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This work is concerned with flexural-gravity solitary waves on water of finite depth. The deformation of
the elastic sheet is modelled based on the Cosserat theory of hyperelastic shells satisfying Kirchhoff’s
hypotheses. Both steady and unsteady waves are computed numerically for the full Euler equations by
using a conformal mapping technique. Complete bifurcation diagrams of solitary waves are presented, and
various dynamical experiments, including the evolution of unstable solitary waves and the generation of
stable ones, are carried out via direct time-dependent simulations. In particular, we show that generalized
solitary waves can also be excited by moving loads on the elastic cover.
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1. Introduction

Waves propagating on water covered by an elastic sheet have recently received a significant research
interest due to their wide applications in modelling floating ice (see Ashton (1986); Squire et al. (1996,
1988) and the references therein). Such waves are called flexural-gravity waves or hydroelastic waves.
An in-depth understanding of this subject can enhance the engineering design of roads and aircraft
runways in polar regions, as well as the construction of ‘very large floating structures’ in offshore
and coastal areas. A main difficulty in studying theoretically these waves lies in the modelling of the
deformation of the ice sheet (see Korobkin et al. (2011) for example) and a number of models have been
proposed. The earliest model is linear water waves combined with the Euler–Bernoulli beam theory
which is a good approximation for small-amplitude wave motions (see e.g. Squire et al. (1996)). Marko
(2003) reported the observations of waves in ice events and his analysis showed that linear theories are
not adequate for describing ice deflections of large amplitude. A hybrid formulation which combines the
nonlinear water-wave theory and linear plate bending was developed by Părău & Vanden-Broeck (2011)
to model 3D hydroelastic waves of finite amplitude. On the other hand, in order to include the nonlinear
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2 T. GAO ET AL.

effect due to elastic bending, a nonlinear model which is called the Kirchoff–Love (KL) model was
widely used in the literatures since 1980s (Forbes (1986, 1988); Milewski et al. (2011); Părău & Dias
(2002); Vanden-Broeck & Părău (2011)). More recently a novel nonlinear elastic model was proposed
by Plotnikov & Toland (2011), based on the Cosserat theory of hyperelastic shells satisfying Kirchhoff’s
hypotheses. In comparison to the KL model, the advantage of the Cosserat model is that it conserves
elastic potential energy. Since this new model has been introduced, there has been a renewed interest
in this problem and many investigations have already been performed by different authors, e.g. Gao &
Vanden-Broeck (2014), Gao et al. (2016), Guyenne & Părău (2014) and Guyenne & Părău (2012). In this
paper, we restrict our attention to the Cosserat’s model combined with the fully nonlinear water-wave
theory in all the computations.

A number of experiments have been carried out at McMurdo Sound in Antarctica (Squire et al.
(1988)) and at Lake Saroma in Japan (Takizawa, (1985, 1987, 1988)), which were summarized by Părău
& Dias (2002). As observed, the typical wavelength is 161 m in water with an average depth of 350 m at
the former location (deep water case) while the corresponding value is 18.8 m with a depth of 6.8 m in
Japan (shallow water case). Hence, to understand the influence of finite-depth effects in flexural-gravity
wave motions is important for the locations geographically similar to Lake Saroma. There are two
critical speeds in the flexural-gravity wave problem of finite depth. One is the so-called shallow water
speed, c0 = √

gh, where g is the acceleration due to gravity and h is the mean depth of water. The other
one is the minimum cmin of the linear wave speed which is relevant to the nonlinear Schrödinger (NLS)
equation and to the generation of wavepacket solitary waves. These two speeds differ considerably in
deep water but are very close in the shallow-water case.

Nonlinear flexural-gravity waves on water of finite depth have been considered in the past by
several groups. Gao & Vanden-Broeck (2014) searched for periodic and generalized solitary waves
by using a series truncation method. Guyenne & Părău (2014) used a hodograph transformation to
compute solitary waves and a high order spectral method to study the stability and dynamics of these
solutions. Milewski & Wang (2013) and Alam (2013) derived a Benney–Roskes–Davey–Stewartson
type model for the 3D problem. Wang et al. (2014) computed lump solutions based on truncated models
and pseudo-spectral methods. In this work, we solve the fully nonlinear Euler equations by using a
time-dependent conformal mapping technique, which was pioneered by Dyachenko et al. (1996) and
successfully used in deep water by Gao et al. (2016), Milewski et al. (2011, 2010) and Wang et al.
(2014). Here we extend this work to the case of finite depth by following Choi & Camassa (1999)
and Li et al. (2004). Fully nonlinear steady and unsteady solutions are both considered in the present
paper. A new finding on the excitation of generalized solitary wave is also presented at the end of the
paper.

The rest of the paper is structured as follows. A detailed formulation is presented in Section 2 where
we explain in detail the numerical technique. The numerical results are presented in Section 3. And
finally a conclusion is given in Section 4.

2. Formulation

We consider a 2D irrotational flow of inviscid and incompressible fluid with density ρ and depth h.
The fluid body is bounded below by a solid horizontal boundary and covered above by an elastic sheet
with flexural rigidity D. We choose a 2D Cartesian coordinate system, such that the positive x-direction
is the wave propagation direction and the gravity is parallel to the y-axis pointing downwards. The
deformation of the elastic sheet is denoted by y = ζ(x, t) which is unknown and varies with the time t.
We introduce the velocity potential φ and streamfunction ψ . The governing equations can then be

Downloaded from https://academic.oup.com/imamat/advance-article-abstract/doi/10.1093/imamat/hxy007/4951679
by University of Durham user
on 16 April 2018



FLEXURAL-GRAVITY SOLITARY WAVES ON WATER OF ARBITRARY DEPTH 3

Fig. 1. Schematic of the conformal mapping.

expressed as follows

∇2φ = 0, −h < y < ζ(x, t), (2.1)

ζt = φy − φxζx, y = ζ(x, t), (2.2)

φt + 1

2
|∇φ| 2 + ζ + κss + 1

2
κ3 + Pe = 0, (2.3)

φy = 0, y = −h, (2.4)

where we have chosen

(
D

ρg

) 1
4

,

(
D

ρg5

) 1
8

(2.5)

as the reference length and the reference time, respectively. Here Pe is the external forcing, s is the
arclength along the free surface and κ denotes the curvature of the free surface. The total energy E of
the system is given by

E = 1

2

∫
R

∫ ζ

−h
|∇φ| 2 dy dx + 1

2

∫
R

ζ 2 dx + 1

2

∫
R

ζ 2
xx(

1 + ζ 2
x

)5/2
dx. (2.6)

A time-dependent conformal mapping technique, pioneered by Dyachenko et al. (1996), is
performed to transform the fluid domain onto a uniform strip of thickness h̄ in the new ξ -η plane,
where the free surface is mapped to η = 0. The schematic of the mapping is shown in Fig. 1. It is noted
that solitary waves in our computations are approximated by long periodic waves with flat tails in the far
field. We should emphasize that the wavelength L is fixed in both planes, but the thickness of the strip
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in the conformal plane, h̄, is varied in time to ensure conservation of mass. Following Choi & Camassa
(1999) and Li et al. (2004), the difference between h and h̄ is the mean value of the free surface elevation
in the physical plane, i.e.

h = h̄(t) − 1

L

∫ L/2

−L/2
ζ(x, t) dx. (2.7)

To ease the notations, the variables on the upper surface in the transformed plane are defined by

X(ξ , t) � x(ξ , 0, t), Y (ξ , t) � y(ξ , 0, t) , (2.8)

Φ(ξ , t) � φ(ξ , 0, t), Ψ (ξ , t) � ψ(ξ , 0, t). (2.9)

After calculations similar to those presented in the studies by Choi & Camassa (1999) and Li et al.
(2004), the following equations are obtained:

Xξ = 1 − T
[
Yξ

]
, (2.10)

Ψξ = −Ti
[
Φξ

]
, (2.11)

Yt = YξT
[
Ψξ

J

]
− Xξ

Ψξ

J
, (2.12)

Φt + Φ2
ξ − Ψ 2

ξ

2J
+ Y + 1

2

[
κξξ

J
+

(κξ

J

)
ξ

+ κ3
]

− ΦξT
[
Ψξ

J

]
+ Pe = 0 , (2.13)

where J � X2
ξ + Y2

ξ is the Jacobian of the map and

κ = Xξ Yξξ − Yξ Xξξ

J3/2
, (2.14)

κξ = Yξξξ Xξ − Xξξξ Yξ

J3/2 − 3κ
(
Xξ Xξξ + Yξ Yξξ

)
J

, (2.15)

κξξ = Xξξ Yξξξ + Xξ Yξξξξ − Yξξ Xξξξ − Yξ Xξξξξ

J3/2

−6
(
Xξ Yξξξ − Yξ Xξξξ

) (
Xξ Xξξ + Yξ Yξξ

)
J5/2

−
3κ

(
X2

ξξ + Y2
ξξ + Xξ Xξξξ + Yξ Yξξξ

)
J

+ 15κ
(
Xξ Xξξ + Yξ Yξξ

)2

J2 . (2.16)

The transformation T is defined by

T [f ] = 1

2h̄

∫
f
(
ξ ′) coth

(
π

2h̄

(
ξ ′ − ξ

))
dξ ′ , (2.17)
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with the Fourier symbol i coth
(
kh̄

)
. The inverse T -transform can be defined by

Ti[f ] = − 1

2h̄

∫
f
(
ξ ′) csch

(
π

2h̄

(
ξ ′ − ξ

))
dξ ′ , (2.18)

with the Fourier symbol −i tanh
(
kh̄

)
. In the limit of deep water

(
h̄ → ∞)

, T becomes the Hilbert trans-
form. For free waves travelling at a constant velocity c (i.e. Pe=0), all the functions depend on x − ct.
Therefore, the evolution system can be reduced to

Ψ = cY , (2.19)

c2

2

(
1

J
− 1

)
+ Y + 1

2

[
κξξ

J
+

(κξ

J

)
ξ

+ κ3
]

= 0 . (2.20)

The total energy E for travelling waves can be written in terms involving only the surface variable ξ in
the transformed plane

E = 1

2

∫ (
ΦξΨ + Y2Xξ +

(
Yξξ Xξ − Xξξ Yξ

)2

J5/2

)
dξ . (2.21)

As mentioned earlier we approximate solitary waves by long periodic waves so that the solutions
can be written in the form of the Fourier series

y =
N∑

n=−N

(an + ibn) ei2πnξ/L , (2.22)

with b0 = 0. The value of L is chosen sufficiently large so that the solution does not change within
graphical accuracy if L is further increased. The Fourier coefficients an and bn are the unknowns. As we
shall see in the next section there are two types of waves: symmetric and asymmetric waves. Symmetric
waves are characterized by the existence of a vertical line in the physical plane which respect to which
the profile is symmetric. Asymmetric waves are defined as waves for which no such vertical line exists.
We describe here the numerical procedure for symmetric waves (the modifications for asymmetric waves
will be described in the next section). We assume without loss of generality that the line of symmetry
corresponds to ξ = 0. It then follows that a−n = an and b−n = −bn for n �= 0. We use a spectral
collocation method for spatial discretization. The N collocation points are uniformly distributed along
the ξ -axis, which provides discrete algebraic equations by projecting (2.20) onto each element of the
basis ei2πnξ/L. All of the derivatives and the T -transform are computed via Fourier multipliers while
the nonlinear terms are computed in the real space. The energy E given in (2.21) is evaluated by the
trapezoidal rule. The spatial step-size is chosen as dξ = 0.05 for steady computations. Typically we use
N = 4096 Fourier modes on a computational domain [−100, 100). The far field of the solitary waves is
levelled at y = 0. The wave height H is defined by

H =
∣∣∣∣ min

x∈R
ζ(x)

∣∣∣∣ , (2.23)

where the value of H is constrained by H < h. The algebraic equations are solved by Newton’s method.
Steady solutions in deep water, which were thoroughly investigated in the study by Gao et al. (2016),
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6 T. GAO ET AL.

are chosen as the initial guess for solitary waves in finite depth. When h = 300, only five iterations
are usually required to achieve convergence with the residual error being less than 10−10. Based on a
numerical continuation method using h as a bifurcation parameter, we manage to find fully localized
travelling-wave solutions in arbitrary depth.

Some preliminary insight into the problem can be gained by linearizing the dynamic boundary
condition (2.20) by assuming that Y , Φξ , Ψξ are small and J ∼ 1, Xξ ∼ 1. Solving the resultant linear
equations yields the linear dispersion relation

c2 =
(

1

k
+ k3

)
tanh(kh), (2.24)

(see e.g. Milewski & Wang, 2013). It can be shown that c always admits a global minimal value which
we call the minimum of the phase speed cmin. To ease the notation, we let ch � cmin(h).

3. Results

3.1 Steady solutions

In this subsection, we aim to investigate free solitary waves, i.e. the external forcing Pe is switched
off. We refer to the solitary waves as elevation waves when ζ(0) > 0 and as depression waves when
ζ(0) < 0. The NLS equation for flexural-gravity waves in arbitrary depth, as shown below, was derived
by Alam (2013) and Milewski & Wang (2013) based on the Cosserat elastic model

iAτ + ω′′

2
AXX + μ|A|2A = 0, (3.1)

where ω = kc is the angular frequency and

μ = 5ωk6

2
(
1 + k4

) + ωk2

4 tanh2 kh

(
1 + k4

)
tanh4 kh − 10

(
1 + k4

)
tanh2 kh + 69k4 + 9

15k4 − (
1 + k4

)
tanh2 kh

(3.2)

+ωk2

2

(
1 + k4

sinh2 kh cosh2 kh
− 4

)
. (3.3)

It is found that the coefficient μ of the nonlinear term changes sign at a critical value h+ � 233, namely,
the NLS equation is focussing, i.e. solitary waves can bifurcate from zero amplitude, when h < h+
but defocussing, i.e. solitary waves can only bifurcate from finite amplitude, for h > h+. We start with
computing symmetric flexural-gravity solitary waves for h = 2 and h = 300. From the dispersion relation
(2.24), the phase speed minimum can be easily found

c2 = 1.249944 , c300 = 1.324676 . (3.4)

For h = 300, the results are qualitatively similar to those found in deep water by Gao et al. (2016).
Both branches of elevation waves and depression waves were found to exist at finite amplitudes (this is
consistent with the fact that (3.1) is defocussing since 300 > h+). It is shown in the right picture of Fig. 2
that the branch of depression waves is monotonic in the speed–amplitude diagram, while the branch of
elevation waves features a snake-like bifurcation. For h = 2 the detailed bifurcation diagrams are shown
in the left of Fig. 2. The branches of solitary bifurcate from zero amplitude (this is again consistent with
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FLEXURAL-GRAVITY SOLITARY WAVES ON WATER OF ARBITRARY DEPTH 7

Fig. 2. Bifurcation diagrams of symmetric solitary waves for h = 2 (left) and h = 300 (right). The bifurcation speeds are sketched
as vertical dash-dotted lines. The NLS prediction for h = 2 is shown as the dotted line in the blow up graph. The bifurcation point
of elevation solitary waves for h = 300 is marked as a pentagram. Typical waves (a) and (b) for h = 2, whose coordinates are
(0.32, 0.189) and (0.3, 1.823), respectively, are presented in Fig. 3.

Fig. 3. Typical solitary wave profiles for h = 2. The corresponding propagating speed is c = 0.32 (left) and c = 0.3 (right). The
profiles are plotted in the physical plane.

the fact that (3.1) is focussing since 2 < h+). The NLS prediction is a fairly good approximation near
the bifurcation point (see the dotted line in the blow up graph). It is noted that the leading order of the
weakly nonlinear theory underestimates the peak amplitude of depression solitary waves in the fully
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8 T. GAO ET AL.

Fig. 4. c-H diagrams of the elevation branch (left) and depression branch (right) for h = 2. The bifurcation speeds are sketched as
the vertical dash-dotted lines. The (c, H) coordinates for (a) and (b) are (0.32, 1.713) and (0.3, 1.823), respectively.

Fig. 5. Bifurcation diagram for elevation waves of the second kind. The coordinates of (d) and (e) are (0.668, 0.041) and (1.242,
0.029), respectively. The wave profiles plotted in the physical plane are presented on the right.

nonlinear computation. This discrepancy can be mitigated by introducing a second order correction as
done in the study by Wang & Milewski (2012) for the capillary–gravity wave problem. However, the
branch of elevation waves, unlike the case of deep water, is a monotonic curve in the speed–amplitude
diagram. Both depression and elevation waves approach a limiting configuration where the free surface
touches the bottom. This is shown in the c-H diagram of Fig. 4, where we see that H (defined by (2.23))
approaches 2 as one moves along the solution branches. The computations became harder to continue
due to the touch-down singularity. An interesting question is do elevation waves, which feature two
troughs connected by a small dimple (see solution (c) in the right picture of Fig. 2), also exist for h = 2?
For easy reference, we denote this type of solutions as the elevation waves of the second kind. To answer
this question, we started with the solution (c) and chose h as the parameter in the numerical continuation
algorithm. It turns out that elevation waves of the second kind do exist for small h, and the complete
solution branch is displayed in Fig. 5. We note that this curve does start from zero amplitude and is
expected to turn near the point (e) as it does as shown in Fig. 2 for h = 300. In contrast to the deep-water
case, the two elevation branches are separated for h = 2. The breaking of the elevation branch takes
place at the left end for a certain value of h when the lowest troughs first touch the solid bottom. We
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FLEXURAL-GRAVITY SOLITARY WAVES ON WATER OF ARBITRARY DEPTH 9

Fig. 6. Speed–energy bifurcation diagram of asymmetric solitary waves for h = 2. A blow up graph near the bifurcation point is
sketched on top left. The coordinates are (i) (1.2, 3.03), (ii) (1.2, 2.304), (iii) (1.2, 1.627), (iv) (1.243, 0.7815) and (v) (0.82, 13.07).

encountered numerical difficulties in continuing the computations by further decreasing the translating
speed from solution (d). This is presumably because two troughs are far apart, and their separation is
sensitive to perturbations. The stability of elevation waves on this branch will be studied in Section 3.2.

Next we attempt to compute asymmetric solitary waves by using the scheme introduced by Wang
et al. (2014). Since the bifurcation structure for h = 300 is similar to that in the case of deep water which
has already been studied in the study by Gao et al. (2016), we restrict our focus in the case of h = 2.
The numerical procedure of Section 2 is modified by no longer assuming a−n = an and b−n = −bn

for n �= 0. In other words all the values of an and bn for n positive and negative are now unknowns.
It is shown in Fig. 6 that asymmetric solitary waves appear via a symmetry-breaking bifurcation near
the phase speed minimum and that the speed–energy curve is monotonic for a small h. The asymmetric
branch (solid curve) joins the symmetric branch (dashed curve) at the bifurcation point (iv) which is
shown in detail in the blow up graph. The typical symmetric profiles of (i–iv) are displayed in Fig. 7,
where we observe multi-packet structures for both symmetric and asymmetric waves. The numerics
became prohibitive for small c due to the same reason as for the elevation branch of the second kind.

3.2 Dynamics

We start with examining the stability of solitary waves for the case h = 2 by integrating numerically the
surface Euler system (2.10–2.13). The fourth-order Runge–Kutta method is used for time integration for
Y and Φ, where the time step is chosen as dt = 0.0005. Due to the periodic assumption and conservation
of mass, h̄(t) defined in (2.7) remains unchanged at all time for a particular solution. A depression wave,
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10 T. GAO ET AL.

Fig. 7. Typical solitary wave profiles for the points i–iv shown in Fig. 6. All the profiles are plotted in the physical plane.

Fig. 8. Time-evolution of a stable depression wave (left), an unstable elevation wave (middle left), a stable elevation wave
(middle right) and an unstable asymmetric wave (right) for h = 2. All the profiles are plotted in the physical plane, and a frame of
reference moving at c = 1.2 is chosen.

two elevation waves and an asymmetric wave travelling with speed c = 1.2 were considered in the
numerical experiments (see Fig. 8). Also a frame of reference moving with the same speed was chosen.
An initial perturbation of +5% of the amplitude was given to the depression wave whose stability is
confirmed since the wave maintains its shape as the computation runs up to t = 1000 (see the left graph
in Fig. 8). It was found earlier from the speed–amplitude bifurcation diagram that the speed decreases as
the wave amplitude increases. Hence, the depression wave, which was enlarged by 5%, moves leftwards
in the screen with a speed less than that of the reference frame. The second column of pictures from the
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FLEXURAL-GRAVITY SOLITARY WAVES ON WATER OF ARBITRARY DEPTH 11

Fig. 9. Head-on collision between two identical depression waves travelling with c = 1.2. The snapshots are taken at t = 0, 30,
40, 50 and 80. All the profiles are plotted in the physical plane.

left shows that the elevation solitary wave appears to be unstable. The elevation wave, which initially
suffers a 1% increase in amplitude, eventually evolves into a depression one after a period of time. We
performed the same computations with elevation waves of the second kind. It was initially perturbed by
a 5% amplitude increase, and the numerical result confirms the stability of this solution (see the middle
right graph of Fig 8). The multi-wavepacket asymmetric solitary wave is also unstable because its left
packet, which is in the form of an elevation wave, turns to be a depression wave as presented in the right
graph of Fig. 8.

Next numerical experiments on solitary wave interactions are performed for h = 2 (see Fig. 9).
We consider two depression waves placed initially at some distance. They travel with the same speed
c = 1.2 but in the opposite directions. After the collision, both waves survive and continue to
travel without losing their main structures. Then we studied head-on collisions between two identical
depression waves moving much slower (c = 0.65) (see Fig. 10). In this case, the superposition of the
waves may cause a problem due to the considerably smaller value of the water depth (recall that h = 2).
The waves travel with c = 0.65 towards each other up to t = 35.5 when they fully collide. Immediately
after that instant, the whole system breaks down because a touch-down singularity takes place.

We finally study the problem of moving loads on an elastic sheet. It can be realized numerically by
introducing a pressure distribution moving at a constant speed U, e.g.

Pe(x, t) = B exp

[
−

(
x + 220 − Ut

d

)2
]

, (3.5)

where B is the amplitude parameter and d measures the width of the distribution. The domain is taken
to be [−250, 250], and the centre of the pressure distribution is initially placed at x = −220. Our first
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12 T. GAO ET AL.

Fig. 10. Head-on collision between two stable depression waves travelling with c = 0.65. The snapshots are taken at t = 0, 35 and
35.5. All the profiles are plotted in the physical plane. A touch-down singularity takes place after t = 35.5.

Fig. 11. Numerical experiment of excitation of depression solitary waves. A moving pressure disturbance is initially switched on
at x = −220, and it is turned off at t = 80. The snapshots are taken at t = 25, 80 and 300. All the profiles are plotted in the physical
plane.

attempt was to excite a stable depression wave by setting B = 0.02, d = 1 and U = 1.2 which is slightly
below the phase speed minimum. The moving disturbance was switched on at t = 0 and off at t = 80,
and the computation is continued up to t = 300. As shown in Fig. 11, a stable depression wave was
generated and can coexist with the background noise for long time. Next we attempt to excite a stable
elevation wave by applying a disturbance which is the sum of two identical Gaussian pressures separated
by a distance l, namely,

Pe(x, t) = B exp

[
−

(
x + 220 − Ut

d

)2
]

+ B exp

[
−

(
x + 220 − l − Ut

d

)2
]

. (3.6)

We choose B = 0.05, l = 10, d = 1 and U = 1.2. The disturbance is switched on at t = 0 and off at
t = 100. From the results shown in Fig. 12, the generation of a stable elevation wave is also achieved.

In the last numerical experiment, we use two large Gaussian distributions with the following set up:
B = 0.1, d = 1, l = 10 and U = 1.2. They were initially switched on at x = −250 and turned off at
t = 125. A larger domain L = 300 was chosen. After the removal of the pressure, two stable depression
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FLEXURAL-GRAVITY SOLITARY WAVES ON WATER OF ARBITRARY DEPTH 13

Fig. 12. Numerical experiment of excitation of stable elevation solitary waves. A moving disturbance is switched on at t = 0 and
off at t = 100. The snapshots are taken at t = 25, 100 and 300. All the profiles are plotted in the physical plane.

Fig. 13. Numerical experiment of excitation of generalized solitary wave. A moving disturbance is switched on at t = 0 and off at
t = 125. The snapshots are taken at t = 25, 125, 300 and 825. All the profiles are plotted in the physical plane.

waves of different amplitudes were generated. More interestingly, a single pulse with oscillating ripples
on both sides, which is the so-called generalized solitary wave, has been observed up front. Its generation
is due to the conservation of mass of water in the finite strip. The generalized solitary wave keeps
propagating rightwards, with a speed about 1.5

(
> c0 = √

2
)

as shown by the numerical observation,
up to t = 825 (see Fig. 13). We compare the excited generalized solitary wave with the steady solutions
computed by series truncation method in the study by Gao & Vanden-Broeck (2014). With c � 1.5 and
h = 2, the corresponding parameters F and β in that paper can be estimated by noting that in terms of
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Fig. 14. Comparison of the excited generalized solitary wave (solid curve) as shown in Fig. 13 and the steady solution from Gao
& Vanden-Broeck (2014) (dashed-dotted curve) where the corresponding parameters are F = 1.063 and β = 0.055. The profiles
are plotted in the physical plane.

our dimensionless variables F = ch−1/2, β = c−2h−3. This gives F = 1.063 and β = 0.055. As shown
in Fig. 14, the fully nonlinear steady solution from the study by Gao & Vanden-Broeck (2014), with
F = 1.063 and β = 0.055, agrees well with the excited generalized solitary wave. To our knowledge,
this is the first time that generalized solitary wave is excited numerically by moving loads with a speed
in the transcritical regime. It is worth noting that Guyenne & Părău (2014) also observed generalized
solitary waves in the regime of U > c0 via direct numerical simulations of a truncated system, and their
results only showed a dispersive tail on one side of the central pulse.

4. Conclusion

We investigated the problem of flexural-gravity waves in water of arbitrary depth, and particular
attention was paid to the influence of finite-depth effects. The bifurcations of solitary waves were studied
for h = 300 (deep water) and h = 2. Fully nonlinear time-dependent computations were carried out
to examine the stability characteristics of different types of solitary waves. Numerical experiments of
head-on collision between identical depression waves were carried out, and a touch-down singularity
was observed when the wave amplitude is considerably larger. The problem of moving loads on the
elastic sheet was also considered. Single and multiple moving pressure distributions were used to excite
depression solitary waves and stable elevation ones. Generalized flexural-gravity solitary waves, whose
existence was previously predicted by ideal steady computations, were also excited by time-dependent
simulations in the present paper.
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