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1 | INTRODUCTION

| Jia Lin> | Xiaobing Lu™* | Lele Liu* | Changling Liu* | Mingyao Li° |

Summary

Gas hydrate-bearing sediments (GHBSs) have been considered as a potential
energy resource. In this paper, the mechanical properties of GHBS are firstly
investigated by the integrated test apparatus for synthesis of GHBS using silty
sand as skeleton. Triaxial tests indicate an obvious transition of stress-strain
relationship from strain hardening under low hydrate saturation and strain
softening under high hydrate saturation. The hypoplastic models coupled with
Drucker-Prager criterion and the Mohr-Coulomb criterion are proposed to
analyze the stress-strain relationship of GHBS with considering the effective
porosity because of the hydrate filling in the pores of GHBS. The strain
hardening and softening behaviors are well predicted with less material param-
eters compared with the classical models. Compared with the test results, the
proposed hypoplastic models are verified to be capable of capturing the salient
features of the mechanical behaviors of GHBS under the conditions of little
temperature change and no hydrate dissociation.

KEYWORDS
effective porosity, gas hydrate-bearing sediment, hypo-plastic model, strain hardening, strain

softening

As the most common naturally occurring gas hydrate, gas hydrate-bearing sediments (GHBSs) have been considered as a
potential energy resource, and the related exploration and exploitation technologies have been extensively investigated in
many countries. Gas hydrate-bearing sediment, a crystalline solid composed of natural gas and hydrogen-bonded water
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molecules, is typically formed under the relatively low temperature and high pressure conditions and naturally exists in the
permafrost regions and continental offshore worldwide.! However, the stability and behaviors of GHBS are strongly
dependent on thermohydromechanical conditions or human activities during the extraction, and the dissociation of hydrates
may cause massive seafloor instabilities and engineering geological problems, such as submarine landslide, borehole
instability, and foundation failures. The proper understanding of the behavior of GHBS related to hydrate formation and dis-
sociation is significant to the drilling and production applications of the large amount of the potential energy resource.**

The laboratory studies have been comprehensively conducted using reconstituted samples and focus on triaxial
compression tests to investigate the mechanical properties of GHBS. The behavior of GHBS is complex in natural and
the effects of hydrate saturation, temperature, and effective confining pressure on the modulus and the shear strength
have been studied mainly by using reconstituted hydrate-bearing sands.">” The experimental data show that with the
increase of hydrate saturation and effective confining pressure, the elastic modulus and shear strength are generally
increased. Strain softening occurs at high hydrate saturation (typically about 25% to 45%) while plastic and strain
hardening is observed at low hydrate saturation."® The temperature below freezing point leads to the formation of frozen
GHBS (composed of ice, hydrate, and silt sand), and the mechanical behavior strengthens with the increase of the total
saturation of hydrate and ice.” The tetrahydrofuran hydrate-bearing silt clay shows typical ductile behavior, and the
shear strength increases linearly with the increase of hydrate saturation and confining pressure.'”

Several models have been proposed to formulate the stress-strain relationship of GHBS."'* The elastic modulus of
gas hydrate-bearing coarse sand is formulated by series and parallel model,"* and the shear strength of tetrahydrofuran
hydrate-bearing clay is analyzed on the basis of the Mohr-Coulomb and Drucker-Prager criterion.'® The Duncan-Chang
model is applied to simulate the nonlinear elastic behavior of GHBS.'*'® The distinct element model is adopted to
describe the cohesion and friction between grains and hydrate in GHBS."” The modified Cam-Clay model is used to take
into account the shearing and volumetric dilation of hydrate-bearing sands. The temperature and hydrate saturation can
be introduced into these models; however, the number of the material parameters increase, and the strain softening and
dilatant behavior of GHBS are still difficult to take into account at the same time.

In most of the abovementioned constitutive models, it is assumed that the deformation of GHBS is infinitesimal, and
the strain can be decomposed into elastic and plastic parts and modeled according to the theory of elastoplasticity. For
the purpose of simple and practical in the engineering applications, a hypoplastic model is proposed to describe the 3-
dimensional nonlinear stress-strain behaviors of GHBS. Taking advantage of the hypoplastic model, it is not necessary
to consider the yield surface, plastic potential, flow and hardening rules, and decomposition of deformation. The
hypoplastic model is based on the nonlinear tensor functions and is capable of capturing the salient features of granular
materials, in particular for the problems involving extremely low stress or extremely high stress levels,'®*! while the
hypoplastic model does not take into account the coupling between mechanics, fluid, and heat.

Because the mechanical behavior of unsaturated GHBS is investigated under the conditions of little temperature change
and no hydrate dissociation, the coupling between mechanics, fluid, and heat is not considered. The objective of this paper is
to present a hypoplastic model of GHBS, understand the mechanism of strain softening at high hydrate saturation, and
validate the model by experiments capturing the main composition and geotechnical condition of natural GHBS. Firstly,
hypoplastic models are recapitulated within the theoretical framework of hypoplasticity and proposed to formulate the
mechanical behaviors of GHBS on the basis of experimental investigation. The shear strength is modeled on the basis of
the modified Drucker-Prager criterion and Mohr-Coulomb criterion, respectively. The effects of critical void ratio and
effective porosity under different hydrate saturations are taking into account in the proposed hypoplastic model to describe
the strain softening behavior. Secondly, the experimental apparatus and procedures are fully presented, and a set of triaxial
compression tests are conducted on reconstituted GHBS by using silt sand as skeleton under various hydrate saturations and
effective confining pressures. Finally, the proposed model is applied to describe the strain hardening and softening behaviors
and compared with the experimental results under various hydrate saturations and confining pressures.

2 | AHYPOPLASTIC MODEL FOR GHBS

As an alternative approach to the general elastoplastic models, a simple hypoplastic constitutive model is proposed to
describe the mechanical behavior of GHBS as follows’:

. . tr(cé)o a? (O'*)z :
6 =c(tro)é+ ¢, + C3r—o_+C4 - €]l @

tro
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where & and ¢ are the rates of stress and strain tensors; ||¢|] = vV tré? denotes the Euclidean norm; and ¢;, ¢,, c3, ¢4 are

dimensionless material parameters, which are independent of the invariants and joint invariants of o and é. The
. . * . .

deviatoric stress o is defined as

o = o'—%(tra')I , 2)

where o is the stress tensor and I is the unit tensor.

To obtain a feasible constitutive equation, the parameters are required to be calibrated according to largely various
laboratory tests. To this end, we chose the most widely used triaxial tests, and the matrices of o, €, and & can be expressed
as follows:

g1 0 0 él 0 0 é'l 0 0
g = 0 o, O ,é': 0 F:'z 0 ,d': 0 o, 0. (3)
0 0 g3 0 0 é3 0 0 d3

The 4 coefficients of constitutive equation proposed in Equation 1 can then be determined by substituting the
corresponding matrices according to the triaxial compression tests. The differential equations are obtained as follows:

0161 + 20363
01 + 203

V& + 262
A% S} 4)

d1201(0'1+20'3)é1+C2 p +20_3 N
1

4
o1+ {cwf + §c4(01—03)2}

O'lél + 20'3&3
01 + 203

2| VE + 28 )

4
&3 = c1(01 + 203)é3 + ¢ o €302 + —c4(01—0 .
3 1(01 + 203)é3 + ¢ 3+{3 3+94( 1 3)}01+203

The above 2 equations are 2 linear ones with 4 unknown material parameters (c;, ¢,, €3, ¢4), Which can be obtained by
solving the equation system. To this end, the 4 parameters can be related to some well-established parameters in soil
mechanics by considering some specific stress states, for example, the hydrostatic and the stress state at failure. The
detail information is referred to the work of Wu and Bauer,?® and the explicit expressions of ¢;, ¢,, c3, ¢, are given as

— Ei
a= 303(1+ ;)
9dyvi (RP—4) + di(2+ Ry)* (1 + 4vy)

C = C1

dr(1-2v;) (R}—4) + d; (2v—Ry) (Ry—4)
o On(2y—Ry) (R—=4)=(1-20) (2 + Ry)” (1 + dvy) ©)
3 — A%

d; (1-2v;) (Rp—4) + di(2v—Ry) (Ri—4)

o (Rvy +1) (24 Ry) e + (R=1)Ry (2y—Ry)cz|

C4 = ’

d; (R—1)* (Rp—4)

where the initial tangent modulus E; = [(1—03)/é1]z_;, the initial Poisson ratio v; = [¢3/&;1]z_,, the failure stress ratio
Ry = [01/03]max and the failure ratio vy = (&;/¢1) r—gf+ i Which R = 0,/0; being the stress ratio with d; = /1 + 2v?

and dy = | /1+ 2v7.

For the purpose of simplicity in engineering practice, the former expressions can be further simplified in view of the
triaxial compression tests. Extensive experiments on various granular materials have verified that the radial strain at the
initiation of triaxial compression tests can be regarded as zero, ie, v; = 02° Hence, the expression in Equation 6 can be
simplified as
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Aslong as c, is determined by fitting the initial tangent modulus of a triaxial compression test, other parameters can
be then identified by the failure stress ratio Ry and the failure Poisson ratio vy accordingly, such as the Drucker-Prager
criterion and Mohr-Coulomb criterion. It is noted that the 4 material coefficients can also be calibrated with other sort
of tests and more refined identification can be obtained.

To this end, the constitutive model can be expressed explicitly for a specific kind of materials with the former
procedure. Now, the stress can be then updated for a time step At by integrating the calibrated equations 4 and 5 to
get the initial stress for the next time step as follows:

a(t+A4t) = o(t) + [l (n), (n)]dn. (8)

To solve the above integral equation, numerical methods are required instead of the analytical solution and a simple
1-step, Euler forward scheme is applied in this paper.

At this point, the entire hypoplastic constitutive model with only 4 material parameters is well achieved, and it is
worth noting that many conventional elastoplastic concepts in soil mechanics can be related to this constitutive model.
As stated above, the 4 material parameters can be identified by fitting of largely experimental data coupling with some
failure criterion, for instance, the Drucker-Prager criterion and Mohr-Coulomb criterion. As is known that the shear
strength of the DHBS is strongly affected by degrees of hydrate saturation, the modified Drucker-Prager criterion and
the Mohr-Coulomb criterion are adopted by considering the hydrate saturation. The modified Drucker-Prager criterion
and the Mohr-Coulomb criterion can introduce the hydrate saturation into the material parameters and describe the
shear strength well in the first-order approximation. It is noted that the failure criterion of the Drucker-Prager and
the Mohr-Coulomb is equivalent if the yield line of the Drucker-Prager criterion is internally tangent to that of the
Mohr-Coulomb criterion in the deviatoric plane under the plain strain condition.”

2.1 | The shear strength modeled by the Drucker-Prager criterion (Model I)
Taking into account the effects of hydrate saturation, the Drucker-Prager criterion takes the modified form as
V2 = K¢ (Sn) + B(Sk)-I1, )

where J, = [(0, — 02)* + (02 — 03)° + (03 — 01)°]/6, I, = 0, + 0, + 03, the material parameters K(S),) and (S,) are the
functions of hydrate saturation S;,. For the case of triaxial compression tests, the second principle stress equals to the
third principle stress, ie, o, = 03, and the modified Drucker-Prager criterion can be simplified as

01—03 = V3K;(S) + V/3B(Sh)- (01 + 203). (10)

The form can be further expressed as

01—03 = A(Sy) + B(Sk)-03, (1)
where A(S) = % B(Sy) = %

As taking the first-order approximation, Equation 11 can be simplified as
01—03 = (A(0)-Sk +A(0)) + (B(0)-Sk + B(0))-03, (12)

where A(0) = 3A(S), = 0)/3S;, B(0) = 3B(S), = 0)/3S;,..
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Following the work of Rowe?? for the relationship between stress and dilatancy of granular materials under undrained
and static loading condition, the ratio of the lateral strain to axial strain, ie, €3 /1, can be derived from the ratio of axial stress
to lateral stress, ie, 0,/03, and the friction angle between the soil grains. The relationship can be expressed as follows:

&3 01

& o tan®(45 + ¢, /2)’ (13)

where the ratio of axial stress to lateral stress at the failure state is defined as the shear failure parameter Rrand takes form as

and the failure Poisson ratio vy can be then obtained by vy = [é3/&1]z_ge With df = | /1 + 2]}%. Fine sands are used for the

reconstituted hydrate samples in this study, and the friction angle is chosen as 26°, and the secant modulus is adopted.
At this point, as long as the hydrate saturation of GHBS is given, the 4 material parameters of the proposed constitutive
model (see Equation 7) are determined and the stress-strain relationship of GHBS is eventually obtained.

2.2 | The shear strength modeled by the Mohr-Coulomb criterion (Model II)

As a granular material, the cohesion between soil grains and hydrate is significant in GHBS. Hence, the Mohr-Coulomb
criterion is adopted to study the influence of the effective confining pressure, internal friction, and cohesion. At this
stage, the failure stress ratio Ry is related to the friction angle ¢ as follows:

1+ sing

Ry — - % 15
!~ 1—sing’ (15)

and the failure Poisson ratio vycan be determined by experimental data or roughly estimated with the dilatancy theory in
the work of Rowe.** Therefore, the hypoplastic model can be modified as

wlio—opio—e) [, @=er | (=0)

¢ =ale-a)i+ e o * | “iomg * * a9

€l (16)

where c is the cohesion of GHBS.

2.3 | The hypoplastic model for the strain softening of GHBS (Model III)

Because of the increase of the hydrate, the cementation among the grains of GHBS gets strengthened and the cohesion
gets increased, and the strain softening occurs as the hydrate saturation reaches a critical extent.** The effect of the
porosity is obviously observed in various laboratory tests of soil mechanics. The preliminary physical explanation can
be drawn for GHBS that as the hydrate occupies the pores of GHBS, the effective porosity decreases, and the filling of
the pores and compression state leads to nontrivial rotation, slide, and rearrangement among soil grains, and the shear
dilatancy occurs at the critical void ratio of GHBS. Hence, we propose a new hypoplastic constitutive model to describe
the strain softening behavior as follows:

tr((e=0j8)(o—c) , [ (e=¢) (=0)

¢ = atr(o—0) + e Ytrlo—c) ¥ tr(o—c)

(€]l I, a7

where the density function I, = (a — 1)D. + 1 with a material constant I,|,—,,, =a and the modified relative density
D. = (e.; — e)/(ecs — emin), in Which e is the void ratio and e.,, and e,;, are the critical and minimum void ratio, respec-
tively. The void ratio e can be updated during a deformation process according to the evolution equation é = (1 + e)trD
with a specific initial void ratio at any well-defined stress state, for example, as a function of porosity and hydrate
saturation e = p(1 — S,)/(1 — (1 — Sy)).
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3 | STRESS-STRAIN MEASUREMENTS OF GHBS

3.1 | Experimental apparatus

Figure 1 shows the diagram of the experimental apparatus used for synthesis of GHBS and the triaxial compression tests.
The apparatus is an integrated testing machine with a capacity of the effective confining pressures ranging from 0 to
14 MPa with an accuracy of 0.5%, and the temperatures can be controlled in the range of —20°C to 20°C with an accuracy
of 2.5%. The apparatus can also provide a maximum backpressure by methane gas-supply cylinder from 0 to 10 MPa for
achieving the formation of methane hydrate-bearing sediments under the necessary high pressure and low temperature
conditions. The total gas percolating can be measured with a gas flow meter. The GHBS can be then formed under proper
pressure and temperature. More detailed information of the apparatus is referred to the previous work.’

Gas hydrate-bearing sediments are sediment of soil (sand, silt sand, clay, etc) mixed with gas, water, and gas hydrate
in nature. The hydrate occurrence types are disseminated and pore-filling in coarse sands and veined or nodule in
fine-grained sediments. Exploration for gas hydrate as an energy resource focuses on sandy GHBS." Here, sandy GHBS
samples were prepared to capture the main composition and geotechnical condition.

3.2 | Host specimen material

The host specimen was prepared by fine silty sand, and the grain size distribution is illustrated in Figure 2. The specific
gravity is about 2.69, and the relative density is 54%. The dry density of the specimen is 1.6 g/cm® with a porosity of
around 40%.

3.3 | Experimental procedure

Gas hydrate-bearing sediments are found to distribute in permafrost and marine sediments in nature, where the temper-
ature is above zero and the pressure is above phase equilibrium pressure of gas hydrate. The stiffness and failure strength
of GHBS depend on the magnitude of temperature, and the temperature drop (from 5°C to 1°C) leads to the increase of
the stiffness and failure strength because of temperature dependence of the strength of the hydrate/sediment contact.*?
Hence, in all the tests, the temperature was kept at 1°C during GHBS preparation, and the triaxial compressions were
conducted with little temperature change and no hydrate dissociation.

The unsaturated GHBS was prepared under the condition of partial saturated water in the pores. The gas saturated
method was applied to obtain uniform gas hydrate distribution.”*** The procedures were (1) certain water (about
20 mL) was injected into the specimen. (2) The gas was supplied under the pressure of 3 MPa and the temperature was
turned to 1°C, and the total gas volume was controlled according to the theoretical volume of reacted gas into hydrate

Data acquisition system
Thermal couple

Valve

Gas flow meter

i 1
Confining pressure load Gas separator
Thermal static box x
— - Pressure chamber —= =
Gas collection
Iy system
# Rubber membrane
‘ 3‘%1 Sample Loading system
T |
Valve J [ transd
. Gas flow meter i e FIGURE 1 Integrated test apparatus for
_ . Data aquisition synthesis of gas hydrate-bearing sediment
Gas cylinder system and triaxial compression tests [Colour

Pressure transducer . . -
figure can be viewed at wileyonlinelibrary.
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FIGURE 2 Grain size distribution of fine silty sand [Colour figure can be viewed at wileyonlinelibrary.com|

and free gas in the pores. (3) As the GHBS preparation was completed, the confining pressures were applied with 4, 6, and
8 MPa. Because of the 3 MPa of pore gas pressure, the effective confining pressures were 1, 3, and 5 MPa accordingly. (4)
The temperature was remain to 0°C to 1°C, and the average hydrate saturations were 5%, 11%, 23%, 40%, and 52%. The
hydrate saturation was controlled by the methane gas pressure and the total gas volume, and the amount of gas used in
GHBS formation was calculated on the basis of ideal gas equation and checked by collected gas during hydrate
dissociation after triaxial tests. The mechanical properties of the reconstituted GHBS were obtained under the
backpressure 3 MPa and drained condition and listed in Table 1, such as modulus, shear strength, cohesion, and internal
friction angle. The initial modulus was determined by E = (4c/4¢)l, — 14, and the maximum deviatoric stress was obtained
until the engineering strain reached 15% (plastic failure) or the strain at failure. The cohesion and internal friction angle of
GHBS with certain hydrate saturation were achieved through 3 experiments under different effective confining pressures.

4 | RESULTS AND DISCUSSION

On the basis of a series of tests, the stress-strain curves under different saturations and effective confining pressures are
shown in Figure 5 (test points of stress with strain). It is noted that the stress-strain curves are obviously nonlinear and
no apparent elastic parts are observed.

TABLE 1 Mechanical parameters of gas hydrate-bearing sediment

Hydrate Effective Confining Initial The Maximum Axial Cohesion, Internal Friction
Saturation, % Pressure o3, MPa Modulus, MPa Stress 0ymax, MPa MPa Angle, °
5 1 90 3.5 0.3 22
3 100 7.1
5 140 11.5
11 1 112 3.2 0.4 26
3 250 9.1
5 254 13.7
23 1 170 4.4 0.8 26
3 324 10.9
5 356 14.3
40 1 132 6.0 1.1 24
3 192 10.7
5 362 15.1
52 1 316 6.6 1.5 22
3 374 10.7
5 450 14.8
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(A) hydrate saturation 11% (B) hydrate saturation 52%

FIGURE 3 The shape of samples after tests [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Shear strength under different hydrate saturations and effective confining pressures [Colour figure can be viewed at

wileyonlinelibrary.com]

During the initial stage of compression, uniform deformation is predominant. Under low hydrate saturation (<40%),
the shape of the samples changes from a cylinder into a drum-like, and the stress-strain behaves as strain hardening;
under high hydrate saturation, strain softening behavior occurs, and a small shear crack at the side of the samples

appears as in Figure 3. Then strain localization will occur and develop into a shear band from the crack.

To validate the proposed model for GHBS, the shear strength under different hydrate saturations and effective
pressures is predicted with the proposed theoretical model using Equation 12. The parameters used in the model are

TABLE 2 Parameters used in Model I

Hydrate Saturation, % Effective Confining Pressure, MPa C1 C2 C3 C4

5 1 —11 —121 —121 424
3 -9 —229 —229 1219
5 -7 —193 —193 1076

11 1 —26 —327 —327 1226
3 —14 —187 —187 735
5 —8 —139 —139 606

23 1 —28 —229 —229 704
3 —18 —182 —182 623
5 —-13 —200 —200 833

40 1 —22 —135 —135 374
3 —11 —111 —111 383
5 —12 —164 —164 647
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FIGURE 5 Stress-strain curves under
different saturations and effective
confining pressures [Colour figure can be
viewed at wileyonlinelibrary.com]|
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as follows:A (0) = 7.13, A(0) = 0.92, B(0) = 0.02, B(0) = 1.26, and the relative coefficient R? is set to be 0.92. As shown in
Figure 4, the theoretical results are in good agreement with the test data.

The material parameters used in Model I (see in Equations 11 and 12) are then calculated according to the mechan-
ical parameters of GHBS in Table 1 and shown in Table 2. The stress-strain curves and volume strains are simulated
under the different hydrate saturations, ie, 5%, 11%, 23%, and 40%, and compared with the experimental data (see
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TABLE 3 Parameters used in Model II

Hydrate Saturation, % Effective Confining Pressure, MPa C1 (67 C3 C4
5 1 —11 —398 —398 2405
-9 —325 —325 1968
5 -7 —253 —253 1530

Figure 5). It can be seen from the figures that the results are in good agreement with the test results and the plastic
behaviors are clearly observed under low hydrate saturation, which indicates the effectiveness of the proposed Model
I, while the theoretical volume change indicates that shear dilation occurs because the hypoplastic model may have a
shortcoming in overestimation of dilatancy.

In Table 2, the material parameters C2/C1 and C4/C1 are different under different effective confining pressures,
because different confining pressures lead to different failure stress ratios, and the material parameters C2 and C4 are
nonlinear with the failure stress ratio.

The material parameters in Model II are calculated and listed in Table 3 according to the cohesion, internal friction
angle, and hydrate saturation Sj,. Under 5% hydrate saturation, the shear strength is modeled by the Mohr-Coulomb
criterion. The strain hardening behaviors under the effective confining pressures of 1, 3, and 5 MPa are predicted and
compared with the experimental results, and the theoretical volume change indicates that the shear dilation is not
pronounced as shown in Figure 6.

The material parameters in Model III are calculated and listed in Table 4, and strain softening behavior is simulated
under high hydrate saturation 52%. The material parameters used in the experiments are as follows: Considering the
effect of hydrate saturation to the effective porosity, the critical void ratio e., and the minimum void ratio e;, are
0.31 and 0.18, respectively, and the parameter a is set to be 0.85. As can be seen from Figure 7 that the stress-strain results
obtained by Model III are in good agreement with the experimental results. The important characteristics of strain
softening behavior are well predicted under high hydrate saturation (52%), the volume strain decreases with the increase
of the effective confining pressure, and the theoretical volume change indicates that the shear dilation is more
pronounced than of that lower hydrate saturation.

For hydrate saturation 5%, the critical void ratio e, and the minimum void ratio e,;, are 0.42 and 0.70, respectively,
and the parameter a is set to be 0.85. The material parameters C1~C4 are adopted in Table 2. As can be seen from
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FIGURE 6 Stress-strain curves under the hydrate saturation of 5% in Model II [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Parameters used in Model III

Hydrate Saturation, % Effective Confining Pressure, MPa C1 C2 C3 C4
50 1 —50 —287 —287 775
3 —-33 —346 —346 1197

5 -30 —448 —448 1851
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Figure 8 that the stress-strain results obtained by Model III reach the peak shear strengths in lower strains than those of
tests. The theoretical volume strains are larger than that by Model I.

5 | CONCLUSIONS

The mechanical properties of GHBS are investigated by the integrated experimental apparatus with triaxial compres-
sion tests and compared with the simulated results obtained by the proposed hypoplastic models. The Drucker-Prager
criterion and the Mohr-Coulomb criterion are introduced into the hypoplastic model to analyze the shear strength with
considering the effective porosity because of the hydrate filling in the pores of GHBS. The effects of the hydrate
saturation and the effective confining pressures are studied with both experimental apparatus and the proposed
hypoplastic model, and the comparison shows that the proposed hypoplastic model is capable of capturing the salient
features of the mechanical properties of GHBS. Moreover, the proposed model is verified to be able to describe both the
strain hardening behavior under low hydrate saturation (<40%) and the strain softening under high hydrate saturation
(>40%) of GHBS. It is also worth noting that the empirical and experimental parameters of the model are much less
than the classical elastoplastic models, and their physical meanings can be clearly related to the well-established
models. The proposed model is verified to be a simple and practical reference for the evaluation of soil deformation
and failure behaviors in hydrate exploration and exploitation.
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