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In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long
through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high
accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed
in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the
relationship among the three-dimensional J-integral J(z), the stress intensity factor K(z) and the tri-axial stress constraint level Tz
(z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the
stress field near the crack front, J(z) and Tz(z). Numerical results show that in the plane very close to the free surface, the K field
solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.
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1 Introduction

Plate elements bearing tension, compression or bending are
widely applied in a variety of engineering, such as aerospace
engineering and civil engineering. The fracture analysis of
plate elements undoubtedly is an important issue. In the past
decades, many researchers have devoted their efforts to in-
vestigating the fracture problem of plate elements.
In earlier studies, considering a plate with a through-the-

thickness crack under pressure on the crack surfaces, Sih and
Hartranft [1,2] proposed an analytical method to examine the
three-dimensional stress field near the crack front. A closed
form solution, which depicts the variation of stress intensity
factors along the plate thickness direction, was derived. The
solution shows a boundary layer exists near the free surface

of the plate. However, the closed form solution is very dif-
ficult to solve and equilibrium equations cannot be met in the
boundary layer. Levy et al. [3] first applied finite element
methods to investing the three-dimension stress field near the
front of a crack in a thin plate. They concluded that a plane
stress condition exists at a distance of twice the plate
thickness away from the crack front along the mid-plane of
the plate. Benthem [4] investigated the state of stress at the
vertex of a quarter-infinite crack in a half space. In the paper,
the stress tensor near the vertex is expressed in a separable
form. In the vertex singular term, the leading root ranges
from –0.5 to –0.332 when the Poisson’s ratio varies from 0 to
0.5. Benthem’s solution can meet some numerical results
from finite element methods [5]. However, Benthem’s so-
lution only partly satisfies boundary conditions at the free
surface of the plate and might be verified further by more
numerical results. Yang and Freund [6] studied the state of
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stress in a thin elastic plate which contains through-cracks.
Based on the assumption that the through-the-thickness ex-
tensional strain was uniform in the thickness direction, these
authors derived a crack tip boundary layer solution for the
tensile opening mode of deformation (mode I). The solution
shows a finite lateral contraction at the crack tip and the out-
of-plane displacement on the free surface of the plate merges
smoothly with the corresponding plane stress solution at
distances from the tip of one-half to three-fourths of the plate
thickness. Using finite element methods, Nakamura and
Parks [5] investigated the three-dimensional stress field near
the front of a crack in a thin elastic plate. These authors
revealed the variations of stress intensity factors, J-integrals
and tri-axial stress constraint levels along the thickness di-
rection. These authors also showed the numerical results of
corner singular fields meet the solution given by Benthem at
the free surface of the plate. However, the paper does not
show the numerical results of corner singular fields in the
boundary layer. Using 3-point bend test, Narasimhan and
Rosakis [7] investigated three-dimensional effects near the
crack front. They believed that plane stress conditions are
reached at a distance of half the thickness from the crack
front. Pook [8] reviewed the implications of corner point
singularities. Pook concluded that a corner point singularity
arises due to the influence of the Poisson’s ratio and corner
point singularities shall be taken into account in studying the
problem of mixed mode fatigue crack growth. But, Pook also
admitted that lack of appropriate numerical information
makes it difficult to extract practical implications. Ranga-
nathan et al. [9] showed experimental results on the char-
acterization of the elastic-plastic strain fields at the crack tip
due to cyclic loading. They presented isostrain contours and
discussed the conditions of plane stress and plane strain. Su
and Sun [10] carried out a three-dimensional stress asymp-
totic analysis for an elastic plate with a through-the-thickness
crack under remote loading. They concluded that the stress
singularity at the crack front is of inverse square root sin-
gularity throughout the plate thickness, and stress intensity
factors can be expressed by a function of the thickness-wise
coordinate. But, the function cannot be determined com-
pletely by the analysis method alone. Using global-local fi-
nite element methods, Kwon and Sun [11] performed three-
dimensional finite element analysis on an elastic plate with a
through-the-thickness crack under remote loading. Based on
their numerical results, Kwon and Sun proposed a K-V in-
teraction model to reveal the characterization of the three-
dimensional stress field around the crack front in the
boundary layer. These authors also argued ρ of the spherical
region where the vertex singularity is dominant is less than
0.001t, where ρ is a distance from the corner point and t is the
thickness of the plate. However, the paper focuses on dis-
cussing the numerical results in the symmetrical planes or at
the free surface of the plate so the K-V interaction model

might be verified further by more numerical results of stress
fields in the boundary layer. Based on the Kane and Mindlin
theory as well as an application of the distributed dislocation
technique, Kotousov [12] showed semi-analytical elastic
results for crack tip opening displacement (CTOD) for a
through-the-thickness crack in infinite plates with various
thicknesses. Kotousov concluded that the transition from
plane-strain to plane-stress conditions occurs when the ratio
of crack length to plate thick is in the range of 0.01 to 10.
Using boundary layer and three-dimensional finite element
methods, She and Guo [13] investigated three-dimensional
distributions of stress near the front of a crack in a thin elastic
plate under mixed-mode loading. Two empirical formula
were fitted to describe the three-dimensional distribution of
Tz (the tri-axial stress constraint level) around the crack front
for pure tension and pure shear cases. Employing three-di-
mensional finite element methods, Moreira et al. [14] cali-
brated the stress intensity factor in a cracked plate subjected
to remote uniform traction. They concluded that the opening
stress decreases quickly along the thickness direction in a
boundary layer whose size is a function of the ratio of plate
thickness to crack length. However, the expression of the
function does not be given by these authors. Chaudhuri [15]
developed an eigen-function expansion technique to derive
three-dimensional asymptotic stress fields in the vicinity of
the front of a semi-infinite through-crack weakening an in-
finite plate made of a homogeneous cubic single crystal.
He concluded that when single crystals of alkali halides
(rock salt structure) are subjected to tensile stress, no crack
deviation is expected; in contrast, when single crystals of bcc
metals are subjected to tensile stress, crack deflection al-
ways occurs. However, there are no experimental results to
support these conclusions in the paper. Employing a three-
dimensional boundary-layer model for small-scale yielding,
Sobotka and Dodds [16] explored T-stress effects on the
three-dimensional, mode I crack-front fields for steady-state
tearing in an elastic-plastic material. They revealed a strong
effect of T-stress on key stress and strain quantities for low
loading levels and a less effect for higher loading levels. But,
the effect of out-of-plane constraint doesnot be considered in
the paper. Kotousov et al. [17] investigated the effect of plate
thickness on coupled stress intensity factors for an elastic
plate with a through-the-thickness crack under shear or anti-
plane loading. These authors argued shear or anti-plane
loading always generates coupled local fracture modes
(Mode II+Mode III) due to Poisson’s ratio effect and coupled
stress intensity factors can be expressed by a power function
of plate thickness. However, these authors also admitted the
theoretical conclusions need further experimental con-
firmation. Using three-dimensional finite element methods
and photo-elastic experimental methods, Khan et al. [18]
investigated the effect of thickness on crack front core re-
gions, stress intensity factors and crack initiation angles for
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an elastic plate with a through-the-thickness crack under
mixed mode loading. They revealed that the plastic zone size
near the crack front decreases with increasing thickness of
the specimen both at the surface plane and the mid-plane.
Using finite element methods, Góes et al. [19] examined
three-dimensional effects on the stress/strain fields close to
the tips of a notch and a long/short crack. They revealed that
for a long crack, the size of the three-dimensional zone ahead
of the crack tip is up to 0.4 times the plate thickness in the
mid-plane, while for a short crack, the size of the three-
dimensional zone is up to 10 times the crack length. These
authors also observed that peak values of stress intensity
factors appear near the free surface for short cracks. How-
ever, these authors do not give any explanation for the
phenomenon. Recently, He et al. [20] gave a brief review of
recent three-dimensional studies of brittle fracture, espe-
cially the studies of the coupled fracture modes and three-
dimensional vertex singularities.
In the works mentioned above, there are a limited number

of analytical solutions available in the literature because of
mathematical complexities encountering in solving this kind
of three-dimensional problems. In the current paper, a new
procedure including a new analytical method and finite
element simulations is proposed to investigate fracture pro-
blems of an elastic plate with a long through-the-thickness
crack under mode-I loading. In the part of theoretical ana-
lysis, the main contribution is that a formula which depicts
the relationship between J-integrals, stress intensity factors
and tri-axial stress constraint levels is derived first. The
formula reveal clearly the effect of tri-axial stress constraint
level on stress intensity factor. In the part of numerical si-
mulation, the first contribution is that the numerical results
from finite element methods verify the solutions from the
theoretical analysis. The second contribution is that numer-
ical results show that the inverse square root singularity

exists in the plane very close to the free surface of the plate.

2 Physical backgrounds, basic equations and
hypotheses for the current three-dimensional
fracture problem

2.1 Physical backgrounds

Consider a thin plate containing a through-the-thickness
crack with thickness 2h subjected to remote uniform tensile
loading , as illustrated in Figure 1(a). It is well known that
a thin plate without a crack under tension is in a state of plane
stress. However, when the thin plate contains a through-the-
thickness crack under tensile loading, materials near the
crack front contract in the x and z directions due to high
stress normal to the crack plane, but these materials are
prevented from doing so by the surrounding materials. This
constraint causes a three-dimensional stress state near the
crack front, as Figure 1(b) shows. Specially, at the mid-plane,
the stress state is plane strain at distances from the crack front
that are small compared to the plate thickness. Near the free
surface, the through-the-thickness constraint is lower, and
the out-of-plane stress vanishes at the free surface.

2.2 Basic equations

According to Hook’s law, the stress-strain relations of elastic
materials can be written as:

v s v= (1 + ) + 1 2
3 , (1)ij ij kk ij

where, v is Poisson’s ratio and

s = 1
3 . (2)ij ij kk ij

Throughout this paper, unless otherwise stated, all un-
barred quantities are non-dimensional quantities. Length

Figure 1 A thin plate containing a through-the-thickness crack subjected to remote uniform tensile loading . (a) A cracked thin plate under tension; (b) a
tri-axial stress state near the crack front.
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quantities if unbarred will be non-dimensionalized by the
half thickness h . Stress quantities if unbarred will be non-
dimensionalized by elastic modulus E .
The equilibrium equations without body force can be ex-

pressed as:
= 0. (3)ij j,

Employing non-dimensional Maxwell stress functions (ϕi,
i=1, 2, 3), the stress components in the rectilinear coordinate
system shown in Figure 2 may be expressed as:
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Using the cylindrical coordinates r, and z shown in
Figure 2, eq. (4) may be re-written as:
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where, () =. and r() = .

The non-dimensional ϕi, r and z are given by
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r r

h z z
h= ,  = ,  = . (6)i

i
2

It can be proved that eq. (5) satisfies the equilibrium
equations in cylindrical coordinates , i.e.,
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An asymptotic expansion of the stress functions is at-

tempted in the form
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Our search will be restricted to only the dominant term in
such an expansion:
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Near the crack front, one may find
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Figure 2 Three-dimensional J-integral.
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Substituting eq. (9) into eq. (5) and noting eq. (10), the
stress components may be re-written as:

( )
( ) ( ) ( )
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Similarly, the stress components in the rectilinear co-
ordinate system (eq. (4)) may be expressed as:
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According to Hook’s law, the strain components in the
rectilinear coordinate system may be expressed as:
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The compatibility equations may be written as:
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Substituting the strain components (eq. (13)) to the com-
patibility equations (eq. (14)) one may obtain the partial
differential governing equations
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In the cylindrical coordinates, one may have

( )

r r r r r r r r

( ) = 0, = 0,

= + + + + .
(16)

4 4
1

4 2

2

2

2 2

2

2

2

2 2

3 Solutions for three-dimensional singularity
fields

3.1 Three-dimensional stress and strain fields

Subsisting eq. (9) to eq. (16), one may have
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The general solutions for eq. (17) may be expressed as:
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Substituting eq. (20) to eq. (11) and letting
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where, K z( ) is the stress intensity factor (in dimensionless
quantity). T z( )z is the tri-axial stress constraint coefficient
defined as:
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Substituting eq. (23) to the stress-strain relations (eq. (1)),
one may obtain strain components expressed as:
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3.2 Relationships among three-dimensional J-integral
J(z), K(z) and Tz(z)

A mathematical expression of the three-dimensional J-in-
tegral (in dimensionless quantity) [21-23] is
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where, is a point along the crack front, J ( ) is the point-
wise value of the J-integral at a given point along the crack
front (Figure 2), W is the strain energy density (in di-
mensionless quantity), ij and ui are the Cartesian compo-
nents of stress and displacement. Integral paths 1 (radius r1)
and 2 (radius r2) lie in the plane perpendicular to the crack

front, and n j are the components of a unit vector outward
normal to the integral paths and normal to the crack front.
A( )2 is the domain bounded by 2.
The integral of strain energy density W along the path 1

may be expressed as:

W y Wr

r

d = cos d

1
2

( + + + 2 ) cos d . (27)r r z z r r

1

1

1

Substituting the stress components in eq. (22) and the
strain components in eq. (25) to eq. (27), one may obtain
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Similarly, the second integral in the first line in eq. (26)
may be expressed as:
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Here, according to the strain-displacement relations, ur,
u( )r

., u( ). and u may be expressed by
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Derivations of eqs. (28) and (29) have been shown in the
Appendix.
Substituting eqs. (28) and (29) to the expression of the

three-dimensional J-integral (eq. (26)), one gets the re-
lationships among J z( ), K z( ) and T z( )z , expressed as:
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specially, J K= 2 when T = 0z (plane stress) and J= v K(1 )2 2

when T v=z (plane strain).

3.3 Three dimensional finite element mesh

K z( ) is undetermined and should be related to the applied
stress. On the other hand, eq. (31) showsK z( ) is a function of
J z( ) and T z( )z . If the values of J z( ) and T z( )z can be obtained
using three-dimensional finite element methods, the value of
K z( ) can be resolved by eq. (31) and the stress components
near the crack front can be calculated based on eqs. (22) and
(23).
A circular disk (cylinder) is used to model the near tip

region of a thin plate with thickness 2h , as shown in Figure
3(a). Only a quarter of circular disk (region 0≤ ≤π,
0≤z h/ ≤l) is modeled with finite elements since the sym-
metry of the current problem, as shown in Figure 3(b). The
finite element mesh is constructed with 8-node brick ele-
ments. In the plane perpendicular to the crack front (x−y
plane), the element size is gradually increased with radial
distance from the crack front (the progression ratio is 1.21),
while the angular increment of each element is kept constant,

= 36 . The identical planar mesh is repeated along the z-
axis from the symmetry-plane (z=0) to the free-surface (z=1).
The thickness of successive element layers gradually in-
creases towards the symmetry plane (z=0) (the progression
ratio is 1.12). The half thickness of the plate consists of 60
layers, and the thickness of the layer at the free surface is

h1.11 × 10 4 . The radial size of the elements around the crack
front is h2 × 10 5 . There are 153360 elements in the current
mesh. The mesh has been shown in Figure 3(b).
The symmetry conditions require:
(1) the normal displacements on the surface where y = 0

and x 0 should be zero,
(2) and the normal displacements on the symmetry plane

where z = 0 should be zero.

The stress distribution on the surface where r=a
(a a h= / = 10) is given by

K
a

K
a

= 2
1
4 5cos2 cos3

2 ,

= 2
1
4 sin2 + sin3

2 ,

= 0.

(32)

r

r

rz

far

far

4 Results and discussion

Figures 4-6 show that the values of J z( ), T z( )z and K z( )
decrease from the mid-plane (z=0) to the plane very near the
surface (z=0.995). Figure 4 shows that all of the curves pass

through (near) a point located at z=0.6 and
( )

J
K

= 1
far 2 . The

value of J z( ) for v = 0 is kept constant and equals the cor-
responding two-dimensional solution. In Figure 5, one may
observe that if v 0, the values of T z( )z are high near the
crack front at the mid-plane, so a plane strain condition may
be met approximately. If v=0, T z( )z vanishes and the stress
state near the crack front is plane stress. Figure 6 shows that
all of the curves pass through (near) a point located at z=0.94

and K
K = 1far

. The value ofK z( ) for v = 0 is kept constant and

equals the corresponding two-dimensional solution. Figure 6
also shows the value of K z( ) for v 0 drops quickly in the
region 0.94≤z≤0.995. The numerical results of nonzero
stress components near the crack front at mid-plane and
corresponding analytical results are plotted in Figure 7. The
analytical results are in good agreement with the numerical
results. Figure 8 shows that the numerical results of in-plane
stress components near the crack front agree well with ana-
lytical results in the plane which is very close to the free
surface. These results in Figure 8 imply that the singularity of
in-plane stress components are still the inverse square root in

Figure 3 (Color online) (a) Schematic of a cracked circular disk which represents the near crack front region of a thin plate. Here, a h= 10 . (b) Finite
element mesh of the quarter-mode.
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the plane very close to the free surface. Figure 8 also shows
that in the plane perpendicular to the crack front and very
close to the free surface, the radium of the region where the
K-field solution is dominant decreases with increasing z. For
example, in the case that v is 0.3, when z increases from 0.98
to 0.995, the radium decreases from 3×10−3 to 10−3. Figure 8

also implies eq. (31) derived by the current analytical method
is valid in the case of lower tri-axial stress constraint level.

5 Summary and conclusion

In the current paper, a new procedure including theoretical
analysis and high accurate finite element simulations is
proposed to investigate the three-dimensional fracture pro-
blem of a thin elastic plate with a long through-the-thickness
crack under remote tension. In the part of theoretical ana-
lysis, Maxwell stress functions are employed to derive the
crack front singularity field. A formula (eq. (31)) is derived
first, with aid of Figure 9 to calculate the three-dimensional
stress intensity factor K z( ) after the three-dimensional J-
integral J z( ) and the tri-axial stress constraint level T z( )z

have been obtained by numerical methods. In the part of
finite element simulations, a fine mesh including 153360
elements is constructed to compute the stress field near the
crack front, J z( ) and T z( )z . Comparison with the numerical
results shows that the analytical results are valid. This work
supports the following observations and conclusions.
(1) When v=0, the stress state near the crack front is plane

stress.
(2) The three-dimensional stress intensity factor is a

function of the three-dimensional J-integral J z( ) and the tri-
axial stress constraint level T z( )z and may be expressed as:

( )
K z J z

T z vT z
( ) = 2 ( )

3 ( ) + 2
. (33)

( )z z
2

(3) In the plane very close to the free surface, e.g., z=0.995
and v=0.3, the K field solution is still valid for in-plane
stresses.
(4) In the plane perpendicular to the crack front and close

to the free surface, the radium of the region where the K-field
solution is dominant decreases with increasing z. For ex-
ample, in the case that v is 0.3, when z increases from 0.98 to
0.995, the radium decreases from 3×10−3 to 10−3.

Figure 4 (Color online) (a)
J

K far
2 along the half-crack front for various Poisson’s ratios; (b) comparison with Nakamura and Park’s results.

Figure 5 (Color online) T
v

z along the half-crack front for various Pois-
son’s ratios.

Figure 6 (Color online) K
K far along the half-crack front for various

Poisson’s ratios.
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Figure 7 (Color online) Angular distributions of nonzero stress components normalized by K near the crack front at mid-plane. Here K
( )

J
T vT

= 2
3 + 2z z

2 .
(a) v=0, (b) v=0.15, (c) v=0.3, (d) v=0.4, and (e) v=0.499.

Figure 8 (Color online) Angular distributions of in-plane stress components normalized by K near the crack front in the plane very close to the free surface.

Here K
( )

J
T vT

= 2
3 + 2z z

2 . (a) v=0.3, z=0.98, (b) v=0.3, z=0.995.
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(5) Eq. (31) derived by the current analytical method is still
valid in the plane perpendicular to the crack front and very
close to the free surface, where the tri-axial stress constraint
level is low.

This work was supported by the Fundamental Research Funds for the
Central Universities (Grant No. 2014B1801).
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Appendix

Stain energy density W (in dimensionless quantity) near the crack front may be written as:

W = 1
2( + + + 2 ). (a1)r r z z r r

Substituting the expressions of stress and strain (eqs. (22) and (25)) to eq. (a1), one may obtain

( )

W K z
r v vT v

v vT v T T v v

K z
r v vT T v v v

= ( )
64 5cos2 cos3

2 (5 3 8 )cos2 (1 + )cos3
2

+ 3cos2 + cos3
2 (3 5 8 )cos2 + (1 + )cos3

2 + 64 ( )cos 2 + 2(1 + ) sin2 + sin3
2

= ( )
64 34 30 128 + 64( ) cos2 + 2(1 + ) cos3

2 4(1 + )cos3
2 cos2 + 2(1 + ) sin2 + sin3

2 . (a2)

z

z z z

z z

2

2
2

2
2

2 2 2

Substituting eq. (a2) to eq. (27), one may have

( )

( )

W y Wr

K z v vT T v

v v

K z T vT v

d = cos d

= ( )
64 34 30 128 + 64( ) cos 1

2
+ 2(1 + ) cos 3

2

4(1 + )cos3
2 cos2 + 2(1 + ) sin2 + sin3

2 cos d

= ( )
4 2( ) 4 + 1 . (a3)

z z

z z

1

2
2

2 2

2

2
2

1

According to eq. (29), one may have

Figure 9 Traction T at the path.
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( )

( )

n u s n u n u n u n u r

T u T u r

d = + + + d

= + d . (a4)

ij j i x x x x x xy y x x xy x y x y y y x

x x x y y x

, , , , , 1

, , 1

1

Here, Tx and Ty represent the traction along the x and y axes separately at the path 1, see Figure 9. At the path 1, Tx and Ty may
be expressed by r and as:

T
T

= cos sin ,
= sin + cos . (a5)x r r

y r r

Similarly, at the path 1, displacement components in rectangular coordinates may be expressed by corresponding components
in cylindrical coordinates, i.e.,

u u u
u u u

= cos sin ,
= sin + cos . (a6)x r

y r

Noting x r= sin and r
x = cos , one may get

u
x

u
x

u
r

r
x r

u u
r

u
x

u
x

u
r

r
x r

u u
r

= + = sin + cos ,

= + = sin + cos .
(a7)

x x x x x

y y y y y

Substituting eq. (a6) to (a7), one may get

( )
( )

( ) ( ) ( )

( ) ( ) ( )

u
x r u u u u u u

u
x r u u u u u u

= sin ( ) cos ( ) + sin + cos ( ) cos ( ) sin ,

= sin + ( ) cos + ( ) sin + cos ( ) sin + ( ) cos .
(a8)

x
r r r

y
r r r

. .

. .

Noting eqs. (a5) and (a8), one may have

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

n u T u T u

r u u u u u u

r u u u u u u

r u u u r u u u

= +

= cos sin sin ( ) cos ( ) + sin + cos ( ) cos ( ) sin

+ sin + cos sin + ( ) cos + ( ) sin + cos ( ) sin + ( ) cos

= sin ( ) ( ) + ( ) cos + sin ( ) + + cos ( ) . (a9)

ij j i x x x x y y x

r r r r r

r r r r r

r r r r r

, , ,

. .

. .

. .

Substituting eqs. (22) and (30) to the first and second terms in the last line in eq. (a9), one may have

{ }
( )r u u u

K z

r

v vT v v vT v

sin ( ) ( ) + ( ) cos =
( ) 5cos1

2 cos3
2

32

× (9 + 8 )sin1
2 sin (1 + )sin3

2 sin +(5 3 8 )cos1
2 cos (1 + )cos3

2 cos . (a10)

r r r

z z

.

2

and

{ }
( )r u u u

K z

r

v vT v v vT v

sin ( ) + + cos ( ) =
( ) sin1

2 + sin3
2

32

× (3 5 8 )cos1
2 sin (1 + )cos3

2 sin (7 8 )sin1
2 cos + (1 + )sin3

2 cos . (a11)

r r

z z

.

2

Substituting eqs. (a10) and (a11) to eq. (a9), one may have
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{

}
{ }

( ) ( )

n u T u T u

r u u u r u u u

K z

r v vT v

v vT v
K z

r

v vT v v vT v

= +

= sin ( ) ( ) + ( ) cos + sin ( ) + + cos ( )

=
( ) 5cos1

2 cos3
2

32 (9 + 8 )sin1
2 sin (1 + )sin3

2 sin

+(5 3 8 )cos1
2 cos (1 + )cos3

2 cos +
( ) sin1

2 + sin3
2

32

× (3 5 8 )cos1
2 sin (1 + )cos3

2 sin (7 8 )sin1
2 cos + (1 + )sin3

2 cos . (a12)

ij j i x x x x y y x

r r r r r

z

z

z z

, , ,

. .

2

2

Substituting eq. (a12) to (a4), one may have

{

{
}

}

n u s K z v vT v

v vT v

K z v vT v

v vT v

K vT v

d = ( )
32 5cos 1

2
cos 3

2
(9 + 8 )sin 1

2
sin (1 + )sin 3

2
sin

+(5 3 8 )cos1
2 cos (1 + )cos3

2 cos d

( )
32 sin 1

2
+ sin 3

2
(3 5 8 )cos 1

2
sin (1 + )cos 3

2
sin

(7 8 )sin1
2 cos + (1 + )sin3

2 cos d

= 4 (2 3). (a13)

ij j i x z

z

z

z

z

,

2

2

2

1
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