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Abstract Vortex-induced vibrations (VIVs) of a fixed
two-dimensional perimeter-reinforced (PR)membrane
wing at 0 ≤ α Re (Reynolds number) ≤1000 and
0◦ ≤ α (angle of attack) ≤30◦ are investigated using
fluid–structure interaction simulations. By employing
very fine increments for Re and α, bifurcation bound-
aries of the dynamic response of the membrane wing
in the Re–α plane are captured. With increase in Re
and/or α, it is found that the VIV state of a fixed PR
membrane wing will change progressively from static
state to period 1 via a Hopf bifurcation and then from
period 1 to multiple period and chaos via a succes-
sion of period-doubling bifurcations. TheHopf bifurca-
tion is triggered by the shedding of the leading- and/or
trailing-edge vortices, while the period-doubling bifur-
cations are induced by the appearance and evolution of
the secondary vortices on the upper surface of themem-
brane wing at higher Re and α. With an increase in the
structure rigidity or pre-strain, the overall responses
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of the membrane wing are not changed much in the
Re–α plane except that the period 1 response near
700 ≤ Re ≤ 1000 and 14◦ ≤ α ≤ 16◦ is destroyed,
due to the significant change of the shedding process
of the leading-edge vortices. Moreover, it is also found
that unsteady responses of the PR membrane wing at
α = 0◦ can be suppressed by small pre-strain.

Keywords Membrane wing · Vortex-induced
vibration · Numerical simulation · Bifurcation ·
Fluid–structure interaction

List of symbols

α Angle of attack of the membrane wing
c Chord length of the membrane wing
Cd Structural damping normalized by u∞
C̄L Mean lift coefficient
C̄D Mean drag coefficient
δ0 Membrane pre-strain
�p Pressure difference between the lower

and upper surfaces of the membrane nor-
malized by ρ∞u2∞

�t Time step normalized by c/u∞
ξ Coordinate of the local coordinate system

on the flexible membrane normalized by
c

E Elasticmodulus of themembranenormal-
ized by ρ∞u2∞

f Frequency normalized by u∞/c
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h Membrane thickness normalized by c
L Membrane length before deforming
L ′ Membrane length before deforming nor-

malized by c
LS Membrane length after deforming nor-

malized by c
nP Total number of grid nodes in the flow

domain
nE Total number of grid elements in the flow

domain
nM Total number of grid elements on the flex-

ible membrane
p Pressure normalized by ρ∞u2∞
Re Reynolds number with respect to the

chord c and velocity of the free stream
u∞

ρ∞ Density of the incompressible flow
ρS Membrane density per unit length nor-

malized by ρ∞
t Time normalized by c/u∞
T Membrane tension normalized by

ρ∞u2∞/c
u∞ Velocity component of the free stream in

x direction
ux, uy Velocity components of the flow field in

x and y directions normalized by u∞
v Membrane velocity normalized by u∞
x, y Coordinate components of the flow

domain normalized by c
z Membrane displacement normalized by c

1 Introduction

With rapid development of micro air vehicles (MAVs),
the membrane wing has attracted more and more atten-
tion in the past two decades. Unlike the conventional
rigid wing, the membrane wing is flexible and allowed
to deform and vibrate under the aerodynamic load,
and the structure deformation and vibration in turn
have a great influence on the flow field. For the mem-
brane wing, the fluid–structure interaction (FSI) plays
a very important role and contributes a lot to its supe-
rior aerodynamic performance in the low-Reynolds-
number flow regime [1–5].

Generally speaking, FSI influences the aerodynamic
performance of a fixed membrane wing in two ways:
camber effect and vortex-induced vibration (VIV).
When there is air flowing past a fixed membrane wing

at positive angles of attack, the flexible part of the wing
will deflect to the lee side, under the pressure difference
between the lower and upper surfaces, and form amean
camber. Because the flow-induced mean camber will
make the wing more streamlined, a membrane wing
usually has higher time-averaged lift, larger stall angle
and better adaptability to the wind gust [6–11]. In addi-
tion, the flexible membrane will also vibrate near the
mean camber when the angle of attack and/or Reynolds
number are not too small, due to the perturbation of
the shedding vortices on the upper surface. Such VIV
could further improve the aerodynamic performance of
the membrane wing. In the experiments of Rojratsirkul
et al. [12–15] and numerical analyses of Gordnier [8]
and Gordnier and Attar [9], it has been found that, for
the fixed two-dimensional (2D) and low-aspect-ratio
three-dimensional (3D) membrane wings, VIV could
promote the roll-up of the separated shear layer and the
formation of the large-scale vortices over the wing. As
a result, a flexible membrane wing usually has higher
time-averaged lift and larger stall angle compared with
the rigid wing with the same mean camber.

For the membrane wing, the state of VIV has a great
effect on its aerodynamic performance. With changes
of flow and structure parameters such as the angle
of attack, Reynolds number, pre-strain, rigidity and
aspect ratio, various VIV states of the membrane wing
have been observed in the previous studies. For the
perimeter-reinforced (PR) membrane wing [2,6], Gal-
vao et al. [16] found by experiments that, in the range
of−10◦ ≤ α ≤ 50◦ and 3×104 ≤ Re ≤ 1.2×105, the
well-defined standing wave responses only appear near
the points of fluid–structure resonance, and the har-
monic order is an increasing function of the Reynolds
number. Song et al. [7] conducted similar experiments
using the same PRmembrane model with larger aspect
ratio. Apparent membrane vibrations were captured at
all testing conditions, and it was also observed that the
harmonic order of the standingwave response increases
with the Reynolds number in the resonant region.
Rojratsirkul et al. [12–14] investigated the unsteady
FSIs of a 2D PRmembrane wing. In their experiments,
the angle of attack was changed from 0◦ to 30◦ and
Re = 53,100, 79,700 and 106,000 were considered.
With increase in the angle of attack, the bi-stable, static
and unsteady responses were observed. In addition,
it was also found that, with increase in the Reynolds
number in the regime of unsteady response, the mode
number of VIV is increased first at moderate angles
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of attack, while then not changed when the angle of
attack exceeds a critical value. Using a computational
method with high fidelity, Gordnier [8] simulated the
dynamic motion of the membrane wing model pro-
posed by Rojratsirkul et al. [12–14] in the laminar flow
with Re = 2500. With the changes of the angle of
attack, Reynolds number, pre-strain and rigidity, the
static, second-mode standing wave, third-mode stand-
ing wave and chaotic responses were observed. Subse-
quently, Rojratsirkul et al. [15] investigated experimen-
tally the dynamic responses of a membrane wing with
low aspect ratio in the flows with Re = 24,300, 36,500
and 48,700. Under combined effects of the leading-
edge and tip vortices, the membrane wing shows a
mixture of chordwise and spanwise vibration modes at
lower angles of attack and chordwise vibration mode
with second order at higher angles of attack, respec-
tively. Gordnier and Attar [9] simulated the dynamic
response of an aspect ratio two-membrane wing at
Re = 24,300. They also found that the chordwise
second-mode structural response is dominant at mod-
erate and high angles of attack. Usingmuch finer incre-
ment, Sun et al. [17] reanalyzed the influenceof theflow
and structure parameters in the computational model
of Gordnier [8]. It was found that, with increase in
Reynolds number or angle of attack, the VIV of a 2D
PRmembrane wing will bifurcate first from static state
to period via a Hopf bifurcation due to the shedding of
the trailing-edge vortex (TEV) and then change sud-
denly from period to chaos due to the shedding of the
leading-edge vortex (LEV). In the region of period 1
response, it was also observed that the vibration mode
will decrease with the increase in the Reynolds number
or angle of attack.

In previous studies, aerodynamic performance and
VIV of the PR membrane wing at Re = 103 ∼ 105

have been investigated widely. In nature, some insects
such as chalcid wasp and fruit fly are usually flying
at smaller Reynolds numbers (Re ≤ 103) [4]. In such
low-Reynolds-number flow regime, effect of air vis-
cosity is more significant and usually leads to more
unfavorable aerodynamic conditions for controllable
flight. To design membrane-wing-based MAVs flying
at Re ≤ 103 in future, a system study of the aero-
dynamic performance and dynamic behavior of the
membrane wing in this range of Reynolds number is
very important. In Sun et al. [17], dynamic responses
of a 2D PR membrane wing at Re = 100 ∼ 1000
and α = 8◦ are computed. However, in this work the

angle of attack is fixed at 8◦ and only static response
is captured. To obtain an overall understanding of the
dynamic response of a membrane wing at Re ≤ 103,
more simulations involving moderate and high angles
of attack should be carried out.

In this paper, VIVs of a fixed 2D PR membrane
wing at 0◦ ≤ α ≤ 30◦ and 0 < Re ≤ 1000 are studied
using a well-validated finite element method (FEM)
for FSI simulation in laminar flow regime. Bifurcation
points of the dynamic response of the membrane wing
and the corresponding changes in the flow field with
respect to the angle of attack and Reynolds number
are addressed specially. Moreover, effects of structure
parameters including the rigidity and pre-strain are also
analyzed. This paper could reveal the unique dynamic
behaviors of themembranewings in the low-Reynolds-
number flows with Re ≤ 1000.

2 Governing equations

Figure 1 shows the 2D PR membrane wing model pro-
posed by Rojratsirkul et al. [12–14]. As seen in the
figure, the membrane wing consists of a rectangular
membrane sheet and two rigid mounts with stream-
lined shape, and the membrane sheet is glued to the
two rigid mounts to form the pinned boundary condi-
tions at the leading and trailing edges. The membrane
sheet has a much larger length in span and is uncon-
fined at the root and tip. Therefore, the flow field and
deformation of the membrane wing are essentially 2D
at low Reynolds numbers.

The flow is assumed to be incompressible and lam-
inar at 0◦ ≤ α ≤ 30◦ and 0 < Re ≤ 1000 and gov-
erned by the 2D Navier–Stokes equations, which can
be expressed by

Fig. 1 Schematic of the uniform flow past a fixed 2D PR mem-
brane wing [12–14]
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where the effect of the body force is not taken into
account. The flexible membrane is supposed only
driven by the pressure difference between the lower
and upper surfaces, and the deformation is restricted in
z direction, which is perpendicular to the chord of the
wing, as seen in Fig. 1. A local coordinate system (ξ ,
z) with the origin O ′ located at the leading edge of the
flexible membrane is utilized to describe the structure
response. The nonlinear vibration equation proposed
by Smith and Shyy [18,19] and Gordnier [8] is intro-
duced as the governing equation of the structure, which
can be written as

⎧
⎪⎪⎪⎨
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ρSh
∂2z
∂t2

+ ρSCd
∂z
∂t − T ∂2z

∂ξ2

[
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∂ξ
)2

]− 3
2 = �p,

T = Eh
(
δ0 + δ̄

)
, δ̄ = LS−L ′

L ′ ,

LS = ∫ L ′
0

√
1 + ( ∂z

∂ξ
)2dξ.

(2)

3 Numerical method

A well-validated FSI solution procedure proposed in
our previous studies [17,20,21] is employed. In this
method, a modified characteristic-based split (CBS)
finite elementmethod formovingmesh [22,23] is com-
bined with the segment spring analogy method [24]
and dual-time stepping method [25] to form an implicit
flow solver, the membrane vibration is solved implic-
itly by the Galerkin FEM and generalized α method
[26,27], and the flow and structure solvers are coupled
by the loosely coupled partitioned approach. The one-
dimensional flexible membrane is divided equally by
Hermite elements, while the flow domain is divided by
unstructured triangular grids with linear shape func-
tions for velocity and pressure. Moreover, the grid
nodes of the structure and fluid are overlapping on the
fluid–membrane interface, and the same computational
time step is used for the flow and structure solvers. For
the fluid–membrane interaction problems in laminar
flow regime, this FSI solution procedure shows good
accuracy and stability. More details about the numer-
ical methods can be found in Zienkiewicz et al. [28],

Sun et al. [17,22,23] and Sun and Zhang [20,21,27]
and will not be discussed here.

4 Results and discussions

4.1 Grid and time-step independence tests

Figure 2 illustrates the computational model of a fixed
2D PR membrane wing in laminar flow. As seen in the
figure, the flow domain is defined as −8c ≤ x ≤ 16c
and−8c ≤ y ≤ 8c, the free-stream velocity is imposed
on the inlet and two side boundaries, the pressure on
the outlet is assumed to be zero, and the no-slip bound-
ary condition is imposed on the wing surface. On the
lower and upper surfaces of the flexible membrane, the
flowand structure have the samedisplacement, velocity
and stress. As a result, the flow boundaries correspond-
ing to the two surfaces of the flexible membrane will be
moved due to the structure vibration during the simulat-
ing process. Before studying the cases at Re ≤ 1000,
aerodynamic characteristics of the 2D PR membrane
wing at Re = 2500, E = 50,000, ρS = 589, Cd =
0, h = 0.001 and AOA = 8◦ are computed first to test
the effects of grid density and time step. Table 1 dis-
plays the computed mean lift and drag coefficients of
the membrane wing obtained from three meshes with
three time steps. As seen in the table, numerical results
from different grid densities and time steps are very
close. Moreover, the mean lift coefficient computed by
the proposed FSI scheme has a very good agreement
with that reported by Gordnier [8]. Finally, Mesh_2
with �t = 0.01 is employed to study the dynamic
responses of the membrane wing at Re ≤ 1000.

4.2 Dynamic responses in the Re-α plane

With the non-dimensional structural parameters fixed
at Eh = 100, ρS = 589, Cd = 0, h = 0.001and

Fig. 2 Schematic of the solution domain and boundary condi-
tions for the flow around a fixed PR membrane wing [17,21]
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Table 1 Mean lift and drag coefficients of a fixed PRmembrane
wing at Re = 2500 and AOA = 8◦

nM nP nE �t C̄L C̄D

0.02 0.991 0.112

Mesh_1 60 5699 11,138 0.01 0.998 0.112

0.005 1.0 0.112

0.02 0.993 0.113

Mesh_2 80 7581 14,851 0.01 0.998 0.113

0.005 0.995 0.113

0.02 0.982 0.112

Mesh_3 100 10,103 19,850 0.01 1.0 0.113

0.005 1.0 0.113

Gordnier
[8]

1.05

Fig. 3 Schematic of the vibration states at the membrane center
at Eh = 100 and δ0 = 0. I represents the static region, II period 1
vibration region and III complicated region. Open square repre-
sents the static state, filled circle: period 1, open triangle: period
2, down open triangle: period 3, diamond: period 4, left triangle:
multiple period (with period larger than four), star: quasiperiod,
and asterisks: chaos

δ0 = 0, VIVs of the fixed 2D PR membrane wing
(Fig. 1) at 0◦ ≤ α ≤ 30◦ and 0 < Re ≤ 1000 are
studied first. The increments of the angle of attack and
Reynolds number are set respectively as �α = 2◦ and
�Re = 50 in most regions of the Re − α plane. For
local regionswhere theVIV state changes significantly,
smaller�α and�Re are utilized.As a result,more than
400 combinations of α and Re are computed to capture
the bifurcation boundaries among different VIV states.

Figure 3 illustrates the dynamic responses at the
membrane center in the Re−α plane of 0◦ ≤ α ≤ 30◦
and 0 < Re ≤ 1000. As shown in the figure, various

VIV states are captured when the angle of attack and
Reynolds number are changed in the Re−α plane con-
sidered. In general, the Re − α plane in Fig. 3 can be
divided into three regions following the response of the
membrane wing. At small α and/or Re, the response
is in region I, where the membrane wing eventually
reaches a static equilibrium state. In region IIwithmod-
erate α and/or Re, however, the static equilibrium state
is destroyed and the membrane wing is vibrating in the
period 1 form. In region III with higher α and Re, the
response becomes complicated and the vibrating states
such as period 2, period 3, period 4, multiple period,
quasiperiod and chaos are observed. With increase in
α and/or Re, response of the membrane wing will first
transfer from the static state in region I to period 1 in
region II by Hopf bifurcation and then from the period
1 in region II to the more complicated states in region
III by the period-doubling bifurcation. Moreover, the
critical α (or Re) corresponding to the Hopf or period-
doubling bifurcation is decreased gradually with the
increase in Re (or α), which indicates that the stability
of the membrane wing is decreased at higher α and/or
Re. At highα andRe, themembranewing is in a chaotic
response at most points except the ones in the period
window near 24◦ < α < 28◦ and 500 ≤ Re ≤ 1000,
as shown in Fig. 3. In addition, the numerical results
show that the membrane wing is unstable and might
deform downward at α = 0◦ and Re < 500, which
is consistent with that reported by Song et al. [7] and
Rojratsirikul et al. [14].

4.2.1 Effect of Reynolds number

To show more clearly the effect of the Reynolds num-
ber on the dynamic response of the fixed 2D PR mem-
brane, VIVs at α = 22◦ and 0 < Re ≤ 1000 are
further analyzed. Figures 4 and 5 display the bifurca-
tion diagram at the membrane center with respect to
Re and the phase portraits and spectrograms at several
representative points, respectively. As seen in Fig. 4,
the membrane wing is at a static state and the defor-
mation of the membrane center is decreased linearly
when Re is increased in (0, 200). At Re = 200, how-
ever, the membrane wing begins to vibrate. As shown
in Fig. 5a, the VIV at Re = 200 is period 1 and has
a non-dimensional dominant frequency of 0.38 and a
very small amplitude with an order of 10−3. With fur-
ther increase in Re in [200, 400), both of the amplitude
and dominant frequency are increased and the influ-
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Fig. 4 Bifurcation diagram at the membrane center at α = 22◦
with respect to Re

ence of the higher harmonic frequency becomes more
significant. Then, the VIV state is changed from period
1 to period 2 at Re = 400. As shown in Figs. 4 and 5b,
the number of branches in the bifurcation diagram is
increased from 2 to 4 and a cusp appears in the phase
portrait at Re = 400. When Re is further increased
from 400 to 620, the amplitude at the membrane cen-
ter is also increased, and the period 2 characteristics
become more and more evident, as seen in Figs. 4 and
5c. Moreover, the higher frequency component begins
to dominate the vibration near Re = 600. Then, the
response of the membrane wing is changed progres-
sively from period 2 to multiple period and chaos in
Re ∈ [620,710] via a succession of period-doubling
bifurcations. As displayed in Fig. 5d, the VIV state
at Re = 650 has turned to multiple period with more
harmonic frequencies appearing in the spectrogram. At
Re = 710, the chaotic response occurs and many irra-
tional frequency components can be observed in the
spectrogram in Fig. 5e. Finally, the vibrating amplitude
of the membrane wing at α = 22◦ is amplified grad-
ually, but the chaotic response is not improved with
further increase in Re from 710 to 1000, as shown in
Fig. 4.

To better understand the transition process of the
VIV state of the fixed membrane wing at α = 22◦
and 0 < Re ≤ 1000, evolution of the flow field with
respect to the Reynolds number is studied. Figure 6
shows the transient streamlines around the wing at dif-
ferent Reynolds numbers. As seen in Fig. 6a, there exist
a LEVand aTEVon the upper surface of themembrane
wing at α = 22◦ and Re < 200. Because the flow is
steady and both of the LEV and TEV are not shed, the
membrane wing is also in a static state. At Re = 200,
however, the LEV and TEV begin to shed alternately

and periodically as seen in Fig. 6b, which results in
the period 1 response of the membrane wing in Fig.
5a. When Re is increased up to 350, the large-scale
LEV is split into two smaller ones during the shedding
process, as shown in Fig. 6c. However, this change in
flow domain does not affect much the VIV state of the
membranewing.At Re = 400, a small-scale secondary
vortex appears near the center of the upper surface at
some time instants in Fig. 6d. Because the secondary
vortexwill separate the large-scale LEVs from thewing
surface and increase the local surface pressure, a small
perturbation is introduced into the periodic fluid load
at these time instants. As a result, the symmetry of
the phase portrait is destroyed and the VIV is changed
from period 1 to period 2 as shown in Fig. 5b. Then,
this secondary vortex is enlarged slightly when Re is
increased from 400 to 620. However, because the flow
topology is nearly unchanged, the period 2 state is not
changed as well. When the Reynolds number is fur-
ther increased in Re ∈ [620,710), the duration time
as well as the effect of the secondary vortex is further
increased as seen in Fig. 6f, which triggers the succes-
sive period-doubling bifurcations. In Re ∈ [620,710),
the main vortices are still attached to the wing surface,
and thus the periodic characteristic of the response is
maintained in this process. At Re = 710, the shedding
LEVs begin to depart from the wing surface as shown
in Fig. 6g. In this case, the large-scale LEVs are not
always interacting directly with the membrane, which
makes the fluid load as well as the dynamic response
of the membrane wing more irregular, as shown in Fig.
5e. Finally, when Re is further increased in [710,1000],
the large-scale LEVs are broken intomore smaller ones
and more secondary vortices appear, as shown in Fig.
6h. As a result, the chaotic response is not improved
much in this Re range.

4.2.2 Effect of angle of attack

Effect of the angle of attack on the dynamic response of
thefixed2DPRmembranewing inFig. 1 is investigated
by fixing Re at 600 and changing α from 0◦ to 30◦.
The bifurcation diagram at the membrane center with
respect to α and the phase portraits and spectrograms
at several representative angles of attack are displayed
respectively in Figs. 7 and 8. Comparing Fig. 7 with
Fig. 4, it can be found that the variation trend of the
VIV state with respect to α has an overall similarity
with that with respect to Re. As shown in Fig. 7, the
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Fig. 5 Phase portraits and
spectrograms at α = 22◦
and different Reynolds
numbers: a Re = 200; b
Re = 400; c Re = 600; d
Re = 650; e Re = 710
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Fig. 6 Transient streamlines around a fixed PR membrane wing at α = 22◦: a Re = 150; b Re = 200; c Re = 350; d Re = 400; e
Re = 600; f Re = 650; g Re = 710; h Re = 1000

Fig. 7 Bifurcation diagram of the membrane center with respect
to α at Re = 600

membrane wing is at a static equilibrium state at α <

11◦. In particular, the fluid–membrane system is found
bi-stable and having two stable states near α = 0◦.
The deflection of the membrane wing is downward at
α = 0◦, but upward at α = 1◦, which results in an
abrupt jump of the non-dimensional displacement from
-0.033 to 0.0378 at the membrane center, as shown in
Fig. 7. At α = 11◦, the response turns to period 1
with a frequency of 0.8 and an amplitude about 4 ×

10−4, as seen in Figs. 7 and 8a. In α ∈ [11◦, 21◦), the
period 1 response is not changed, although the vibrating
amplitude is first increased in α ∈ [11◦, 17◦] and then
decreased in α ∈ [17◦, 21◦). However, the dominant
frequency is decreased gradually and the effect of the
harmonic frequencybecomesmore significant at higher
α, as shown in Fig. 8a, b. Near α = 21◦, the amplitude
of the harmonic frequency is further increased and the
phase portrait is changed from period 1 to period 2, as
shown inFig. 8c. Then, the period2vibrating amplitude
is increased slightly in α ∈ [21◦, 22◦]. With further
increase in α from 22◦ to 22.4◦ and 24.2◦, the response
of the membrane wing is changed progressively from
period 2 to multiple period and chaos via a succession
of period-doubling bifurcations, as seen in Figs. 7, 8d,
e. Different from the bifurcation process with respect
to Re as seen in Fig. 4, an apparent period window is
observed in the bifurcation diagram with respect to α.
As seen in Figs. 7 and 8f, the response of themembrane
wing turns back to period 2whenα is increased slightly
from 24.2◦ to 24.4◦. It seems that the fluid–membrane
system has jumped suddenly from the unstable state at
24.2◦ to a stable periodic state at α = 24.4◦, which is
similar with that observed in our previous study when
uniformly distributed periodic load is imposed on the
same wing model [27]. When the angle of attack is
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Fig. 8 Phase portraits and
spectrograms at Re = 600 :
a α = 11◦; b α = 20◦; c
α = 21◦; d α = 22.4◦; e
α = 24.2◦; f α = 24.4◦; g
α = 26.6◦; h α = 27.4◦ ; i
α = 28◦
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Fig. 8 continued

increased in the period window with α ∈ [24.2, 28),
the period 2 vibrating state first turns to period 4 at
α = 26.6◦ and then to period 3 at α = 27.4◦, as shown
in Fig. 8g, h. Finally, the VIV state of the membrane
wing turns back to chaos near α = 28◦ as shown in
Fig. 8i.

Figure 9 displays the transient streamlines near the
membrane wing at Re = 600 and different angles of
attack. As seen in Fig. 9a, the flow is steady and there
is a pair of small-scale vortices at the trailing edge of
the membrane wing at α < 11◦. At α = 11◦, how-
ever, the TEVs begin to shed and result in the period 1
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Fig. 9 Transient streamlines around the membrane wing at Re = 600: a α = 10◦; b α = 11◦; c α = 17◦; d α = 21◦; e α = 22.4◦; f
α = 24.2◦; g α = 24.4◦; h α = 26.6◦; i α = 27.4◦; j α = 28◦

response of the membrane wing, as shown in Figs. 8a
and 9b. Because only part of the membrane wing near
the trailing edge is perturbed by the shedding TEVs, the
vibrating amplitude is very small at α = 11◦. When α

is increased from 11◦ to 17◦, the scale of the TEVs is
increased and the separation point of one of the TEVs
is moved continuously to the leading edge, as seen in
Fig. 9b, c, which results in linear increase in the vibrat-
ing amplitude in α ∈ [11◦, 17◦]. At α = 17◦, the LEV
begins to shed and play a more important role in the
response of themembrane wing, as shown in Fig. 9c. In
our previous studies [17,21] on the dynamic response
the same membrane wing at Re = 103 ∼ 104, we
found that the shedding of the LEV will form a chain
of vortices on the membrane upper surface, which will
further result in the chaotic response. At α = 17◦ and
Re = 600 studied here, however, the shedding of the
LEV does not change the vibrating state of the mem-
brane wing, although it decreases the VIV amplitude
in α ∈ [17◦, 21◦), as shown in Fig. 7. At α = 21◦,

a secondary vortex appears at some time instants in
Fig. 9d and once again triggers the transition of the
VIV state from period 1 to period 2. Then, both of the
strength and duration time of this secondary vortex are
increased in α ∈ [22◦, 24.2◦). As a result, the response
of the membrane wing further bifurcates progressively
from period 2 to multiple period. At α = 24.2◦, the
shed LEVs are split into more small-scale vortices as
seen in Fig. 9f. In this case, the fluid load on the mem-
brane wing becomes more complicated, which results
in the chaotic response of the membrane wing.When α

is increased slightly from 24.2◦ to 24.4◦, however, the
flow is stabilized and the breakdown of the shedding
LEVs disappears in Fig. 9g. As a result, the chaotic
VIV state is also stabilized and changed back to period
2. At α = 26.6◦, the effect of the secondary vortex
becomes significant again and changes the VIV state
from period 2 to period 4, as seen in Figs. 8g and 9h.
At α = 27.4◦, a vortex shedding process similar with
that in Fig. 9f is observed in Fig. 9i and it causes the
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Fig. 10 Schematic of the vibration states at themembrane center
at δ0 = 0 and different rigidities: a Eh = 150; b Eh = 200.
I represents the static region, II period 1 vibrating region, and
III complicated region. Square represents the static state, filled
circle: period 1, open triangle: period 2, down triangle: period
3, diamond: period 4, left triangle: multiple period (with period
larger than four), star: quasiperiod, and asterisks: chaos

period 3 response of the membrane wing. Finally, the
shed LEVs begin to depart from the membrane upper
surface near α = 28◦ as shown in Fig. 9j, which once
again leads to the chaotic response of the membrane
wing.

4.3 Effect of the membrane rigidity

To investigate the effect of the membrane rigidity (Eh),
dynamic responses of the fixed 2D PRmembrane wing
at Eh = 150 and 200 are computed. For each Eh,
the ranges and increments of α and Re are taken as
0◦ ≤ α ≤ 30◦ and �α = 2◦, 0 < Re ≤ 1000
and �Re = 50, respectively. Figure 10 illustrates

the dynamic responses at the membrane center in the
Re − α plane. Comparing Fig. 10 with Fig. 3, it can
be found that, with the increase in the membrane rigid-
ity, the region I with static response is not changed
much, while the region III with complicated response
is enlarged slightly. In addition, when Eh is increased
from 100 to 150 and 200, the VIV state of most points
in 700 ≤ Re ≤ 1000 and 14◦ ≤ α ≤ 16◦ is changed
significantly. In Fig. 11, phase portraits and spectro-
grams at Re = 900, α = 16◦ and Eh = 100, 150 and
200 are presented to showmore clearly this change. As
seen in Fig. 11, the VIV state of the membrane cen-
ter is period 1 at Eh = 100, period 3 at Eh=150 and
quasiperiod at Eh = 200, respectively. Figure 12 dis-
plays the transient streamlines around the membrane
wing at Re = 900, α = 16◦ and Eh = 100, 150
and 200. As shown in the figures, the shedding process
of the LEVs has been changed significantly with the
increase in Eh, due to the decrease in the mean cam-
ber of the membrane when Eh is increased from 100 to
150 and 200. At Eh = 100, the large-scale LEV is split
into two or three small vortices in the shedding process,
as shown in Fig. 12a. Because these small vortices are
always very close to each other and interact with the
membrane as one large-scale vortex, dynamic response
of the membrane wing is still in the form of period 1.
At Eh = 150 and 200, however, the secondary vor-
tices are separated with each other and interact inde-
pendently with the membrane, as shown in Fig. 12b, c.
Under their combined perturbation, the period 1 state
is destroyed and changed to period 3 and quasiperiod
at Eh = 150 and 200, respectively, as seen in
Fig. 11b, c.

4.4 Effect of the membrane pre-strain

To investigate the effect of the membrane pre-strain,
dynamic responses of the fixed 2D PRmembrane wing
at Eh = 100 and δ0 = 0.01 and 0.02 are further com-
puted. For each δ0, the ranges and increments of α and
Re are also taken as 0◦ ≤ α ≤ 30◦ and �α = 2◦,
0 < Re ≤ 1000 and �Re = 50, respectively. In
Fig. 13, dynamic responses at the membrane center at
δ0 = 0.01 and 0.02 are illustrated in the Re− α plane.
Comparing Fig. 3 with Fig. 13, it can be found that the
pre-strain mainly affects the dynamic response of the
membrane wing in two ways. First, when 1 or 2% pre-
strain is imposed on the flexible membrane, all of the
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Fig. 11 Phase portraits and
spectrograms at Re = 900,
α = 16◦ and δ0 = 0: a
Eh = 100; b Eh = 150; c
Eh = 200

Fig. 12 Transient streamlines around the membrane wing at Re = 900, α = 16◦ and δ0 = 0: a Eh = 100; b Eh = 150; c Eh = 200
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Fig. 13 Schematic of the vibration states at themembrane center
at Eh = 100 and different pre-strains: a δ0 = 0.01; b δ0 = 0.02.
I represents the static region, II period 1 vibrating region, and
III complicated region. Square represents the static state, filled
circle: period 1, open triangle: period 2, down triangle: period
3, diamond: period 4, left triangle: multiple period (with period
larger than four), star: quasiperiod, and asterisks: chaos

unsteady responses at α = 0◦ are suppressed, as shown
in Fig. 13a, b. Second, similar with that in Fig. 10, the
VIV states of some points in region II, most of which
are also in 700 ≤ Re ≤ 1000 and 14◦ ≤ α ≤ 16◦, are
changed significantly when the pre-strain is increased
from 0 to 0.02. Figures 14 and 15 display the phase
portraits and spectrograms and the transient stream-
lines at Re = 900, α = 16◦, Eh = 100 and δ0 = 0.01
and 0.02, respectively. Comparing Fig. 15b with Figs.
12a and 15a, it can be found that the scale of the sec-
ondary vortices near the leading edge is increased at
δ0 = 0.02, which is also believed to be the reason for
the quasiperiod response at δ0 = 0.02, as shown in
Fig. 14b.

5 Conclusions

Dynamic responses of a fixed 2D PR membrane wing
at 0 < Re ≤ 1000 and 0◦ ≤ α ≤ 30◦ are investigated
using a well-validated FSI solution procedure based
on a modified CBS FEM, and the bifurcation charac-
teristics of the VIV state with respect to the Reynolds
number and angle of attack as well as their relationship
with the changes of the vortex structures in the flow
flied are discussed in detail. Based on the numerical
results obtained, several conclusions could be made as
follows:

1. At 0 < Re ≤ 1000 and 0◦ ≤ α ≤ 30◦,
the 2D PR membrane wing could exhibit various
VIV states, such as the bi-stable state, static state,
period 1, period 2, period 3, period 4, multiple
period, quasiperiod and chaos. With increase in
the Reynolds number and/or angle of attack, the
dynamic responsewill transfer first from static state
to period 1 via Hopf bifurcation and then from
period 1 to period 2, period 4, multiple period and
chaos via a succession of period-doubling bifurca-
tions.

2. The transient flowfields show that theHopf bifurca-
tion of the VIV of the membrane wing is triggered
by the shedding of the leading- and/or trailing-
edge vortices, while the period-doubling bifurca-
tions are caused by the appearance and evolution
of the secondary vortices. At Re ≤ 1000, pertur-
bations from the secondary vortices play the key
role in the instability of the periodic response of
a membrane wing. This is very different from that
at Re = 103 ∼ 104, in which the shedding of the
LEVs is the key reason for the destroy of the period
1 response [17].

3. With the increase in the structure rigidity or pre-
strain, the boundary of Hopf bifurcation in the
Re − α plane is almost unchanged, but the region
III with complicated response is enlarged slightly.
Moreover, dynamic responses of the membrane
wing near 14◦ ≤ α ≤ 16◦ and 700 ≤ Re ≤ 1000
are found more sensitive to the change of rigidity
or pre-strain. With the increase in rigidity or pre-
strain, the period 1 response will turn to period 3,
period 4, quasiperiod or chaos due to the change
of the shedding process of the LEVs caused by
the decrease in the mean camber. In addition, it
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Fig. 14 Phase portraits and
spectrograms at Re = 900,
α = 16◦ and Eh = 100: a
δ0 = 0.01; b δ0 = 0.02

Fig. 15 Transient streamlines around the membrane wing at Re = 900, α = 16◦ and Eh = 100: a δ0 = 0.01; b δ0 = 0.02

is also found that small pre-strain will suppress
the VIVs of the 2D PR membrane wing at α =
0◦.
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