � � �Rnmfmsechgmsh gm 1� �yð Þ½ �
� �

Em

�
þ20dnmgm

�R � �Sð Þ �Ssechnmch nm�yð Þ � �Rsechgmch gm�yð Þ
� �

�Fm

�
(20)

and

W1 ¼
1

a
�

X1
m¼1;3;5;…

mpsechcm sin mp�x=2ð Þ
5dcm 1� �ð Þ

n
5d/ sh cm�yð Þ �Fm � cm

�h
2
ch cm 1� �yð Þ½ �Emg (21)

where �x ¼ x=a, �y ¼ y=b, / ¼ b=a, �Fm ¼ aFm=D, nm ¼ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2p2 � 4 �R �x2
p

=2, gm¼/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2p2�4�S �x2
p

=2, �m¼m2p2 �h
2 �20d �R �x2,

fm¼m2p2 �h
2�20d�S �x2, and cm¼/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40=�h

2þm2p2

q
=2, with �h¼h=a. The coordinates exchange gives the solutions of the second funda-

mental problem (Fig. 1(c)) by replacing x, y, a, b, Em, and Fm with y, x, b, a, Gm, and Hm, respectively.

3 Natural Frequency and Mode Shape Solutions by Superposition

For convenience, we use “S”, “C”, “F,” and “SC” to stand for the simply supported, clamped, free and slidingly clamped edges,
respectively. A clockwise four-letter symbolic notation is applied to a plate, with y¼ b as the starting edge. The most complex free
vibration problem of the rectangular thick plates with a free corner is for CCFF plate. It will be seen later that the other plates with a
free corner, including CSFF and SSFF plates, can be treated as the special cases of CCFF plate when applying further simplifications.
Superposition of the two fundamental solutions given in Sec. 2 constitutes the solution of a CCFF plate, as revealed in Fig. 1. However,
there exist four sets of constants needing to be determined. To reach equivalence between Figs. 1(a) and 1(b) plus 1(c), the conditions
that the following quantities vanish must be enforced: (a) superposition of My of the two fundamental problems at y ¼ 0; (b) superposi-
tion of wy at y ¼ b; (c) superposition of Mx at x ¼ 0; and (d) superposition of wx at x ¼ a. Corresponding to condition (a), we have

/2 nifi��i th gi � gi�i
�fith ni

	 

þ 4dnigicii

2p2 �h
2
�x2 th ci 1� �ð Þ �R � �Sð Þ

h i
Ei

þ20d/nigi ��isechgi � �fisechni þ di2p2 �x2sechci 1� �ð Þ �R � �Sð Þ
� �

�Fi

�
X1

m¼1;3;5;…

32/nigi �x
2 �R � �Sð Þ

4n2
i þ m2p2

� �
4g2

i þ m2p2
	 


40/2 þ p2 �h
2

m2 þ i2/2
	 
h i

� i2p2/2 4d �R �S/2 �h
2
�x4 20�/2 � m2p2 1� �ð Þ �h

2 � 5d
	 
h i

þm2p2 m2p2 �h
4

1þ �ð Þ � 4/2 100d 1� �ð Þ þ �x2 �h
4 �R þ �Sð Þ

h in o
 �



þ 4�h
2

i2p2/2c2
i m2p2 � �h

2 þ 5d 1� �ð Þ
h i

þ 20d/2 �x2 1� �ð Þ �R þ �S þ d �R �S �x2ð Þ
n on

þ�c2
i 80�d �R �S/4 �x4 þ m2p2 �h

2 � 5d 1� �ð Þ
h i

m2p2 � 4/2 �x2 �R þ �Sð Þ
� �n o��

Gm

þ10ipd/2 sin
ip
2

� �
4c2

i
�h

2
4 n2

i þ g2
i

� �
� /2 i2p2 2� �ð Þ þ 4d �R �S �x4 1� �ð Þ�gþm2p2 /2 40þ �i2p2 �h

2
	 


þ �h
2 � 10d 1� �ð Þ

h inh



� 4 n2
i þ g2

i

� �
þ p2 m2 � i2/2

	 
h ioo
�Hm

o
¼ 0

(22)
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for i ¼ 1; 3; 5;…, where �Fi ¼ aFi=D, �Hm ¼ aHm=D, ni ¼ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2p2 � 4 �R �x2
p

=2, gi ¼ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2p2 � 4�S �x2
p

=2, �i ¼ i2p2 �h
2 � 20d �R �x2,

fi ¼ i2p2 �h
2 � 20d�S �x2, ��i ¼ �4 �R �x2 � i2p2ð1� �Þð1þ d �R �x2Þ, �fi ¼ �4�S �x2 � i2p2ð1� �Þð1þ d�S �x2Þ, ci ¼ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40=�h

2 þ i2p2

q
=2, and

�c i ¼ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40=�h

2 þ i2p2=/2

q
=2. Corresponding to condition (b), we have

/ci di2p2 �h
2
�x2sechci

�R � �Sð Þ þ �isechni 1þ d�S �x2ð Þ � fisechgi 1þ d �R �x2ð Þ
h i

Ei

�5d di2p2/2 �x2th ci
�R � �Sð Þ þ 4ci ni th ni 1þ d�S �x2ð Þ � gi th gi 1þ d �R �x2ð Þ

� �� �
�Fi

þ
X1

m¼1;3;5;…

sin
mp
2

� �
16mpci/

2 �x2 �R � �Sð Þ

4n2
i þ m2p2

� �
4g2

i þ m2p2
	 


40/2 þ p2 �h
2

m2 þ i2/2
	 
h i

� p2 p2 �h
2
m4 �h

2 � 5d
	 


� 5di2/4 40� i2p2 �h
2

	 

� m2/2 200d� �h

2
40þ i2p2 �h

2
	 
� �n onn

�40di2p2 �h
2
�x2/4 �R þ �Sð Þ � 4d �R �S/2 m2p2 �h

2
5d� �h

2
	 


þ 5/2 �x4 40d� �h
2

8� di2p2ð Þ
� �n oo

Gm

þ10dip/2 sin
ip
2

� �
p2 �h

2 � 10d
	 


m2 þ i2/2
	 


þ 4/2 10þ d�x2 �R �S �h
2
�x2 þ 10 �R þ �Sð Þ

� �� �n o
�Hm

o
¼ 0 (23)

Table 1 Frequency parameters, xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
, of CCFF thick plate with h/a 5 0.05

Mode

b/a Reference First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth

1 Present 6.8327 23.418 26.096 45.966 60.760 63.513 81.574 84.255 115.24 117.68
FEM (shell) 6.8273 23.329 26.011 45.711 60.283 63.045 80.777 83.497 113.73 116.19
FEM (brick) 6.7010 22.902 25.541 44.908 59.235 61.957 79.401 82.102 111.90 114.34

1.5 Present 4.9237 13.037 22.924 29.544 33.265 50.464 54.552 60.871 70.098 75.256
FEM (shell) 4.9208 13.013 22.846 29.430 33.131 50.166 54.200 60.420 69.523 74.632
FEM (brick) 4.8284 12.771 22.427 28.889 32.535 49.277 53.236 59.372 68.323 73.344

2 Present 4.2515 8.9751 18.083 22.415 28.182 32.307 38.637 50.910 53.055 60.380
FEM (shell) 4.2493 8.9648 18.040 22.342 28.076 32.181 38.460 50.609 52.739 59.935
FEM (brick) 4.1691 8.7965 17.702 21.931 27.566 31.587 37.768 49.696 51.800 58.895

2.5 Present 3.9523 7.0476 12.870 21.417 22.494 25.911 32.681 34.036 42.358 48.912
FEM (shell) 3.9503 7.0416 12.848 21.353 22.427 25.819 32.546 33.902 42.149 48.641
FEM (brick) 3.8756 6.9090 12.607 20.954 22.012 25.347 31.954 33.276 41.390 47.758

3 Present 3.7988 5.9726 10.022 16.151 21.945 24.179 25.018 29.511 34.995 36.435
FEM (shell) 3.7969 5.9682 10.009 16.119 21.873 24.099 24.940 29.398 34.853 36.277
FEM (brick) 3.7250 5.8557 9.8200 15.814 21.471 23.652 24.479 28.862 34.207 35.619

3.5 Present 3.7113 5.3112 8.2993 12.784 18.826 21.928 23.833 26.506 27.628 32.634
FEM (shell) 3.7095 5.3077 8.2907 12.764 18.782 21.856 23.752 26.420 27.530 32.501
FEM (brick) 3.6392 5.2076 8.1342 12.522 18.427 21.454 23.316 25.925 27.026 31.910

4 Present 3.6574 4.8772 7.1761 10.598 15.219 20.942 21.979 23.365 26.152 28.201
FEM (shell) 3.6556 4.8742 7.1697 10.584 15.190 20.887 21.910 23.287 26.058 28.109
FEM (brick) 3.5863 4.7821 7.0340 10.383 14.902 20.493 21.506 22.859 25.581 27.581

4.5 Present 3.6221 4.5787 6.4017 9.1002 12.736 17.326 21.775 22.728 23.260 25.260
FEM (shell) 3.6202 4.5760 6.3963 9.0899 12.716 17.289 21.704 22.658 23.191 25.172
FEM (brick) 3.5516 4.4896 6.2756 8.9177 12.474 16.961 21.304 22.236 22.760 24.711

5 Present 3.5977 4.3659 5.8449 8.0294 10.962 14.670 19.138 21.817 22.751 24.296
FEM (shell) 3.5959 4.3634 5.8407 8.0217 10.947 14.644 19.095 21.745 22.675 24.219
FEM (brick) 3.5277 4.2809 5.7302 7.8691 10.739 14.365 18.732 21.345 22.259 23.767

for i ¼ 1; 3; 5;…. Corresponding to conditions (c) and (d), one
just needs to replace a, b, Ei, Fi, Gm, and Hm in Eqs. (22) and (23)
with b, a, Gi, Hi, Em, and Fm, respectively, to yield two more sets
of equations. The generated four sets of linear equations with
respect to four sets of unknowns Em, Fm, Gn, and Hn

(m ¼ 1; 3; 5;…; n ¼ 1; 3; 5;…) have nonzero solutions provided
that the determinant of the equations’ coefficient matrix is zero.
Because the frequency parameter �x has been included in the coef-
ficient matrix, the zero-determinant condition will yield an

equation with respect to �x. The mode shape corresponding to a
frequency can be obtained by seeking a set of nonzero solutions
for Em, Fm, Gn, and Hn under one determined �x, followed by their
substitution into two fundamental problems’ solutions and sum-
mation. It is worth pointing out that the solution for CCFF plate
can reduce to those for CSFF and SSFF plates. Simply deleting
the set of equations corresponding to condition (d) and setting
Hn ¼ 0, the solution of a CSFF plate can be obtained. Deleting
the equations corresponding to both conditions (b) and (d) and
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Table 2 Frequency parameters, xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
, of CCFF thick plate with h/a 5 0.1

Mode

b/a Reference First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth

1 Present 6.6934 22.457 25.010 42.797 56.302 58.768 73.632 76.064 101.95 103.84
FEM (shell) 6.6727 22.143 24.722 41.999 54.905 57.425 71.452 74.072 98.344 100.33
FEM (brick) 6.6564 22.106 24.695 41.976 54.929 57.467 71.503 74.173 98.608 100.59
Liew et al. [30] 6.6738 22.145 24.722 42.002 54.908 57.429 71.455 74.076 98.352 100.34

1.5 Present 4.8528 12.676 22.099 28.300 31.540 46.992 51.080 56.500 64.302 68.664
FEM (shell) 4.8416 12.589 21.828 27.914 31.097 46.076 50.019 55.191 62.679 66.935
FEM (brick) 4.8282 12.558 21.797 27.866 31.063 46.047 50.005 55.228 62.726 66.960
Liew et al. [30] 4.8420 12.591 21.831 27.916 31.099 46.080 50.022 55.196 62.684 66.943

2 Present 4.2047 8.7739 17.547 21.643 26.920 30.947 36.449 47.916 49.428 56.097
FEM (shell) 4.1958 8.7349 17.392 21.385 26.562 30.526 35.876 46.988 48.468 54.801
FEM (brick) 4.1840 8.7104 17.348 21.355 26.525 30.472 35.837 46.950 48.440 54.839
Liew et al. [30] 4.1966 8.7366 17.395 21.386 26.565 30.530 35.880 46.998 48.479 54.809

2.5 Present 3.9162 6.9125 12.554 20.731 21.746 24.851 31.071 32.577 39.858 46.205
FEM (shell) 3.9083 6.8889 12.477 20.502 21.512 24.535 30.624 32.132 39.194 45.366
FEM (brick) 3.8973 6.8688 12.440 20.457 21.475 24.501 30.582 32.075 39.152 45.319
Liew et al. [30] 3.9084 6.8929 12.479 20.506 21.513 24.539 30.629 32.139 39.206 45.384

3 Present 3.7683 5.8725 9.8047 15.727 21.218 23.312 24.119 28.162 33.497 34.519
FEM (shell) 3.7609 5.8557 9.7578 15.609 20.965 23.032 23.854 27.782 33.026 34.005
FEM (brick) 3.7504 5.8383 9.7283 15.564 20.935 22.988 23.809 27.743 32.964 33.961

3.5 Present 3.6843 5.2321 8.1359 12.488 18.301 21.204 22.955 25.561 26.478 31.038
FEM (shell) 3.6771 5.2188 8.1041 12.413 18.145 20.954 22.674 25.262 26.149 30.596
FEM (brick) 3.6669 5.2032 8.0789 12.375 18.092 20.924 22.641 25.204 26.109 30.553

4 Present 3.6325 4.8119 7.0458 10.373 14.844 20.322 21.263 22.526 25.091 27.192
FEM (shell) 3.6255 4.8004 7.0221 10.322 14.742 20.125 21.022 22.254 24.771 26.876
FEM (brick) 3.6154 4.7862 7.0001 10.289 14.696 20.071 20.990 22.223 24.736 26.812

4.5 Present 3.5986 4.5230 6.2937 8.9204 12.450 16.877 21.066 21.979 22.491 24.271
FEM (shell) 3.5918 4.5127 6.2745 8.8825 12.377 16.747 20.818 21.730 22.256 23.968
FEM (brick) 3.5818 4.4994 6.2550 8.8536 12.338 16.696 20.787 21.688 22.209 23.933

5 Present 3.5754 4.3170 5.7528 7.8799 10.733 14.324 18.619 21.104 21.965 23.451
FEM (shell) 3.5685 4.3076 5.7367 7.8502 10.679 14.230 18.463 20.855 21.701 23.176
FEM (brick) 3.5587 4.2949 5.7190 7.8251 10.644 14.184 18.407 20.826 21.671 23.130

Table 3 Frequency parameters, xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
, of CCFF thick plate with h/a 5 0.2

Mode

b/a Reference First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth

1 Present 6.3126 19.806 21.921 35.427 45.438 47.208 57.159 58.733 75.425 76.528
FEM (shell) 6.2445 18.969 21.218 33.770 42.900 44.939 53.567 55.802 70.541 72.030
FEM (brick) 6.2661 19.073 21.367 34.014 43.313 45.394 54.074 56.407 71.434 72.929
Liew et al. [30] 6.2455 18.970 21.219 33.771 42.901 44.939 53.568 55.802 70.545 72.034

1.5 Present 4.6522 11.656 19.622 24.806 27.085 38.794 42.131 45.624 50.999 54.149
FEM (shell) 4.6132 11.392 18.919 23.855 26.076 36.982 40.146 43.332 48.292 51.343
FEM (brick) 4.6269 11.434 19.040 23.992 26.254 37.256 40.492 43.776 48.783 51.827
Liew et al. [30] 4.6140 11.392 18.920 23.857 26.077 36.983 40.148 43.333 48.293 51.345

2 Present 4.0663 8.2084 15.989 19.259 23.483 27.073 30.945 40.013 40.747 45.352
FEM (shell) 4.0351 8.0814 15.551 18.585 22.604 26.090 29.693 38.206 38.939 43.079
FEM (brick) 4.0471 8.1059 15.612 18.707 22.748 26.242 29.895 38.495 39.249 43.524
Liew et al. [30] 4.0357 8.0822 15.553 18.586 22.605 26.091 29.694 38.208 38.941 43.081

2.5 Present 3.8050 6.5320 11.644 18.658 19.465 21.842 26.817 28.439 33.622 38.899
FEM (shell) 3.7769 6.4535 11.405 18.019 18.875 21.051 25.773 27.428 32.223 37.273
FEM (brick) 3.7883 6.4711 11.440 18.114 18.981 21.186 25.938 27.590 32.446 37.550
Liew et al. [30] 3.7771 6.4537 11.406 18.020 18.877 21.052 25.773 27.430 32.225 37.277

3 Present 3.6711 5.5888 9.1833 14.478 18.930 20.719 21.523 24.508 29.179 29.604
FEM (shell) 3.6445 5.5315 9.0327 14.134 18.265 19.973 20.877 23.588 28.067 28.507
FEM (brick) 3.6557 5.5462 9.0572 14.181 18.386 20.092 20.984 23.739 28.237 28.688

3.5 Present 3.5951 5.0061 7.6700 11.621 16.740 18.915 18.915 22.733 23.311 26.814
FEM (shell) 3.5694 4.9598 7.5643 11.393 16.300 18.258 19.612 21.927 22.562 25.781
FEM (brick) 3.5806 4.9730 7.5832 11.425 16.358 18.381 19.741 22.046 22.689 25.947

4 Present 3.5486 4.6230 6.6748 9.7216 13.735 18.441 19.018 19.989 22.067 24.213
FEM (shell) 3.5234 4.5831 6.5942 9.5586 13.432 17.870 18.416 19.288 21.266 23.421
FEM (brick) 3.5345 4.5955 6.6105 9.5825 13.472 17.953 18.525 19.415 21.403 23.535

4.5 Present 3.5182 4.3595 5.9859 8.4021 11.609 15.534 18.817 19.631 20.237 21.405
FEM (shell) 3.4934 4.3235 5.9210 8.2787 11.386 15.162 18.161 18.944 19.657 20.640
FEM (brick) 3.5045 4.3355 5.9354 8.2982 11.416 15.210 18.281 19.063 19.746 20.773

5 Present 3.4974 4.1716 5.4898 7.4506 10.063 13.293 17.058 18.837 19.537 20.832
FEM (shell) 3.4728 4.1384 5.4347 7.3526 9.8916 13.012 16.621 18.184 18.851 20.088
FEM (brick) 3.4840 4.1501 5.4482 7.3695 9.9155 13.049 16.677 18.306 18.978 20.214
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Table 4 Frequency parameters, xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
, of CSFF thick plate with h/a 5 0.2

Mode

b/a Reference First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth

1 Present 4.9666 16.927 20.685 33.556 42.155 46.323 55.319 57.284 73.039 75.829
FEM (shell) 4.9173 16.272 19.955 31.981 39.667 43.944 51.915 54.187 68.160 71.088
FEM (brick) 4.9290 16.302 20.041 32.151 39.880 44.368 52.287 54.694 68.771 71.829
Liew et al. [30] 4.9180 16.272 19.956 31.981 39.667 43.944 51.916 54.188 68.162 71.088

1.5 Present 2.9049 10.885 15.627 23.925 24.933 37.187 41.090 42.351 47.771 53.234
FEM (shell) 2.8846 10.638 15.077 22.947 24.065 35.443 38.741 40.368 45.046 50.461
FEM (brick) 2.8877 10.667 15.100 23.029 24.199 35.645 38.959 40.700 45.335 50.883
Liew et al. [30] 2.8849 10.638 15.077 22.948 24.066 35.444 38.741 40.369 45.047 50.462

2 Present 2.0272 7.1681 14.762 15.825 20.290 26.774 28.699 39.103 39.831 41.310
FEM (shell) 2.0151 7.0610 14.253 15.389 19.536 25.793 27.532 37.272 37.930 39.151
FEM (brick) 2.0160 7.0719 14.275 15.437 19.587 25.933 27.653 37.489 38.190 39.403
Liew et al. [30] 2.0154 7.0617 14.254 15.391 19.536 25.794 27.533 37.273 37.932 39.151

2.5 Present 1.5456 5.2678 10.906 14.806 18.126 18.907 24.140 28.149 31.626 38.693
FEM (shell) 1.5369 5.2086 10.685 14.285 17.478 18.356 23.203 27.140 30.297 37.031
FEM (brick) 1.5371 5.2130 10.708 14.302 17.518 18.423 23.279 27.291 30.438 37.293
Liew et al. [30] 1.5367 5.2092 10.686 14.285 17.478 18.357 23.203 27.141 30.298 37.036

3 Present 1.2441 4.1403 8.2748 13.800 17.160 20.898 21.565 27.066 29.074 33.709
FEM (shell) 1.2373 4.1022 8.1436 13.442 16.544 20.231 20.803 25.983 28.042 32.272
FEM (brick) 1.2372 4.1039 8.1547 13.471 16.573 20.304 20.868 26.082 28.198 32.432

3.5 Present 1.0390 3.4002 6.6014 10.899 14.584 16.153 16.667 19.743 22.659 24.143
FEM (shell) 1.0335 3.3731 6.5150 10.688 14.074 15.645 16.175 19.014 21.961 23.219
FEM (brick) 1.0332 3.3734 6.5208 10.707 14.090 15.676 16.218 19.058 22.054 23.294

4 Present 0.89116 2.8794 5.4641 8.8735 13.101 14.604 15.988 18.157 18.685 22.074
FEM (shell) 0.88649 2.8585 5.4032 8.7292 12.806 14.102 15.423 17.611 18.070 21.240
FEM (brick) 0.88617 2.8583 5.4058 8.7404 12.833 14.119 15.446 17.658 18.119 21.299

4.5 Present 0.77980 2.4941 4.6487 7.4324 10.895 14.450 15.078 15.729 17.757 19.766
FEM (shell) 0.77578 2.4773 4.6030 7.3281 10.690 13.957 14.684 15.199 17.118 19.203
FEM (brick) 0.77541 2.4768 4.6041 7.3344 10.708 13.974 14.718 15.225 17.151 19.268

5 Present 0.69303 2.1983 4.0389 6.3681 9.2496 12.660 14.528 15.425 16.635 17.209
FEM (shell) 0.68945 2.1843 4.0031 6.2895 9.0974 12.392 14.024 14.882 16.193 16.623
FEM (brick) 0.68910 2.1835 4.0032 6.2928 9.1084 12.416 14.041 14.903 16.234 16.657

Table 5 Frequency parameters, xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
, of SSFF thick plate with h/a 5 0.2

Mode

b/a Reference First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth

1 Present 3.2081 15.787 17.510 31.590 41.359 42.960 54.182 55.152 72.478 73.642
FEM (shell) 3.1797 15.158 16.918 30.099 38.797 40.610 50.777 52.093 67.463 68.977
FEM (brick) 3.1767 15.167 16.945 30.186 38.981 40.840 51.072 52.436 68.044 69.584
Liew et al. [30] 3.1800 15.158 16.917 30.099 38.797 40.610 50.777 52.093 67.462 68.977

1.5 Present 2.1459 8.9337 15.414 21.730 23.418 35.723 39.164 41.517 47.414 51.605
FEM (shell) 2.1318 8.7475 14.861 20.881 22.516 34.025 37.122 39.222 44.675 48.861
FEM (brick) 2.1297 8.7475 14.877 20.928 22.571 34.159 37.314 39.439 44.938 49.175
Liew et al. [30] 2.1318 8.7474 14.861 20.881 22.517 34.025 37.122 39.222 44.675 48.861

2 Present 1.6018 6.0129 13.524 15.127 19.795 24.659 27.801 37.755 38.079 41.169
FEM (shell) 1.5924 5.9297 13.140 14.617 19.051 23.727 26.651 35.969 36.295 38.867
FEM (brick) 1.5908 5.9275 13.152 14.636 19.085 23.802 26.733 36.146 36.473 39.082
Liew et al. [30] 1.5920 5.9297 13.140 14.618 19.05 23.728 26.652 35.969 36.295 38.867

2.5 Present 1.2746 4.5144 9.6482 14.732 17.047 18.126 23.570 26.437 30.835 37.046
FEM (shell) 1.2675 4.4670 9.4575 14.210 16.525 17.494 22.646 25.456 29.524 35.410
FEM (brick) 1.2662 4.4643 9.4611 14.226 16.553 17.525 22.702 25.549 29.631 35.600
Liew et al. [30] 1.2673 4.4670 9.4580 14.210 16.525 17.494 22.646 25.456 29.525 35.415

3 Present 1.0574 3.6112 7.3749 12.671 14.707 16.974 19.585 21.131 26.491 27.653
FEM (shell) 1.0517 3.5797 7.2615 12.367 14.197 16.362 18.980 20.346 25.421 26.639
FEM (brick) 1.0506 3.5771 7.2614 12.379 14.214 16.386 19.025 20.391 25.497 26.746

3.5 Present 0.90326 3.0086 5.9339 9.9803 14.489 15.275 16.393 19.475 21.467 23.731
FEM (shell) 0.89850 2.9855 5.8590 9.7898 13.990 14.862 15.822 18.754 20.793 22.816
FEM (brick) 0.89755 2.9830 5.8574 9.7949 14.005 14.885 15.846 18.790 20.852 22.876

4 Present 0.78828 2.5782 4.9517 8.1529 12.229 14.569 15.890 17.236 18.431 21.763
FEM (shell) 0.78420 2.5601 4.8982 8.0224 11.959 14.061 15.326 16.761 17.770 20.938
FEM (brick) 0.78335 2.5579 4.8960 8.0242 11.971 14.077 15.347 16.795 17.803 20.987

4.5 Present 0.69929 2.2558 4.2439 6.8571 10.172 14.059 14.648 15.638 17.606 18.878
FEM (shell) 0.69567 2.2410 4.2034 6.7626 9.9815 13.675 14.182 15.091 16.970 18.344
FEM (brick) 0.69494 2.2389 4.2010 6.7624 9.9880 13.691 14.201 15.112 16.999 18.388

5 Present 0.62838 2.0053 3.7114 5.9004 8.6514 11.961 14.501 15.348 15.921 17.076
FEM (shell) 0.62517 1.9927 3.6793 5.8288 8.5106 11.711 13.995 14.814 15.507 16.471
FEM (brick) 0.62449 1.9908 3.6769 5.8275 8.5134 11.723 14.011 14.834 15.535 16.497
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setting both Fm ¼ 0 and Hn ¼ 0, we obtain the solution of a SSFF
plate.

4 Comprehensive Numerical and Graphic Results

To provide comprehensive natural frequency and mode shape
solutions, we present many numerical and graphic results. In
Tables 1–3, we tabulate the first ten natural frequencies of CCFF
plates with the aspect ratio b=a ranging from 1 to 5 under an inter-
val of 0.5. The thickness-to-width ratio h=a is set to be 0.05, 0.1,
and 0.2, respectively. Tables 4 and 5 correspond to CSFF and
SSFF plates, respectively, with h=a¼ 0.2 and b=a being the same
as those for Tables 1–3. The Poisson’s ratio 0.3 is adopted
throughout. All our analytic solutions are compared with their
counterparts from the FEM via the ABAQUS software, in which
both thick shell element S8R and linear brick element C3D8R are
adopted [29]. Some numerical solutions by the Rayleigh–Ritz
method in Ref. [30] are also listed for comparison. Figure 2 illus-
trates the mode shapes of thick enough (h=a¼ 0.2) square CCFF
plates, from both our analytic and finite element solutions. A total
of 450 frequencies (90 per table) and ten mode shapes are pre-
sented for benchmark purpose, all of which are well validated by

satisfactory agreement with the FEM and Ref. [30]. It should be
noted that the minor differences between the present solutions and
both the FEM and Ref. [30] increase for higher modes, which
seems more obvious for thicker plates. This is probably due to the
difference between the present plate theory neglecting the rotatory
inertia and that incorporating the rotatory inertia (Ref. [30] and
FEM with thick shell element) as well as three-dimensional elas-
ticity (FEM with linear brick element).

The convergence study is carried out by plotting the first and
tenth frequency solutions of the CCFF, CSFF, and SSFF square
plates with h=a ¼ 0:2, normalized by their convergent values, ver-
sus the number of series terms (specified throughout as M in this
study), as shown in Fig. 3. It is verified that only 50 terms are
adequate for achieving the accuracy of five significant figures for
all current solutions; thus, M¼ 50 is universally applied to yield
the results.

5 Conclusions

New analytic free vibration solutions are obtained for the rec-
tangular thick plates with a free corner based on the symplectic
superposition method, including CCFF, CSFF, and SSFF plates.

Fig. 2 First ten mode shapes of a CCFF square thick plate with h/a 5 0.2

Fig. 3 Convergence of the first and tenth normalized frequencies for CCFF, CSFF, and SSFF
square plates with h/a 5 0.2
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The governing equations are first transformed into the Hamilto-
nian system, where the effective mathematical techniques in the
symplectic space such as the variable separation and symplectic
eigen expansion are valid. A problem to be solved is treated as the
sum of two fundamental problems that can be analytically solved
with the above techniques. The equivalence between the original
problem and the sum of fundamental problems leads to an equa-
tion to determine the frequencies. The mode shapes are then
obtained without difficulty. The main advantage of the method is
its ability to yield analytic solutions in a rational and rigorous
way, without loss of fast convergence and accuracy. Comprehen-
sive numerical and graphic results will play an important role in
validating other new solution methods as the benchmarks.
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