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A B S T R A C T

In order to understand clearly the transition characteristics of thermocapillary convection of low Prandtl number
fluid in shallow annular pool with surface heat dissipation, some bifurcation routes to chaos of thermocapillary
convection have been numerically investigated by using the finite volume method in this paper. The annular
pool was filled with the low Prandtl (Pr) number fluid of Pr = 0.011. The range of Biot number is from 0 to 1.
Results indicate that the flow bifurcation route of thermocapillary convection depends intensively on surface
heat dissipation. When surface heat dissipation is smaller, with the increase of Marangoni number the flow
bifurcation sequence of thermocapillary convection is two-dimensional axisymmetric steady flow → three-di-
mensional steady flow → coexisting hydrothermal waves and radial moving waves → radial moving waves →
chaos. When surface heat dissipation is larger, the bifurcation sequence becomes simple as two-dimensional
axisymmetric steady flow → hydrothermal waves → chaos. Furthermore, every bifurcation of thermocapillary
convection is always accompanied by the variations of the wave number and the oscillatory frequency.
Furthermore, the temperature fluctuation amplitude on the free surface increases gradually with the increase of
Marangoni number.

1. Introduction

Thermocapillary convection driven by surface tension gradient on
the free surface has been widely studied and many fruitful results with
an adiabatic free surface have been achieved [1–4]. Thermocapillary
convection instability is a fundamental phenomenon encountered in a
vast variety of situations, ranging from the biomedical science to the
engineering system. With the increase of the applied temperature gra-
dient, thermocapillary convection will bifurcate from steady flow to
various oscillatory flows, and finally to chaotic flow or turbulence. The
intriguing behavior exhibited by these travelling perturbations in var-
ious oscillatory flows has been received considerable attention. As early
as 1980, Gollub and Benson [5] has observed four transition pathways
on Rayleigh-Bénard convection from laminar flow to turbulent flow by
the experimental method of Laser Doppler velocimetry. Smith and
Davis [6,7] showed that thermocapillary convection in laterally-heated
planar layers is naturally vulnerable to the formation of an oscillatory
flow pattern characterized by a myriad of thermal wave-like patterns
propagating along the gas-liquid interface, i.e. hydrothermal waves
(HTWs). Meanwhile, Smith [8] further explained the physical

mechanism of two types of thermal convection instability. Villers and
Platten [9] investigated buoyancy-thermocapillary convection in
acetone solution by experiments and numerical simulations. The results
showed that, with the increase of Marangoni number, the convection
will experience three states: single vortex steady flow, multi vortex
steady flow and unsteady flow. Edoardo et al. [10] developed a nu-
merical analysis of buoyancy-driven natural convection of a fluid in a
three-dimensional shallow cavity with a horizontal temperature gra-
dient along the larger dimension for the low Prandtl number
(Pr = 0.015), and the Ruelle-Takens bifurcation sequence has been
observed as the transition mechanism to chaos. Zhu et al. [11] pre-
sented the experiments in a rectangular pool with the applied tem-
perature difference between the two sidewalls adjusted in the range of
(0–43) oC and observed various dynamic states. They discussed the
relationship between oscillatory frequency and Marangoni number. Li
et al. [12–15] simulated numerically thermocapillary convection for the
low (Pr = 0.011) and moderate (Pr = 6.7) Prandtl number fluids in the
annular liquid pool and analyzed the physical mechanism of the hy-
drothermal wave formation. Gillon and Homsy [16] studied buoyancy-
thermocapillary convection of 0.65cSt silicone oil layer in a rectangular
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pool by particle image velocimetry (PIV) and explained the effect of
Marangoni number on the flow pattern transition. Furthermore, some
scholars have observed the stationary longitudinal roll pattern and the
HTWs in an annular pool by experiments [17–21].

It is not hard to see that the previous researches are based on the
adiabatic free surface and ignore surface heat dissipation. In fact, owing
to the interfacial non-equilibrium effect, heat dissipation to the en-
vironment on the free surface becomes inevitable, which greatly in-
fluences the temperature distribution along the free surface and then
changes the flow bifurcation routes of thermocapillary convection,
especially for low Prandtl number fluids. Until now, thermocapillary
convection with surface heat dissipation in an annular pool subjected to
a horizontal temperature gradient is few investigated. Jing et al. [22]
carried out three-dimensional (3-D) numerical simulations of LiNbO3
melt flow in an open crucible that the sidewall is heated at constant
heat flux, the bottom is adiabatic and the radiation heat loss from the
melt surface to the ambient is taken into account. They analyzed the
mechanism of the well-known surface spoke patterns, and certified that
the spoke patterns are caused by Marangoni instability in the thin
thermal boundary layer near the free surface. Zhang et al. [23] studied
vaporing thermal convection on the thin liquid layer in the rectangular
cavity by the systematic experimental observations. The results showed
thermal convection will occur in the fluid layer as long as surface
evaporation as the driving force is strong enough whether the bottom of
the liquid layer is heated or cooled. Li et al. [24] investigated ther-
mocapillary-buoyancy convection of 0.65cSt silicone oil in a rectan-
gular tank and drew the conclusion that with the increase of Marangoni
number, the flow becomes unsteady flow; with the decrease of relative
concentration in the air, the critical Marangoni number of flow tran-
sition increases. Meanwhile, the linear stability analysis shows that as
the interfacial evaporation increases, the flow instability will be sup-
pressed. It can be seen that thermocapillary convection with the eva-
porating interface is much more complicated than that with an adia-
batic free surface. Liu et al. [25–27] made experimental observations
and numerical simulations on thermocapillary convection of the eva-
porating liquid layer in the rectangular pool subjected to a horizontal
temperature gradient. The results showed that the interfacial evapora-
tion has a great influence on the instability of thermocapillary con-
vection, and the evaporation intensity is related to the non-equilibrium
degree through the evaporation interface, which is dependent on the

evaporation Biot (Bi) number on the free surface. Hoyas et al. [28–30]
studied the instabilities appearing in a cylindrical annulus with the
heating bottom and the opening free surface to the atmosphere by
linear stability analysis. After the flow destabilizes, the appearance of
the various flow patterns and the flow bifurcation routes to chaos are
mainly dependent on Marangoni number, Biot number and Prandtl
number. Doumenc et al. [31] and Touazi et al. [32] performed a linear
stability analysis on the transient Rayleigh-Bénard-Marangoni con-
vective instability due to surface cooling induced by solvent evapora-
tion and determined the critical Marangoni and Rayleigh numbers
when both thermocapillary force and buoyancy driving force are taken
into account.

The research on the mechanism of thermocapillary convection in-
stability is beneficial to explore flow bifurcation routes. When surface
heat dissipation is taken into account, to identify the flow bifurcation
routes to chaos of thermocapillary convection for low Prandtl number
fluid in shallow annular pool, this paper presented a series of 3-D nu-
merical simulations.

2. Problem statement

2.1. Physical model

A sketch of the problem is provided in Fig. 1. A shallow annular pool
with inner radius ri, outer radius ro and depth d is filled with the low
Prandtl number fluid. The radius ratio and the aspect ratio of the

Nomenclature

A dimensionless temperature amplitude
Bi Biot number
cp specific heat capacity, kJ/(kg·K)
d depth of annular pool, m
F dimensionless frequency
h convective heat transfer coefficient, W/(m2·K)
m wave number
Ma Marangoni number
p pressure, Pa
P dimensionless pressure
Pr Prandtl number
r radius, m
R dimensionless radius
t time, s
T temperature, K
u radial velocity, m/s
U dimensionless radial velocity
v azimuthal velocity, m/s
V dimensionless azimuthal velocity
V dimensionless velocity vector
w axial velocity, m/s

W dimensionless axial velocity
z axial coordinate, m
Z dimensionless axial coordinate

Greek symbols

α thermal diffusivity, m2/s
ε aspect ratio
γT temperature coefficient of surface tension, N/(m·K)
η radius ratio
μ dynamic viscosity, kg/(m·s)
ν kinematic viscosity, m2/s
Θ dimensionless temperature
ρ density, kg/m3

τ dimensionless time
ψ dimensionless stream function

Subscripts

0 ambient
i inner
max maximum
o outer

Fig. 1. Physical model and the coordinate system.
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annular pool are defined as η = ri/ro and ε = d/(ro−ri), respectively.
The bottom is considered to be thermally adiabatic, which satisfies no-
slip boundary conditions. The free surface is flat and non-deformable,
which has heat dissipation to ambient with the temperature T0. The
total surface heat transfer coefficient is h. The inner and outer cylinders
are respectively kept at specific temperatures Ti and To (To > Ti).

For simplicity, the following assumptions are considered. (1) The
fluid is assumed to be an incompressible Newtonian fluid. (2) A con-
stant physical property assumption is applicable except for the surface
tension. (3) The velocity is small and the flow is laminar. (4) The free
surface is flat and non-deformable. (5) If there is evaporation cooling on
the free surface, the evaporation rate is too slow to affect the depth of
the pool.

2.2. Mathematical formulation

By applying (ro−ri), ν/(ro−ri), (ro−ri)2/ν and μν/(ro−ri)2 as scale
quantities for length, velocity, time and pressure, we have
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Based on the above assumptions, the dimensionless flow and heat
transfer equations together with the proper boundary conditions can be
expressed by the following forms:

∇⋅ =V 0 (1)

∂

∂
+ ⋅∇ − ∇ + ∇

V V V= V
τ

P 2
(2)

∂

∂
+ ⋅∇ ∇V =Θ

τ
Θ

Pr
Θ1 2

(3)

In equations, V, τ and P are the dimensionless velocity vector, time
and pressure, respectively. Θ is the dimensionless temperature, which is
defined as Θ=(T−Ti)/(To−Ti).

The initial conditions are:

τ = 0, U]V]W = 0, Θ = −ln[R(1−η)/η]/lnη (4a-b)

The following boundary conditions are considered:
At the inner cylinder (R = Ri = ri/(ro−ri) = η/(1−η), 0 ≤ Z≤ε):

= = = =U V W Θ0, 0; (5a-b)

At the outer cylinder (R = Ro = ro/(ro−ri) = 1/(1−η), 0 ≤ Z≤ε):

= = = =U V W Θ0, 1; (6a-b)

At the bottom (Z = 0, η/(1−η)< R < 1/(1−η)):

= = = ∂ ∂ =U V W Θ/ Ζ0, 0. (7a-b)

At the free surface (Z = ε, η/(1−η)< R < 1/(1−η)), the radial
velocity U and the azimuthal velocity V depend on the balance effect
between the thermocapillary force and the shear stress of the fluid. At
the same time, the axial velocity caused by surface evaporation is too
small to be neglected. Therefore,

∂
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= −
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Z
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Pr
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where, Ma is Marangoni number, Ma = γTΔT(ro−ri)/(μα), γT surface
tension temperature coefficient, μ dynamic viscosity, α thermal diffu-
sivity.

When the total heat transfer coefficient on the free surface is h, the
thermal boundary condition can be expressed as

− ∂ ∂ = −λ T z h T T/ ( ).0 (9)

In Eq. (9), λ is thermal conductivity. Supposing T0 = Ti, the above
formula is also expressed in the dimensionless form

− ∂ ∂ =Θ Z BiΘ/ , (10)

in which, Bi is surface heat dissipation Biot number, Bi = h(ro−ri)/λ.
The low Prandtl fluid chosen in this paper is silicon melt with

Pr = 0.011. In this case, the total surface heat dissipation coefficient is
smaller. Therefore, Biot number was limited in the range 0 ≤ Bi = 1.0.
Radius ratio and aspect ratio of an annular pool are respectively fixed at
η = 0.5 and ε = 0.05.

2.3. Numerical procedure and validation

The fundamental equations are discretized by the finite volume
method. The central difference approximation is introduced for the
diffusion terms while the convective terms are treated by the QUICK
scheme. The SIMPLE algorithm is used for correcting simultaneously
the pressure and the velocity. The dimensionless time step is in the
range between 2 × 10−6 and 2 × 10−5. In the iterative solution
process, when the maximum relative error of temperature and velocity
is not greater than 10−5, the solution is considered to be convergent.

Non-uniform staggered grids of 60R × 22Z × 240θ which are en-
crypted near the solid walls and the free surface are applied. To verify
the convergence of the mesh, typical simulation results at four different
girds are listed in Table 1 at two sets of different Marangoni numbers
and Biot numbers. When Ma = 5000 and Bi = 1.0, the flow is steady
for the first set of grid while it is 3-D oscillatory for the latter three
groups of grids. On the free surface, the oscillating wave number m is
essentially the same. In this paper, the wave number is determined by
observing the snapshot of surface temperature fluctuation in post-pro-
cessing after the converged laminar flow solution is obtained. When
Ma = 8000 and Bi = 0.25, the flow pattern is the hydrothermal wave
for the first set of grid while it is a radial moving wave for the latter
three groups of grids. Furthermore, the difference of dimensionless
oscillatory fundamental frequency F0 between the latter three groups of
grids is not more than 3%. Therefore, the selected grid
60R × 22Z × 240θ is reasonable.

To validate the current numerical scheme, we reproduced numeri-
cally thermocapillary-buoyancy convection of silicon melt and suc-
cessfully obtained the flow patterns observed experimentally by Azami
et al. [33] at the same conditions. Then, when the evaporation on the
free surface was taken into account, a series of numerical simulations
on thermocapillary convection of the fluid with Pr = 12 are carefully
carried out at the same conditions as the work of Liu et al. [34]. The
obtained free surface temperature profiles are identical with the

Table 1
Mesh convergence check.

Ma = 5000, Bi = 1

mesh 40R × 22Z × 120θ 50R×22Z×180θ 60R × 22Z × 240θ 60R × 30Z × 240θ

m 60 24 25 25
F0 Steady flow 1656 1662 1655
Ma = 8000, Bi = 0.25
mesh 40R × 22Z × 120θ 50R×22Z×180θ 60R × 22Z × 240θ 60R × 30Z × 240θ

m 11 15 16 16
F0 1246 1596 1658 1656
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literature results, as shown in Ref. [35]. On the other hand, the three-
dimensional numerical simulation program used in this paper has also
been successfully used to the calculation of thermocapillary convection
under various conditions [35–37]. These validations provide enough
confidence to the accuracy of the numerical scheme.

3. Results and discussion

3.1. Basic flow

When the temperature gradient exists on the free surface, the sur-
face tension gradient will drive the fluid flowing from the high tem-
perature wall to the low temperature wall. If the temperature difference
between the inner and outer walls is smaller, the flow is two-dimen-
sional (2-D) axisymmetric steady-state flow, which can be described by
the streamlines in the meridian plane. The dimensionless flow function
is defined as

=
∂

∂
= −

∂

∂
U

R
ψ
Z

W
R

ψ
R

1 , 1 . (11a-b)

Fig. 2 revealed the isotherm and streamline distributions with dif-
ferent Biot numbers at Ma = 3750. When Biot number is smaller, the
radial temperature gradient near the inner wall is larger, the flow is
stronger, and the streamlines are denser. With the increase of Biot
number, the radial temperature gradient near the inner wall on the free
surface gradually decreases, and the thermocapillary effect weakens.
However, near the outer wall, the results are just the opposite. The
radial temperature gradient increases and the thermocapillary effect
enhances, which make all the thermocapillary flow cell move outward.
Furthermore, the isotherms near the outer wall become dense. Mean-
while, the flow strengthens continuously, and the dimensionless flow
function increases.

In Fig. 3, the radial distributions of the dimensionless radial and
axial temperature gradients on the free surface under different Biot
numbers are given. Obviously, when the free surface is adiabatic, the
axial dimensionless temperature gradient on the surface is zero. How-
ever, when surface heat dissipation is taken into account, a negative

axial temperature gradient is generated near the free surface, which
increases monotonically with the increase of Biot number. On the other
hand, the axial temperature gradient increases gradually along the ra-
dial direction. However, the variation of radial temperature gradient
with Biot number is quite complex. Near the inner wall, the radial
temperature gradient decreases gradually with the increase of Biot
number, while near the outer wall, it increases gradually. With the
increase of Marangoni number, this relative variation of the radial
temperature gradient and the axial temperature gradient on the free
surface will lead to the different flow patterns after the flow destabi-
lizes.

3.2. Flow bifurcation at a small Biot number

With the increase of Marangoni number, the flow is strengthened.
When Marangoni number exceeds a critical value, three-dimensional
disturbances are incubated and their amplitudes increase gradually
with time. Finally, different 3-D flow patterns are formed depending on
the thermal boundary condition on the free surface. When the surface is
adiabatic, the axisymmetric steady flow will bifurcate to the HTWs
moving along the azimuthal direction, as reported in Refs. [33,36,39].

Fig. 2. Isotherms (up) and streamlines (down) of basic flow in a
meridional plane at Ma = 3750. δΘ = 0.05, δψ = 5.

Fig. 3. Variations of the radial (solid lines) and axial (dotted lines) temperature gradients
on the free surface at Ma = 3750.
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However, when there is heat dissipation on the free surface, at a small
Biot number such as 0.05 < Bi < 0.375, the axisymmetric steady flow
after its destabilization firstly evolves into the three-dimensional steady
flow (3DSF), which shows a group of radial roll cells arranged in the
azimuthal direction [38]. The direction of the rolling cell central axis is
the same as the radial direction.

In order to analyze the characteristics of the 3-D flow, the tem-
perature fluctuation δΘ on the free surface is introduced as

∫= −δΘ Θ R ε θ τ
π

Θ R ε θ τ θ( , , , ) 1
2

( , , , )d
π

0

2

(12)

Fig. 4 shows the temperature fluctuation nephogram of 3-D steady
flow on the free surface, and the spatial-time diagram (STD) of surface
temperature along the circumferential direction at R = 1.16 with time
when Bi = 0.125 and 0.25 respectively. Obviously, at small Biot
numbers, the radial temperature gradient on the free surface near the
inner wall is larger, and the radial velocity and the velocity gradients
are the largest. The axisymmetric steady flow destabilizes near the
inner wall at first, so the temperature fluctuation amplitude is the lar-
gest. With the increase of Biot number, the radial temperature gradient
near the inner wall decreases, which will lead to the decrease of the
temperature fluctuation amplitude. For example, when Biot number
increases from 0.125 to 0.25, the maximum temperature fluctuation
decreases almost half, but the wave number changes little, only in-
creasing from 38 to 39.

When Marangoni number continues to increase, the 3DSF will de-
stabilize and evolve into the 3-D unsteady flow. When the free surface is
adiabatic, the flow pattern after the flow destabilizes is the HTWs
[35,36,39]. However, when there exists surface heat dissipation, if Biot
number is smaller, such as Bi = 0.25, a set of radial moving waves
(RMWs) propagating along the radial direction can be observed on the
free surface after the flow destabilizes. It originates near the inner wall
and propagates outward along the radial direction [38]. However, the
fluctuations of temperature and velocity are not synchronous along the
azimuthal direction. At the same time, in the local region, these fluc-
tuations will rotate along the azimuthal direction, as shown in Fig. 5
(a). Therefore, the STD shows the alternation of the high temperature
and the low temperature, and there are the partial slant lines. This flow
pattern can be considered as a combination of radial moving waves and
HTWs (RMWs + HTWs). The fluctuation spectrum of the radial velocity
at a monitoring point of R = 1.5 on the free surface is shown in Fig. 6
(a). Apparently, although the radial moving wave and the hydrothermal
wave coexist on the free surface, the fluctuation regularity is very clear,
and there is only one dimensionless fluctuation frequency of F0 = 1554
because of the modulation of radial moving waves and hydrothermal
waves each other. When Marangoni number increases from 5000 to
6000, although a combination of the RMWs and HTWs on the free
surface is observed, the HTWs moves along both clockwise and coun-
terclockwise directions, as shown in Fig. 5 (b). Simultaneously, the
fundamental fluctuation frequency decreases slightly to F0 = 1531. As
the flow strengthens, the fluctuation becomes more complex and a
harmonic frequency of F1 = 3196≈2F0 appears on the spectrogram, as
shown in Fig. 6(b).

As Marangoni number continues to increase, the flow is further
enhanced, and the temperature and velocity fluctuations near the inner
wall move outward with the radial backflow near the bottom. Fig. 5(c)
shows an instantaneous surface temperature fluctuation at Ma = 8000.
The hydrothermal waves apparently disappeared, and there is only the
RMWs on the free surface. Therefore, the STD diagram presents the
alternation of high temperature and low temperature, just like an in-
ternational chessboard. Fig. 7 presents temperature fluctuation and
streamlines of radial moving wave flow pattern during a period on a
meridional plane atMa= 8000. As can be seen from the diagram, there
is always a strong secondary flow cell near the inner wall, which will
continuously strengthen and attenuate over time, thus causing oscilla-
tions of velocity and temperature. The oscillation propagates toward

the outward wall along the radial direction with the backflow. Since the
temperature oscillations in the liquid pool are caused by secondary flow
cells near the inner wall, the maximum temperature fluctuation does
not occur at the free surface, but in the liquid pool. Similarly, because
the flow is enhanced, the fluctuation amplitudes of temperature and
velocity increase, and the fluctuation regular pattern becomes more
complex. Besides the existence of a fundamental fluctuation frequency
of F0 = 1665, there are many harmonic frequencies, such as
F1 = 3329≈2F0 and F2 = 4957≈ (3/2)F1 ≈ 3F0, as shown in Fig. 6(c).

When Marangoni number exceeds about 10000, the flow becomes
very strong, and the temperature fluctuations become disorganized and
irregular, as shown in Fig. 5(d). The radial velocity fluctuation spec-
trum at a monitoring point on the free surface of R= 1.5 shows that the
flow has evolved into chaotic flow (CF), as shown in Fig. 6 (d). Ob-
viously, in this case, 3DSF transits to chaotic flow by the period-halving
bifurcation with the increase of Marangoni number.

3.3. Flow bifurcation at a large Biot number

When surface heat dissipation is larger, such as 0.375 ≤ Bi = 1.0,
the flow near the inner wall is very weak, as shown in Fig. 2(c) and (d).
As a result, with the increase of Marangoni number, 2-D axisymmetric
steady flow will not bifurcate 3-D steady flow after the flow destabili-
zation, and directly evolves into the HTWs propagating along the azi-
muthal direction, instead. The HTWs can propagate along the clockwise
(C. W.) or the counterclockwise (C. C. W.), as shown in Fig. 8(a) and
(b). At the same time, compare Fig. 8 (a), (b) and (c), it can be seen that,
with the increase of Biot number, the flow near the inner wall weakens,
and the velocity and temperature fluctuation amplitudes decrease.
Therefore, the HTWs gradually move to the outer wall, the maximum
temperature fluctuation on the free surface is also close to the outer
wall, and the fluctuation amplitude slightly increases.

Fig. 9 shows the azimuthal velocity and temperature fluctuations at
a monitoring point of R = 1.5 on the free surface when Bi = 1.0.
Obviously, when Marangoni number is smaller, such asMa= 6000, the
velocity and the temperature at the monitoring point oscillate

Fig. 4. Temperature fluctuation (left) and STD (right) at R = 1.16 on free surface for
3DSF at Ma = 4600.
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periodically. When the HTWs propagate along a clockwise, the tem-
perature fluctuation always lags behind the velocity fluctuation, and
the phase difference is about (6/5)π, as shown in Fig. 9 (a). While the
HTWs propagate along a counterclockwise, although the temperature
fluctuation is also behind the velocity fluctuation, the phase difference

between the two fluctuations is greatly reduced, only about (1/10)π, as
shown in Fig. 9(b). It should be noted that the clockwise waves and the
counterclockwise waves are equivalent in an axisymmetric annular pool
without rotation. Near the critical point, the phase difference is defi-
nitely the same. However, with the increase of Marangoni number, the

Fig. 5. Snapshots of surface temperature fluctuation (left) and STD (right) at R = 1.5 on free surface for 3-D oscillatory flow at Bi=0.25.

Fig. 6. The frequency spectrums of radial velo-
city at R = 1.5 of the free surface when
Bi = 0.25.
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flow is enhanced and the phase difference also changes. For the HTWs
propagating along different directions, although the phase difference
between velocity and temperature fluctuations is different, the fluc-
tuation period is the same, and the fundamental frequency is
F0 = 1517.

As Marangoni number increases, the flow is strengthened. For the
counterclockwise and clockwise propagating HTWs, Marangoni num-
bers of the flow pattern transition are not the same. For example, at
Ma = 8000, when the flow and temperature fields for the clockwise
propagating HTWs atMa= 6000 are taken as the initial conditions, the

Fig. 7. Temperature fluctuation (up) and pseudo streamlines
(down) during one period on a meridional plane at Ma = 8000.
δψ = 5.

Fig. 8. Snapshots of surface temperature fluctuation (left) and STD (right) at R = 1.5 on free surface for the HTWs at Ma = 6000.
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wave pattern remains the same after a long time calculation. The
snapshot of surface temperature fluctuation on the free surface is shown
in Fig. 10(a). In this case, the temperature fluctuation at a monitoring
point of R = 1.5 still lag behind the velocity fluctuation, and the phase
difference is also (6/5)π, as shown in Fig. 9 (c). Contrary, when
Ma = 8000, the anticlockwise propagation HTWs at Ma = 6000 will
evolve into a plurality of HTWs moving in different directions after a
long period of calculation, and wave sources and wave sinks are basi-
cally fixed. Therefore, the STD consists of a plurality of parallel slant
lines, as shown in Fig. 10 (b). The phase difference between the velocity
and temperature fluctuations is varied, as shown in Fig. 9 (d), in-
dicating that the fluctuations at this time are more complex. In addi-
tion, the fluctuations of velocity and temperature are mainly located at
the outside of the liquid pool, which is different from that at Bi = 0.25.
Many studies on thermocapillary convection under adiabatic free sur-
face [6,38] indicate that in the flow evolution, there exists the coex-
istence of many flow patterns under the same Marangoni number or
thermocapillary Reynolds number. The present results show that when
there exists surface heat dissipation, the coexistence of multiple flow
patterns under the same Marangoni number is also observed.

When Marangoni number continues to increase, thermocapillary
convection will be further enhanced, and the velocity and temperature
fluctuations become more complex. The fluctuation process is no longer
periodic, and the fluctuation amplitude is constantly changing, as

shown in Fig. 9 (e) and (f). At the same time, the HTWs on the free
surface gradually disappear, the spatial distribution of velocity and
temperature fluctuations is no longer regular, the snapshots of surface
temperature fluctuation and the STD at R= 1.5 are shown in Fig. 10 (c)
and (d).

Fig. 11 shows the frequency spectrum of azimuthal velocity fluc-
tuation at a monitoring point of R = 1.5 during the flow pattern evo-
lution when Bi = 1.0. At Ma = 8000, the flow pattern is the HTWs, so
there is always a dominant fluctuation frequency, as shown in Fig. 11
(a) and (b). In this case, Marangoni number is larger and the flow is
stronger, which leads to the complicated velocity and temperature
fluctuations. Many corresponding harmonic frequencies appear. For
example, for a single group HTWs along the clockwise rotation, the
fundamental fluctuation frequency is F0 = 1258 and the harmonic
frequency is F1 = 2441≈2F0. For multiple groups of HTWs along the
two direction rotation, the fundamental fluctuation frequency is
F0 = 1332, the harmonic frequencies are F1 = 2663≈2F0 and
F2 = 3995≈(3/2)F1 ˜ 3F0. Therefore, the harmonic frequency always
appears with the multiple of the fundamental fluctuation frequency.
When Marangoni number exceeds 9000, the periodicity of temperature
and velocity fluctuations gradually disappears. On the spectrum dia-
gram, the noise increases. It is difficult to determine an obvious fluc-
tuation frequency, indicating that the flow at this moment has evolved
into the chaotic flow, as shown in Fig. 11 (c) and (d). Therefore, when

Fig. 9. The azimuthal velocity (solid line) and
temperature (dashed line) fluctuations at R = 1.5
on the free surface when Bi = 1.0.
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Biot number is larger, the HTWs are also gradually evolved into the
chaotic state by the period-halving bifurcation.

3.4. Flow pattern transition diagram

The above analysis results show that when surface heat dissipation

is smaller, the flow bifurcation sequence of thermocapillary convection
is 2-D axisymmetric steady flow → 3-D steady flow → coexisting hy-
drothermal waves and radial moving waves → radial moving waves →
chaos with the increase of Marangoni number. When surface heat dis-
sipation is larger, the bifurcation sequence is 2-D axisymmetric steady
flow → hydrothermal waves → chaos. Fig. 12 shows the diagram of

Fig. 10. Snapshots of surface temperature fluctuation (left) on the free surface and STD (right) at R = 1.5 when Bi = 1.0.

Fig. 11. Frequency spectrum of azimuthal velo-
city fluctuation at a monitoring point of R = 1.5
when Bi = 1.0.
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flow pattern transition at different Biot numbers. Obviously, the flow
pattern is more abundant and its evolution is more complicated at a
small Biot number. But in this case, the pure HTW is not observed in the
liquid pool. Meanwhile, the ranges of Marangoni number and Biot
number for the 3-D steady state flow existence are narrow. For example,
when Bi = 0.25, the 3-D steady flow exists only in the range of
4215 ≤ Ma<4800. On the other hand, during the various 3-D un-
steady flow pattern transition, Marangoni number is not unique, but
there is a transition Marangoni number interval, which means that
there may be different 3-D unsteady flow patterns under the same
Marangoni number [6,39]. When Biot number is larger, the flow pat-
tern transition becomes simpler. In this case, 2-D steady axisymmetric
flow bifurcates directly to the HTWs after the flow destabilization, and
the Marangoni range of the HTWs existence is wide.

Fig. 13 shows the variations of the maximum temperature fluctua-
tion amplitude Amax (=Θmax−Θmin) on the free surface, the wave
number m and the fundamental frequency F0 with Marangoni number.
It can be seen that with the increase of Marangoni number, the flow is
enhanced, and the temperature fluctuation amplitude on the free sur-
face increases gradually. When Marangoni number is smaller, surface
heat dissipation will make the temperature gradient near the outer wall
increase, and the flow is strengthened, so the temperature fluctuation
amplitude becomes larger. Conversely, when Marangoni number is
larger, the flow is confined to the outer wall due to surface heat dis-
sipation. Compared with adiabatic free surface, the flow is weakened so
that the maximum temperature fluctuation amplitude decreases. At the
same time, when the free surface is adiabatic, the maximum tempera-
ture fluctuation on the free surface is always located near the inner
wall. With the increase of surface heat dissipation, the radial position of
the maximum temperature fluctuation on the free surface will gradually
move towards the outer wall.

When the flow is 3-D steady flow, the wave number is large and
varies little. When 3-D steady flow evolves into 3-D unsteady flow, the
wave number will reduce suddenly. Then, with the increase of
Marangoni number, for the combination of HTWs and RMWs, the wave
number will increase slightly. When the flow pattern becomes the
RMW, the wave number will decrease until the flow transits to chaotic
state. When Bi = 1.0, in a wide range of Marangoni numbers, the wave
number of HTWs is basically constant. However, at a larger Marangoni
number, the wave number decreases gradually with Marangoni
number. For 3-D oscillatory flow, the fundamental fluctuation fre-
quency increases with Marangoni number at a small Biot number, but
decreases at a large Biot number.

4. Conclusions

A series of 3-D numerical simulations are performed to analyze
clearly the flow bifurcation routes to chaos of thermocapillary con-
vection with surface heat dissipation for low Prandtl number fluid in
shallow annular pool. The following conclusions were obtained.

(1) Surface heat dissipation has a great influence on the flow pattern
bifurcation processes and routes. The flow pattern bifurcation route
at a large Biot number is simpler than that at a small Biot number.

(2) When surface heat dissipation is smaller, the flow bifurcation se-
quence of thermocapillary convection is 2-D axisymmetric steady
flow → 3-D steady flow → coexisting hydrothermal waves and ra-
dial moving waves → radial moving waves → chaos with the

Fig. 12. Flow pattern transition process. A: 2DSF; B: 3DSF;
C: HTWs + RMWs; D: RMWs; E: CF; F: HTWs.

Fig. 13. Variations of the maximum dimensionless temperature amplitude Amax (a), wave
number m (b), and fundamental frequency F0 (c) with Marangoni number. When there
coexist multiple flow patterns under the same Marangoni number, values in the figure
denote these after flow pattern transition. ○: Bi = 0; △: Bi = 0.25; □: Bi = 1.0.
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increase of Marangoni number. When surface heat dissipation is
larger, the bifurcation sequence is 2-D axisymmetric steady flow →
hydrothermal wave → chaos.

(3) The temperature fluctuation amplitude on the free surface increases
gradually with the increase of Marangoni number. However, the
wave number and the fluctuation frequency depend mainly on the
flow pattern and Marangoni number. Every bifurcation of thermo-
capillary convection is always accompanied by a sudden variation
of the wave number. The fundamental fluctuation frequency in-
creases with Marangoni number at a small Biot number, but de-
creases at a large Biot number.
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