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A B S T R A C T

Previous deconvolution algorithms based on B-splines are much easier to be understood and programmed for
academic researchers and engineers. However, due to the use of a linear regularization, their stability is weaker
than that of the commonly used von Schroeter et al.’s deconvolution algorithm in which a nonlinear regulari-
zation is used; the linear regularization can make the deconvolution algorithms less tolerant to data errors. Good
stability for the deconvolution algorithms is very important in order to make deconvolution as a viable tool for
well-test analysis. In the paper, in order to improve the stability of the deconvolution algorithms based on B-
splines, a nonlinear regularization by minimizing the curvature of pressure derivative response, as used in von
Schroeter et al.’s algorithm, is appended instead of the linear regularization. And the corresponding nonlinear
regularization equations are appropriately deduced. In particular, the improved algorithm is based on the
Duhamel principle directly, and the complex transformation by the nonlinear z function, as used in von Schroeter
et al.’s algorithm, is avoided; it does simplify the whole deconvolution process; moreover, the sensitivity matrix of
an involved basic linear system from the measured pressure and rate data can also be solved directly by the
piecewise analytical integration method, which can largely improve the deconvolution computation speed. Ul-
timately, in combination with the nonlinear regularization equations, a nonlinear least-squares problem is
formulated for the stability-improved deconvolution algorithm based on B-splines. Besides, a constraint condition
for tuning the parameter values of the B-spline base and an involved smooth factor is presented for restricting the
nonlinear regularization process. Through a simulated case study, it is found that the nonlinear least-squares
problem can be solved stably by the advanced Powell's Dog Leg method due to its great convergence ability
and numerical stability; and the solution accuracy is also verified. Then the effects of the two parameters on the
type curves of the deconvolution results are analyzed. And the effect of the error in the initial formation pressure
on the type curves of the deconvolution results is also analyzed. Then a statement on how to perform the
nonlinear regularization is presented specifically.

Furthermore, through the study on two simulated cases with added data errors and an actual case, it is
demonstrated that when the nonlinear regularization is appended, the stability of the deconvolution algorithm
based on B-splines can be largely improved for mitigating the effect of data errors; besides, the stability-improved
algorithm based on B-splines even exhibits higher stability than von Schroeter et al.’s algorithm that takes the
same nonlinear regularization method, and the reason can be attributed to the superior properties of the repre-
sentation of the wellbore pressure derivative (to be deconvolved) by B-spline functions in the numerical stability
of computations and the inherent smoothness. Through the test of some simulated cases, it is also concluded that
the stability-improved algorithm based on B-splines by appending the nonlinear regularization still has a high-
level computation speed, which is nearly twenty times more than that of von Schroeter et al.’s algorithm. It
can be attributed to the more undetermined coefficients and the computational complexity resulted from the z-
function transformation in the formulation of von Schroeter et al.’s algorithm.
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1. Introduction

The deconvolution based on Duhamel principle has been widely
applied in the well testing technology in reservoir engineering. The in-
verse problem can provide the equivalent constant unit production rate
pressure response of the well in a reservoir system that is affected by the
variable production rates for the entire duration of the production his-
tory. The relevant deconvolution algorithms have attracted big attentions
over the past forty years (Liu et al., 2017). Due to the commonly existent
errors of wellbore pressure and production rate data in the fields, the
deconvolution computation is always ill-conditioned inherently (Çınar
et al., 2006). As far as we know, although many deconvolution algo-
rithms have been proposed, just several ones appear to exhibit the sta-
bility of data error tolerance; they are proposed by von Schroeter et al.
(von Schroeter et al., 2002; von Schroeter et al., 2004), Levitan et al.
(Levitan, 2005; Levitan et al., 2006) and Ilk et al. (Ilk, 2005; Ilk et al.,
2005; Liu et al., 2017), respectively. Here, these aforementioned
different deconvolution algorithms will be introduced in details. In
addition, it is worth to mention that recently Ahmadi et al. (2017) pre-
sent a new robust deconvolution algorithm with the minimum user
interference, which combines the conveniences of deconvolution in
Laplace domain with a new approach to transform the sampled data from
time domain to Laplace domain without extrapolating the data beyond
the sampling interval; Ahmadi et al.’s algorithm overcomes the limita-
tions of the requirement that the piecewise functions for the sampled
data representation should be defined in the complex plane for the
application of deconvolution in Laplace domain (Al-Ajmi et al., 2008).

It is well known that the Duhamel principle (Çınar et al., 2006) is as
follows:

pini � p ¼ ∫ t
0qðt � τÞp'uðτÞdτ (1)

where t is the time; τ is a variable for the integral; q is the measured
variable rate; p is the measured wellbore pressure corresponding to the
variable rate; pu is the wellbore pressure drop corresponding to the
constant unit rate; pini is the initial formation pressure. The aim of these
deconvolution algorithms is to obtain pu when the data of q and p are
both given.

In order to make sure the positivity of dpu/dln(t) for the relevant
plotting of type curves, z function is defined in von Schroeter et al.’s
deconvolution algorithm (von Schroeter et al., 2002; von Schroeter et al.,
2004), as follows:

z ¼ ln
�
dpuðtÞ
dlnðtÞ

�
(2)

Then Eq. (1) can be equivalently transformed as follows:

pini � p ¼ ∫ lnt
�∞qðt � eτÞezðτÞdτ (3)

Then the aim turns to the solution of z. von Schroeter et al.’s
deconvolution algorithm (von Schroeter et al., 2002; von Schroeter et al.,
2004) accounts for the fitting errors for both the measured pressure data
and rate data; in order to improve the smoothness of the solution of z
when data errors exist, minimization of the curvature of z function is
appended as a nonlinear regularization method. As a result, a total
nonlinear least-squares problem is formulated. As for Levitan et al.’s
deconvolution algorithm (Levitan, 2005; Levitan et al., 2006), their ideas
are also from von Schroeter et al.’s deconvolution algorithm. They are
both based on the same concept of minimizing a nonlinear weighted
least-square objective function, involving the sum of three mismatch
terms including the pressure, the rate and the curvature, for recon-
structing the deconvolved pressure drop and its logarithmic derivative
(Liu et al., 2017). The difference of the two algorithms mainly lies in the
aspects of model assumption and the specific definition of objective
functions. Due to the use of nonlinear regularization i. e. the minimiza-
tion of the curvature instead of the pressure derivative (Ilk, 2005; Ilk
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et al., 2005), von Schroeter et al.’s deconvolution algorithm can exhibit
relatively higher stability when data errors exist (Çınar et al., 2006).

Another different deconvolution algorithm based on B-splines is
proposed by Ilk et al. first (Ilk, 2005; Ilk et al., 2005). The algorithm is
based on Eq. (1) directly, and the transformation of Eq. (1) by the
nonlinear z function is avoided; a weighted summation of second-order
B-splines is adopted to reconstruct p'u; and a linear regularization
method is adopted to overcome the effect of data errors, which can make
the logarithmic derivative of pu differ slightly between the B-spline knot
and the middle location between knots (Ilk, 2005; Ilk et al., 2005). In
combination with Laplace transform and numerical Laplace inversion,
the formulated linear least-squares problem can be solved. What's more,
Ilk et al.’s algorithm is further improved by Liu et al. (2017) through a
technique of piecewise analytical integration for calculating the involved
sensitivity matrix (Liu et al., 2017) in the real time space instead of the
Laplace space; then the success of the deconvolution computation based
on B-splines can be guaranteed, and the improved deconvolution algo-
rithm exhibits big advantage in the fast computational speed due to the
use of the analytical solution method.

Good stability of deconvolution algorithms is very necessary in order
to make deconvolution as a viable tool for well-test analysis; and stability
improvement is also the main difficulty in the development of decon-
volution algorithms. Çınar et al. (2006) have ever conducted a compar-
ative study on these deconvolution algorithms mentioned above:
Significantly, it is found that the weaker linear regularization method
applied in the deconvolution algorithms based on B-splines (including Ilk
et al.’s deconvolution algorithm (Ilk, 2005; Ilk et al., 2005) and its
improved version by Liu et al. (2017)) can make the algorithms less
tolerant to data errors; in contrast, von Schroeter et al.’s deconvolution
algorithm shows relatively higher stability by using the nonlinear regu-
larization method, and the deconvolution algorithm has been imple-
mented into Saphir as the pressure transient analysis module of KAPPA
software due to its good stability. However, in von Schroeter et al.’s
deconvolution algorithm, the transformed deconvolution equation of
Duhamel principle i. e. Eq. (3) is used, which makes the computation
process become very complicated; in contrast, the deconvolution equa-
tion of Duhamel principle i. e. Eq. (1) is directly used in the algorithms
based on the B-splines, and the involved sensitivity matrix can also be
solved directly by the piecewise analytical integration method, which
can largely improve the computation speed; and its computation pro-
cedures are much easier to be understood and programmed for academic
researchers and engineers. What's more, representation of the unknown
function by B-spline functions, which are piecewise defined polynomial
functions, has superior properties such as local effects of coefficients,
numerical stability of computations and inherent smoothness (Jauch
et al., 2017) in comparison with representation of the unknown function
by piecewise linear approximations as used in von Schroeter et al.’s al-
gorithm. Therefore, in view of the above-mentioned facts, it is very
necessary to further improve the stability of the algorithms based on
B-splines. For the purpose, an idea can be presented naturally that the
nonlinear regularization method in von Schroeter et al.’s algorithm may
be applied into the algorithms based on B-splines.

In this paper, based on the improved version of Ilk et al.’s deconvo-
lution algorithm (Liu et al., 2017), the nonlinear regularization method,
as used in von Schroeter et al.’s deconvolution algorithm, is appended so
as to largely improve the stability of the algorithms based on B-splines. It
can make the deconvolution algorithm based on B-splines to be more
acceptable and more advanced for its applications in the well testing
technology. The schematics for the stability improvement of the decon-
volution algorithm based on B-splines are shown in Fig. 1. From Fig. 1, it
can be seen that the stability-improved algorithm can inherit good
“genes” including the representation of p'u by B-splines (Liu et al., 2017),
no complicated z-function transformation of the convolution equation
(Liu et al., 2017), the fast analytical solution method for calculating the
elements of sensitivity matrix (Liu et al., 2017) and the nonlinear



Fig. 1. The schematics for the stability improvement
of the deconvolution algorithm based on B-splines.
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regularization method (von Schroeter et al., 2002; von Schroeter et al.,
2004) from their “parents”: The improved version of Ilk et al.’s decon-
volution algorithm based on B-splines (Liu et al., 2017) and von Schro-
eter et al.’s deconvolution algorithm (von Schroeter et al., 2002; von
Schroeter et al., 2004).

2. Stability improvement of deconvolution algorithms based on
B-splines

2.1. Generation of the basic linear system from the measured pressure and
rate data

According to the Ilk et al.’s algorithm based on B-splines, p'u is rep-
resented by a weighted summation of second-order B-splines (Ilk, 2005;
Ilk et al., 2005), as follows:

p'uðtÞ ¼
Xw
i¼1

ciB2
i ðtÞ (4)

where ci is the undetermined weight coefficient; w is the number of un-
determined coefficients; B2

i ðtÞ is the second-order B-spline (Ilk, 2005; Ilk
et al., 2005). In order to make the log-log curves of the deconvolved p'u
more smooth, it is required reasonably that the knots should be distrib-
uted logarithmically as bl (l¼ 0, �1, �2, …) for the generation of
second-order B-splines; please refer to the literatures (Ilk, 2005; Ilk et al.,
2005) for the details of the B-spline generation process; and the distri-
bution range of the knots must cover the time range of these measured
pressure data. The selection of the base b for the generation of
second-order B-splines should also satisfy the condition that the number
of knots per log cycle is on the order of at least 2–6 knots (Ilk, 2005; Ilk
et al., 2005).

Then substituting Eq. (4) into the Duhamel principle i. e. Eq. (1)
directly yields:

pini � pðtÞ ¼
Xw
i¼1

ci∫
t
0qðτÞB2

i ðt � τÞdτ (5)

It is assumed that the total number of the measured wellbore pressure
p data is Np; and the measured variable production rate q data and the
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initial formation pressure pini are known. Then by substituting the
measured pressure and variable rate data into Eq. (1), a linear system
with respect to ci can be obtained, as follows:

XC ¼ ΔP (6)

where X is the Np�w sensitivity matrix; C is the w-vector of undeter-
mined coefficients ci; and ΔP is the Np-vector of measured wellbore
pressure drop.

According to Eq. (5), the calculation of the elements of the sensitivity
matrix X needs to solve the corresponding convolution integrals (Liu
et al., 2017). Solution by the numerical integration method is
time-consuming. As the z-function transformation (von Schroeter et al.,
2002; von Schroeter et al., 2004) is not taken, in order to largely improve
the deconvolution computation speed, the elements of the sensitivity
matrix X can be fast solved analytically by the technique of piecewise
analytical integration method according to the real production rate his-
tory (Liu et al., 2017); please refer to the reference (Liu et al., 2017) for
the details.

In addition, it is worth to point out that although the z-function
transformation i. e. Eq. (2) is avoided in the new stability-improved al-
gorithm, the deconvolved dpu/dln(t) can still keep positive for the plot-
ting of type curves, which will be shown in all the following case study in
the paper.

2.2. Generation of a nonlinear system from the nonlinear regularization

In Ilk et al.’s algorithm, a weak linear regularization method is used
for ensuring the relevance of the spline representation with the type
curves from reservoir modeling (Ilk, 2005; Ilk et al., 2005; Liu et al.,
2017). Here, in order to further improve the stability, a nonlinear regu-
larization (von Schroeter et al., 2002; von Schroeter et al., 2004) by
minimizing the curvature of pressure derivative response, which has
been used in von Schroeter et al.’s deconvolution algorithm, is appended
in the new algorithm based on B-splines instead of the linear regulari-
zation in the original Ilk et al.’s algorithm (Ilk, 2005; Ilk et al., 2005; Liu
et al., 2017). And the relevant equation for the nonlinear regularization is
also deduced based on the representation of p'u by B-splines.

Three points of pressure derivative response at three successive knots
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of B-splines at log-log coordinates are shown in Fig. 2. The three suc-
cessive knots are ts-1, ts and tsþ1, respectively. Correspondingly, the co-
ordinate of the three points of pressure derivative p'u in the log-log
coordinate system are A point: ðlogðts�1Þ; logðts�1⋅p'uðts�1ÞÞ; 0Þ; B point:
ðlogðtsÞ; logðts⋅p'uðtsÞÞ; 0Þ and C point: ðlogðtsþ1Þ; logðtsþ1⋅p'uðtsþ1ÞÞ; 0Þ.
The added coordinate component zero for every point is for the up-
coming multiplication cross of vectors. Due to the reality that a large
amount of information is from the slopes of the graphed p'u, the accurate
description of the smoothness should be in terms of curvature of the
graph instead of penalizing derivatives (von Schroeter et al., 2002; von

Schroeter et al., 2004). In Fig. 2, the angle between the vector AB
�!

and the

vector BC
�!

is written as θs, which can represent the curvature of the type
curve (von Schroeter et al., 2002; von Schroeter et al., 2004). In order to
make the type curve smooth, θs is set as zero. Equivalently, the sine of θs is
set as zero. sin(θs) can be calculated through the multiplication cross of

the vector AB
�!

and the vector BC
�!

, as follows:

jsinðθsÞj ¼
���� AB
�!� BC

�!��AB�!��⋅��BC�!��
���� ¼ 0 (7)

Eq. (7) is equivalent to the following equation:

AB
�!� BC

�! ¼ 0 (8)

From Eq. (8), the nonlinear regularization equations can be deduced
as follows:

β⋅log
�

ts
ts�1

�
⋅log
�
tsþ1⋅p'uðtsþ1Þ
ts⋅p'uðtsÞ

�
� β⋅log

�
tsþ1

ts

�
⋅log
�

ts⋅p'uðtsÞ
ts�1⋅p'uðts�1Þ

�
¼ 0 (9)

where β is the smooth factor as the weight for the nonlinear
regularization.

In order to make the values of the antilog of the logarithmic functions
in Eq. (9) positive in the involved computational solution process by it-
erations, the equation is rewritten equivalently, as follows:

β⋅log
�

ts
ts�1

�
⋅log

 �
tsþ1⋅p'uðtsþ1Þ
ts⋅p'uðtsÞ

�2
!

� β⋅log
�
tsþ1

ts

�
⋅log

 �
ts⋅p'uðtsÞ

ts�1⋅p'uðts�1Þ
�2
!

¼ 0

(10)

It should be noted that in order to avoid the emergence of zero values
of p'u at the initial and final knots of B-splines, the range of index s of knot
ts is set from 2 to KP-2; KP is the total number of the knots.

In the well testing, it is known that the initial period is the wellbore
storage period, and the unit slope of pressure derivative of the type curve
commonly exists at the log-log coordinates. Therefore, the first vector can
be expressed as (1, 1, 0). Then when s¼ 2, the first nonlinear regulari-
zation equation can be simplified as follows:

β⋅log

 �
t3⋅p'uðt3Þ
t2⋅p'uðt2Þ

�2
!

� β⋅log

 �
t3
t2

�2
!

¼ 0 (11)
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2.3. A combined nonlinear system as a nonlinear least-squares problem

As the nonlinear regularization is appended with the weight β, the
basic linear system generated i. e. Eq. (6) from the measured pressure and
rate data should be further expressed equivalently, as follows:

ð1� βÞ⋅XC ¼ ð1� βÞ⋅ΔP (12)

where 0�β< 1.
As a result, Eqs. (10–12) together form an overdetermined nonlinear

system i. e. a nonlinear least-squares problem for the stability-improved
deconvolution algorithm based on B-splines. The aim is to obtain C by
solving the nonlinear least-squares problem.

For numerically solving the nonlinear problem, the common Gauss-
Newton method may not converge if the guessed iteration starting
point is far from the global minimum. Therefore, in order to overcome
the problem, as Madsen et al. suggested (Madsen et al., 2004), two
advanced methods including the Levenberg-Marquardt method and the
Powell's Dog Leg method are selected for the solution testing. They are
both a combination of the Gauss-Newton method and the steepest
descent method: When the approximated solution is far from the global
minimum, the steepest descent step is taken; and when the approximated
solution is very close to the global minimum, Gauss-Newton step is taken
(Shterenlikht and Alexander, 2012). In particular, for the Powell's Dog
Leg method, the radius of a trust region is used for explicitly controlling
the step directions. The two methods have much higher stability than the
Gauss-Newton method (Madsen et al., 2004).

2.4. A constraint for tuning deconvolution parameters

When C is calculated, the reconstructed pressure response p(t) by B-
splines i. e. the back-calculated pressure response p(t) from Eq. (5) can be
compared with the measured wellbore pressure data. It can be used as a
direct constraint condition (Liu et al., 2017) for tuning the value
assignment of the base b of B-splines and the smooth factor β during the
nonlinear regularization process. The detailed statement on how to
perform the regularization will be illustrated in the following case study.

2.5. Application conditions for the deconvolution algorithm

The stability-improved deconvolution algorithm is only applicable for
a linear system, due to the reason that the Duhamel principle i. e. Eq. (1)
only holds in the linear system. The deconvolution algorithm should be
applied to only the consistent measured wellbore pressure and produc-
tion rate data with high quality. In practice, the nonlinearity (inconsis-
tency) may come from some reservoir behaviors such as the variable skin
factor, the variable wellbore storage coefficient, the multiphase flow, the
changing reservoir permeability, the commingled production from
different layers and the inter-well interference effect; the algorithm can't
be used for the deconvolution of the data at any well test periods after the
nonlinear phenomena occur (Onur et al., 2008; Onur and Kuchuk, 2012).
However, as discussed by Onur and Kuchuk (2012), if the nonlinearity is
weak, the deconvolution may be still applicable.
Fig. 2. The schematics of three successive pressure deriva-
tive points at log-log coordinates.



Table 2
The production rate data.

Production duration (Day) Production rate (STB/D)

1 1.0
4 2.0
5 1.5
10 2.5
30 4.5
50 2.0
100 3.0
200 2.0
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It has been well known that the deconvolution algorithm is very
sensitive to the small error in the initial formation pressure (Levitan et al.,
2006; Onur et al., 2008; Onur and Kuchuk, 2012; Ahmadi et al., 2017). As
discussed by Levitan (2006), the initial formation pressure should be
known in the deconvolution. The effect of the error in the initial for-
mation pressure on the deconvolution results will be analyzed in the
Section 3.3. In addition, the production rate data should be accurate
sufficiently in order to obtain accurate results by the deconvolution al-
gorithm (Onur and Kuchuk, 2012).

3. Algorithm testing through simulated case study

3.1. Accuracy verification of the stability-improved deconvolution
algorithm

The simulated case is a problem of radial single-phase Darcy's flow
into a vertical production wellbore in an infinite dual-porosity reservoir;
the reservoir is homogeneous, isotropic and isothermal; the horizontal
flow does not have any gravity effect. The Newtonian fluid and rocks are
both slightly compressible. The values of the reservoir parameters are
shown in Table 1. The production history for the production well in-
cludes eight production durations, and the specific production rate data
is listed in Table 2.

The simulated wellbore pressure data corresponding to the variable
production rate data through the KAPPA software is shown in Fig. 3. The
total number of the wellbore pressure data is 426. The initial reservoir
pressure is 30.0MPa. The wellbore pressure response corresponding to
the unit production rate 1.0 STB/D for the whole production duration i. e.
400 days is also obtained through the simulation by the KAPPA software,
which is shown in Fig. 4.

The stability-improved deconvolution algorithm is performed to
transfer the wellbore pressure data corresponding to the variable pro-
duction rate in Fig. 3 into the one corresponding to the unit production
rate 1.0 STB/D. The Levenberg-Marquardt method and the Powell's Dog
Leg method are both tested for solving the resulted nonlinear least-
squares problem for the simulated case in Fig. 3; it is worth to mention
that the search for fci; i ¼ 1;…;wg by iterations by the twomethods both
starts from  fci ¼ c0; i ¼ 1;…;wg, where c0 is set as a nonzero constant.
Here, the value of the base b is set as 2.6, and the value of the smooth
factor β is set as 0.015. The aforementioned simulated wellbore pressure
corresponding to the unit production rate in Fig. 4 can be used to verify
the accuracy of the deconvolution results.

Fig. 5 and Fig. 6 show the type-curve comparison of the deconvolu-
tion results regarding the wellbore pressure drop and its derivative with
the simulation results; they correspond to the Powell's Dog Leg method
and the Levenberg-Marquardt method, respectively. From Fig. 7, it is
shown that the reconstructed wellbore pressure responses by the
deconvolution algorithm corresponding to the two solution methods
both have good agreement with the simulated wellbore pressure data
corresponding to the variable production rate data, which indicates that
the constraint for tuning the deconvolution parameters can be satisfied.
Table 1
Values of reservoir parameters.

Reservoir parameters Values

Wellbore storage coefficient (bbl/psi) 0.000014
Skin factor 5
Permeability (md) 1
Reservoir thickness (ft) 13.5
Initial pressure (MPa) 30
Porosity 0.1
Well radius (ft) 0.3
Viscosity (cp) 1
Formation volume factor (B/STB) 1
Total compressibility (psi�1) 3.0� 10�6

Elastic storage ratio of fracture 0.1
Inter-porosity flow coefficient 1.0� 10�6
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However, from Fig. 5, it can be seen that the deconvolved pressure
derivative data corresponding to the Levenberg-Marquardt method
largely deviate from the one corresponding to the simulation results (Liu
et al., 2017), and data divergence also exists especially in the middle of
the type curves. Whereas, the deconvolved data of the pressure and the
pressure derivative corresponding to the Powell's Dog Leg method have
very good agreement with the ones corresponding to the simulation re-
sults; and the solution by the method exhibits great convergence ability
and numerical stability. Here, the square roots of the sum of the squared
residuals at convergence for the overdetermined nonlinear system i.e.
Eqs. (10–12) in the Section 2.3, which have been solved by the Powell's
Dog Leg method and the Levenberg-Marquardt method respectively, are
compared. They are shown in Fig. 8. From Fig. 8, it can be seen that the
square roots of the sum of the squared residuals for solving the nonlinear
least square problem by the Powell's Dog Leg method and the
Levenberg-Marquardt method both decrease with the increase of the
number of iterations. However, the square root corresponding to the
Powell's Dog Leg method decreases more sharply, and can arrive at a
stable smaller value with less iteration times. And the
Levenberg-Marquardt method could not decrease the overall error as
much as the Powell's Dog Leg method.

Therefore, it can be concluded that the deconvolved pressure deriv-
ative for the type curves is very sensitive to the solution methods for the
formulated nonlinear least-squares problem. Here, the Powell's Dog Leg
method is selected for solving the nonlinear least-squares problem for the
stability-improved deconvolution algorithm based on B-splines due to its
great performance.
3.2. Analysis of the effects of the base b and the smooth factor β

Different value assignment of the B-spline base b and the smooth
factor β may lead to different type curves of the deconvolution results
regarding the wellbore pressure drop and its derivative during the
nonlinear regularization process. Based on the above simulated case, the
effects of the base b and the smooth factor β on the type curves of the
deconvolution results are analyzed, respectively. It has been known in
the Section 3.1 that the accurate deconvolution results are obtainedwhen
the value of b is set as 2.6, and the value of β is set as 0.015.

3.2.1. The effect of the B-spline base b
In order to make sure 2-6 B-spline knots per log cycle, as suggested by

Ilk et al. the value of the base b should be on the order of 1.5–3.2 (Liu
et al., 2017). Here, the value of the base b is set as 1.5, 1.8, 2.1, 2.4, 2.6,
2.9 and 3.2, respectively. The corresponding type curves of the decon-
volution results regarding the wellbore pressure drop and its derivative
and the corresponding satisfaction degrees for the constraint conditions
are shown in Fig. 9 and Fig. 10, respectively.

From Fig. 9, it can be seen that the values of the base b at the range of
1.5–3.2 have little effect on the type curves of the deconvolution results;
just when b is set as 1.5, the curves with red points have little deviation at
the initial wellbore storage period. Moreover, from Fig. 10, it can also be
seen that the constraint conditions are all satisfied very well. In conclu-
sion, the B-spline base b has little effect on the corresponding (good)
satisfaction degree of the constraint conditions i.e. the overall error for



Fig. 3. Wellbore pressure response corresponding to the
variable production rate.

Fig. 4. Wellbore pressure response corresponding to the
constant unit production rate.
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the solution of the involved nonlinear least square problem. In addition
to tuning the value of the smooth factor β, tuning the value of the B-spline
base b is another available choice without considering the constraint
problems to further improve the stability of the deconvolution algorithm.

3.2.2. The effect of the smooth factor β
The smooth factor β represents the magnitude of the nonlinear reg-

ularization. Its range is from 0 to 1.0. Here, the value of the smooth factor
β is set as 0, 0.005, 0.015, 0.03, 0.06, 0.08, 0.1 and 0.2, respectively. The
corresponding type curves of the deconvolution results regarding the
wellbore pressure drop and its derivative and the corresponding satis-
faction degrees for the constraint conditions are shown in Fig. 11 and
Fig. 12, respectively.

From Fig. 11, it can be seen that when the value of the smooth factor β
is small, which represents weak nonlinear regularization, data diver-
gence may occur such as the red data points at the initial period when
β¼ 0; as the smooth factor β increases, data divergence disappears as a
405
result of the nonlinear regularization; and the constraint conditions are
all satisfied well when the value of the smooth factor β is set not more
than 0.015. It has to be pointed out that due to the reason that small
numerical errors may exist in the simulated results, performing the
nonlinear regularization is still necessary.

However, from Fig. 11 it can also be seen that as the value of the
smooth factor β is up to 0.03, the deconvolved pressure derivative data
obviously derivate from the simulated data corresponding to the unit
production rate, and the “concave” at the pressure derivative type curves,
which directly reflects the type-curve characteristics of the inter-porosity
flow between matrix and fractures in the dual-porosity reservoirs, grad-
ually disappears; in one word, type curves of the deconvolution results
are distorted. Simultaneously, it can be seen from Fig. 12 that when the
value of the smooth factor β is up to 0.03, the reconstructed wellbore
pressure response obviously deviates from the simulated wellbore pres-
sure data, and the constraint condition is not satisfied sufficiently; and
the larger the value of the smooth factor β, the bigger the deviation.



Fig. 5. Type-curve comparison of the deconvolution results by the Levenberg-Marquardt method with the simulation results.

Fig. 6. Type-curve comparison of the
deconvolution results by the Powell's Dog
Leg method with the simulation results.

Fig. 7. Comparison of the reconstructed wellbore pressure
response with the simulated wellbore pressure data.
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Fig. 8. Comparison of the square roots of the sum of the
squared residuals for the overdetermined nonlinear system.

Fig. 9. The effect of the B-spline base b on the type curves of the deconvolution results.
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Therefore, it can be concluded that in order to guarantee the correct type
curves of the deconvolution results, the constraint conditions should be
satisfied as well as possible. In order to make a tradeoff between the
smoothness of the pressure derivative type curves and the accuracy of the
type-curve characteristics, the optimum value of the smooth factor β
should be set as the largest meanwhile the constraint conditions are
satisfied.

3.3. Analysis of the effect of the error in the initial formation pressure

Based on the simulated case in the Section 3.1, the effect of the error
in the initial formation pressure on the type curves of the deconvolution
results is analyzed. From Table 1, it is known that the true initial for-
mation pressure is 30MPa. Here, the error of the input initial pressure for
the deconvolution is set as 1 psi lower than the true initial pressure, 5 psi
lower than the true initial pressure, 1 psi higher than the true initial
pressure and 5 psi higher than the true initial pressure, respectively
(Ahmadi et al., 2017). The corresponding type curves of the deconvo-
lution results regarding the wellbore pressure drop and its derivative and
407
the corresponding satisfaction degrees for the constraint conditions are
shown in Fig. 13 and Fig. 14, respectively.

From Figs. 13 and 14, it can be seen that the error of the initial for-
mation pressure mainly affects the late-time wellbore pressure deriva-
tive, and some distortion is produced, although the constraint conditions
are all satisfied basically. The observations are similar to the ones stated
by Onur and Kuchuk (2012). This distortion may lead to incorrect
reservoir model identification, particularly the misinterpretation of the
reservoir boundaries (Onur and Kuchuk, 2012). Therefore, the initial
formation pressure should be estimated accurately for performing the
deconvolution algorithm. When the knowledge of initial formation
pressure is not accurate enough, fortunately a simple technique has been
presented by Levitan et al. (2006) for determining the appropriate value
of the initial formation pressure from the well test data; it is based on a
trial-and-error procedure by using the deconvolution analysis if the well
test data includes several pressure build up periods. This technique is
commonly applicable for the deconvolution algorithm presented in this
work. Please refer to the reference (Levitan et al., 2006) for the details.



Fig. 10. Comparison of the reconstructed wellbore pressure
response corresponding to different values of the B-spline
base b with the simulated wellbore pressure data.

Fig. 11. The effect of the smooth factor β on the type curves of the deconvolution results.
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3.4. Statement on how to perform the nonlinear regularization

From the aforementioned analysis, it has been known that determi-
nation of the values of the base b and the smooth factor β is very
important during the nonlinear regularization process, and different
value assignment may lead to different type curves of the deconvolution
results regarding the wellbore pressure derivative; it can introduce the
uncertainty problem for the subsequent well testing interpretation by the
type curve analysis method (Spivey and Lee, 2013). Therefore, it is very
significant to state how to perform the nonlinear regularization in order
to guarantee the correct type curves of the deconvolution results
regarding the wellbore pressure derivative. According to the analysis
results on the effects of the base b and the smooth factor β, and also in
combination with the actual engineering situations, some principles are
presented for the nonlinear regularization process, as follows:

a The value of the base b should be set on the order of 1.5–3.2. In
addition to tuning the value of the smooth factor β, tuning the value of
the B-spline base b is another available choice to further improve the
408
stability of the deconvolution algorithm without considering the
constraint problems.

b The range of the value of the smooth factor β is from 0 to 1.0. The
optimum value of the smooth factor β should be set as the largest
meanwhile the constraint conditions are satisfied (see Fig. 7 as an
example).

c As Liu et al. have suggested in the linear regularization (Liu et al.,
2017), it is very necessary to make full use of the accurate knowledge
of initial pressure, the knowledge from the sources of reservoir ge-
ology and reservoir characterization and other engineering experi-
ences; please refer to the reference (Liu et al., 2017) for the details.
Here, this suggestion is also applicable for the nonlinear regulariza-
tion process; this knowledge can also support useful information for
the optimal selection of the values of the base b and the smooth factor
β during the nonlinear regularization process. For example, if it is
known from the knowledge of reservoir geology that the reservoir is
dual-porosity, the type curves of the deconvolution results regarding
the wellbore pressure derivative should have the “concave” feature,
which represents the inter-porosity flow behavior between matrix



Fig. 12. Comparison of the reconstructed wellbore pressure
response corresponding to different values of the smooth
factor β with the simulated wellbore pressure data.

Fig. 13. The effect of the error in the initial formation pressure on the type curves of the deconvolution results.

W. Liu et al. Journal of Petroleum Science and Engineering 164 (2018) 400–416
and fractures in the dual-porosity reservoirs (Liu et al., 2017); and if a
pressure build up testing is also conducted at a shut-in period in
advance, its accurate type curve regarding the wellbore pressure de-
rivative can provide a direct guidance for the recognition of the type
curve of the deconvolution results regarding the wellbore pressure
derivative that will be deconvolved at the whole test-time range; after
all, the type curves from both the data of the pressure build up testing
and the data of the deconvolved wellbore pressure derivative should
belong to the same type for the reservoir model identification, but
with different time range (Liu et al., 2017).

3.5. Validation of the stability improvement by the nonlinear regularization

3.5.1. The first case study
In order to test the stability improvement by appending the nonlinear

regularization, random data errors are added into both the wellbore
pressure data and the production rate data of the simulated case (see
Fig. 3) in the Section 3.1. 2% random relative error is added into the
production rate data, and the data is listed in Table 3; 5% random relative
error is added into the wellbore pressure drop corresponding to the
409
variable production rate data; the wellbore pressure data and the pro-
duction rate data with added data errors are shown in Fig. 15.

Then the deconvolution of the data in Fig. 15 is done by the stability-
improved deconvolution algorithm based on B-splines; due to the exis-
tence of data errors, the nonlinear regularization has to be performed: the
value of b is set as 3.2, and the value of β is set as 0.014. The type curves
of the deconvolution results by this algorithm are shown in Fig. 16.
Fig. 17 indicates that the corresponding constraint conditions are satis-
fied very well for the nonlinear regularization. In addition, in order to
compare the stability of the aforementioned different deconvolution al-
gorithms, the deconvolution of the data in Fig. 15 is also done by the
deconvolution algorithm based on B-splines with the linear regulariza-
tion (Liu et al., 2017) and by von Schroeter et al.’s deconvolution algo-
rithm (von Schroeter et al., 2002; von Schroeter et al., 2004),
respectively; the type curves of their deconvolution results are also
shown in Fig. 16. The von Schroeter et al.’s deconvolution algorithm is
performed through the KAPPA software, and the default values for the
relevant parameters are used; it is worth to mention that the same
constraint as shown in Fig. 17 for the stability-improved algorithm by the
nonlinear regularization is also satisfied for von Schroeter et al.’s



Fig. 14. Comparison of the reconstructed wellbore pressure
response corresponding to different errors in the initial for-
mation pressure with the simulated wellbore pressure data.

Table 3
The production rate data with random errors.

Production duration (Day) Production rate (STB/D)

1 1.0087
4 2.0340
5 1.5153
10 2.5004
30 4.5507
50 2.0375
100 3.0227
200 2.0189
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deconvolution algorithm, which can be shown in the KAPPA software.
From Fig. 16, it can be seen that the type curves corresponding to

stability-improved deconvolution algorithm based on B-splines by the
nonlinear regularization have good agreement with the type curves of the
410
simulation results corresponding to the unit production rate for the
whole production duration, and the effect of data errors is mitigated
considerably. However, the type curves regarding the pressure derivative
corresponding to the deconvolution algorithm based on B-splines with
the linear regularization (Liu et al., 2017) and the von Schroeter et al.’s
deconvolution algorithm have bad agreement with the type curves of the
simulation results. Especially, the type curve regarding the pressure de-
rivative corresponding to the von Schroeter et al.’s deconvolution algo-
rithm has very large deviations, and the shape of the type curve is almost
changed; the deconvolution algorithm shows less tolerance to the data
errors in the case.

3.5.2. The second case study
Here, the stability improvement of the algorithm based on B-splines

by appending the nonlinear regularization is also tested through another
Fig. 15. The wellbore pressure data and the production rate
data with random errors.



Fig. 16. Type-curve comparison of the deconvolution results by three different algorithms with the simulation results.

Fig. 17. Comparison of the reconstructed wellbore pressure
response with the simulated wellbore pressure data.
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simulated case of a vertical well in an infinite dual-porosity reservoir in
the reference (Liu et al., 2017); in the case, just 5% random relative error
is added in the wellbore pressure drop (Liu et al., 2017); for the nonlinear
regularization, the value of b is set as 1.85, and the value of β is set as
0.03; and the constraint conditions are satisfied. As the comparison, the
deconvolution is also done by the deconvolution algorithm based on
B-splines with the linear regularization and by von Schroeter et al.’s
deconvolution algorithm, respectively; the type curves of their decon-
volution results are also shown in Fig. 18.

From Fig. 18, it can be clearly seen that the type curves corresponding
to the deconvolution algorithm based on B-splines by the nonlinear
regularization have the best agreement with the type curves of the
simulation results corresponding to the unit production rate for the
whole production duration (Liu et al., 2017). However, the type curve
regarding the pressure derivative corresponding to the deconvolution
algorithm based on B-splines with the linear regularization shows large
deviation at the “concave” that can reflect the inter-porosity flow in the
dual-porosity reservoirs; and the type curve corresponding to von
Schroeter et al.’s deconvolution algorithm also shows obvious deviation
at the radial flow period (Spivey and Lee, 2013). Table 4 and Table 5 also
show that the comparison of the reservoir parameters obtained from the
pressure transient analysis for the three different deconvolution results
411
by three different algorithms for the two case studies in the Section 3.5,
as shown in Figs. 16 and 18, with the simulation input data, respectively.
From Tables 4 and 5, it can be seen that the reservoir parameters ob-
tained from the pressure transient analysis for the deconvolution results
corresponding to the algorithm based on B-splines by appending the
nonlinear regularization are the closest to the simulation input data, and
then the effect of data errors is largely mitigated; however, some reser-
voir parameters obtained from the pressure transient analysis corre-
sponding to the algorithm based on B-splines with the linear
regularization and von Schroeter et al.’s algorithm have relatively big
deviation from the simulation input data, and the effect of data errors is
not well mitigated.

Through the study on the two simulated cases with random data er-
rors in the wellbore pressure and production rate data, it can be
concluded that when the nonlinear regularization is appended instead of
the linear regularization, the stability can be largely improved for miti-
gating the effect of data errors. What's more, under the same nonlinear
regularization method, the representation by B-spline functions in the
stability-improved algorithm can exhibit much higher numerical stability
than the representation by piecewise linear approximations in von
Schroeter et al.’s algorithm (von Schroeter et al., 2002; von Schroeter
et al., 2004); it can be attributed to the superior properties of the



Fig. 18. Type-curve comparison of the deconvolution results
by three different algorithms with the simulation results.

Table 4
Comparison of the reservoir parameters obtained from the pressure transient analysis for the three different deconvolution results with the simulation input data for the first case study.

Reservoir parameters Values

Simulation input data Pressure transient analysis results for the three deconvolution results

Algorithms based on B-splines von Schroeter et al.’s algorithm

nonlinear regularization linear regularization

Initial pressure (MPa) 30 30 30 30
Porosity 0.1 0.1 0.1 0.1
Well radius (ft) 0.3 0.3 0.3 0.3
Viscosity (cp) 1 1 1 1
Formation volume factor (B/STB) 1 1 1 1
Total compressibility (psi�1) 3.0� 10�6 3.0� 10�6 3.0� 10�6 3.0� 10�6

Elastic storage ratio of fracture 0.1 0.094 0.124 0.11
Inter-porosity flow coefficient 1.0� 10�6 9.93� 10�7 1.02� 10�6 9.03� 10�7

Wellbore storage coefficient (bbl/psi) 1.4� 10�5 1.38� 10�5 1.37� 10�5 1.31� 10�5

Skin factor 5 4.9 5.64 5.21
Multiply Permeability by Reservoir thickness (md⋅ft) 13.5 13.5 14 13.4

Table 5
Comparison of the reservoir parameters obtained from the pressure transient analysis for the three different deconvolution results with the simulation input data for the second case study.

Reservoir parameters Values

Simulation input data Pressure transient analysis results for the three deconvolution results

Algorithms based on B-splines von Schroeter et al.’s algorithm

nonlinear regularization linear regularization

Initial pressure (MPa) 50 50 50 50
Porosity 0.1 0.1 0.1 0.1
Well radius (ft) 0.3 0.3 0.3 0.3
Viscosity (cp) 1.0 cp 1.0 1.0 1.0
Formation volume factor (B/STB) 1.0 1.0 1.0 1.0
Total compressibility (psi�1) 3.0� 10�6 3.0� 10�6 3.0� 10�6 3.0� 10�6

Elastic storage ratio of fracture 0.1 0.1 0.051 0.065
Inter-porosity flow coefficient 1.0� 10�6 1.0� 10�6 1.25� 10�6 9.17� 10�7

Wellbore storage coefficient (bbl/psi) 1.0� 10�3 1.0� 10�3 9.44� 10�4 9.44� 10�4

Skin factor 5 5 2.21 3.6
Multiply Permeability by Reservoir thickness (md⋅ft) 10 9.55 7.47 8.67
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representation by B-spline functions in the numerical stability of com-
putations and the built-in smoothness (Jauch et al., 2017).

4. Application to field example

The actual pressure-rate data of the well SapGS02 (Liu et al., 2017)
from the example file of KAPPA software is taken for the field example.
412
There are thirteen piecewise production periods with different constant
production rates; the last one is the pressure build up period. The
measured wellbore pressure data and the measured production rate data
for the well SapGS02 are shown in Fig. 19. It is assumed that the basic
conditions (Spivey and Lee, 2013) for the application of deconvolution
are satisfied for the actual case.

Here, the deconvolution of the actual data is done by the stability-



Fig. 19. The measured wellbore pressure data and the
measured production rate data for the well SapGS02.
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improved deconvolution algorithm based on B-splines by appending the
nonlinear regularization. The accurate type curve obtained from the
pressure build up period, as shown in the Fig. 13 in the reference (Liu
et al., 2017), can provide useful information on the reservoir model
identification for identifying the type curves of the deconvolved results
during the nonlinear regularization process. Eventually, the value of b is
set as 1.7, and the value of β is set as 0.016; the type curves of the
deconvolution results by this algorithm are shown in Fig. 20. Fig. 21
indicates that the corresponding constraint conditions are satisfied very
well for the nonlinear regularization.

In the reference (Liu et al., 2017), the deconvolution of the actual
pressure-rate data has also been done by the deconvolution algorithm
based on B-splines with the linear regularization and by von Schroeter
et al.’s deconvolution algorithm (by the KAPPA software), respectively;
and the type curves of their deconvolution results are also shown in
Fig. 20. Then these type curves corresponding to the three different al-
gorithms can be compared in Fig. 20.

From Fig. 20, it can be seen that the type curves, which correspond to
the deconvolution algorithm based on B-splines with the linear regula-
rization, oscillates seriously at the initial wellbore storage period; in
contrast, the ones, which correspond to the stability-improved
Fig. 20. Type-curve comparison of the deconvo
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deconvolution algorithm based on B-splines by appending the nonlinear
regularization, are more stable at this period. The type curves, which
correspond to von Schroeter et al.’s deconvolution algorithm, are very
smooth; however, due to the strong smoothing treatment in von Schro-
eter et al.’s deconvolution algorithm, some type-curve characteristics for
the reservoir model identification become unnatural, and even distorted,
such as the over-smoothed unnatural type curve part at the initial well-
bore storage period, the “concave” feature weakening of the type curve
regarding the pressure derivative and the turning up of the type curve
regarding the pressure derivative at its back end (see Fig. 20). Some of
them are just accordant with the analysis results on the effect of the
smooth factor β that represents the magnitude of the nonlinear regula-
rization, as discussed at the Section 3.2.

In fact, almost the same smooth degree but distorted type curves with
the ones obtained by von Schroeter et al.’s deconvolution algorithm in
Fig. 20 can be obtained by the stability-improved deconvolution algo-
rithm based on B-splines through an undue nonlinear regularization (see
Fig. 22). For the undue nonlinear regularization, the value of b is set as
2.6, and the value of β is set as 0.9 (a too large value); however, it can be
seen from Fig. 23 that the corresponding reconstructed wellbore pressure
response has largely deviated from the measured wellbore pressure data,
lution results by three different algorithms.



Fig. 21. Comparison of the reconstructed wellbore pressure
response with the measured wellbore pressure data.

Fig. 22. Type-curve comparison of the two deconvolution
results by von Schroeter et al.’s deconvolution algorithm and
by the deconvolution algorithm based on B-splines through
the undue nonlinear regularization.
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and then the constraint conditions for the stability-improved deconvo-
lution algorithm are not satisfied at all; but as for obtaining nearly the
same type curves of the deconvolution results (see Fig. 22) by von
Schroeter et al.’s deconvolution algorithm, the constraint conditions are
still satisfied, which can be shown in the KAPPA software. Therefore,
type curve over-smooth problems introduced by the nonlinear regulari-
zation may exist in the actual application of von Schroeter et al.’s algo-
rithm. In order to avoid such problems by the undue nonlinear
regularization, the corresponding constraint conditions should be satis-
fied as well as possible for the presented stability-improved deconvolu-
tion algorithm.

5. Computational time performance

The comparison of the computation time corresponding to the three
different deconvolution algorithms, including the algorithm based on B-
splines with the linear regularization, the algorithm based on B-splines
with the nonlinear regularization and von Schroeter et al.’s algorithm, for
three different simulated cases by the KAPPA software is shown in
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Table 6. It is necessary to point out that an ordinary computer is used for
the deconvolution computation process for every algorithm, which is
equipped with double central processing units of 2.10 GHz core fre-
quency and random access memory of 2.00 GB size.

From Table 6, it can be seen that as the number of the pressure data or
the number of the rate data increases, the computation time for every
deconvolution algorithm increases. Furthermore, the algorithm based on
B-splines with the linear regularization has the fastest computation speed
mainly due to its analytical solutionmethod for calculating the sensitivity
matrix and no numerical iteration workload for the resulted linear least-
squares problems (Liu et al., 2017). Although the computation speed
decreases due to the numerical iteration workload for the resulted
nonlinear least-squares problems when the nonlinear regularization is
appended into the stability-improved deconvolution algorithm based on
B-splines, its computation speed still stay in the same order with the one
of the original algorithm mainly due to the fast analytical solution
method for calculating the sensitivity matrix as z-function transformation
is not taken. However, the computation time corresponding to the von
Schroeter et al.’s algorithm is nearly twenty times more than the one



Fig. 23. Comparison of the reconstructed wellbore pressure
response with the measured wellbore pressure data.

Table 6
Comparison of the computational time corresponding to three different deconvolution
algorithms.

Case
name

Number
of
pressure
data

Number
of rate
data

Computational time, seconds

Algorithm
based on B-
splines with
the linear
regularization

Algorithm
based on B-
splines with
the nonlinear
regularization

von
Schroeter
et al.’s
algorithm

Case
A

426 8 0.062 0.187 5.80

Case
B

997 8 0.14 0.421 8.46

Case
C

1957 16 0.358 0.873 14.78

W. Liu et al. Journal of Petroleum Science and Engineering 164 (2018) 400–416
corresponding to the stability-improved algorithm based on B-splines
with the nonlinear regularization, which can be attributed to the more
undetermined coefficients and the computational complexity resulted
from the z-function transformation in the formulation of von Schroeter
et al.’s algorithm (von Schroeter et al., 2002; von Schroeter et al., 2004).
It is worth to mention that as the quantity of data largely increases, the
stability-improved algorithm based on B-splines with the nonlinear reg-
ularization can exhibit the big advantage in the fast computational speed
over von Schroeter et al.’s algorithm.

6. Conclusions

1. The previous deconvolution algorithms based on B-splines with the
linear regularization have weak stability when data errors exist. In
order to improve their stability, a nonlinear regularization method by
minimizing the curvature of the deconvolved pressure derivative
response, as used in von Schroeter et al.’s algorithm, is appended
instead of the linear regularization; and the corresponding nonlinear
regularization equations are appropriately deduced. The reformu-
lated nonlinear least-squares problem can be solved stably by the
advanced Powell's Dog Leg method.

2. In comparison with von Schroeter et al.’s algorithm, the trans-
formation of the convolution equation i. e. Eq. (1) by the nonlinear z
function is avoided in the stability-improved algorithm based on B-
415
splines with the nonlinear regularization; the whole deconvolution
process can be simplified; and the sensitivity matrix of the basic linear
system from the measured pressure and rate data can be solved
directly by the piecewise analytical integration method, which can
largely improve the deconvolution computation speed. Moreover, it
has been demonstrated through all the case study in the paper that the
deconvolved dpu/dln(t) by the stability-improved algorithm can still
keep positive for the plotting of type curves although the z-function
transformation is avoided.

3. As a whole, the presented stability-improved algorithm in the paper
can inherit good “genes” from their “parents” i. e. the improved
version of Ilk et al.’s algorithm based on B-splines with the linear
regularization and von Schroeter et al.’s algorithm. These good
“genes” include the representation of p'u by B-splines, no complicated
z-function transformation of the convolution equation, the fast
analytical solution method for calculating the elements of the sensi-
tivity matrix and the nonlinear regularization method.

4. A constraint condition for tuning the values of the B-spline base b and
the smooth factor β is presented for restricting the nonlinear regula-
rization process. The effects of the base b and the smooth factor β on
the type curves of the deconvolution results are analyzed. And the
effect of the error in the initial formation pressure on the type curves
of the deconvolution results is also analyzed. Then a statement on
how to perform the nonlinear regularization is presented specifically.

5. Through the simulated case study and the actual case study, it is
concluded that the stability-improved algorithm based on B-splines
by the nonlinear regularization exhibits much better stability when
data errors exist than both the original algorithm based on B-splines
with the linear regularization and von Schroeter et al.’s algorithm; the
over smooth problem of the type curves regarding the deconvolved
pressure derivative by the undue nonlinear regularization may exist
in the actual application of von Schroeter et al.’s algorithm. In order
to avoid the over smooth problem by the undue nonlinear regulari-
zation, the corresponding constraint conditions should be satisfied as
well as possible for the presented stability-improved deconvolution
algorithm.

6. Through the simulated case test, it is also concluded that the stability-
improved algorithm based on B-splines by the nonlinear regulariza-
tion has the same high level computation speed with the original
algorithm based on B-splines with the linear regularization; and the
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computation speed of the stability-improved algorithm based on B-
splines is nearly twenty times more than that of von Schroeter et al.’s
algorithm.
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