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The Green’s function and Eshelby tensors of an infinite linear isotropic second gradient
continuum are derived for an inclusion of arbitrary shape. Particularly for spherical, cylin-
drical and ellipsoidal inclusions, Eshelby tensors and their volume averages are obtained
in an analytical form. It is found that the Eshelby tensors are not uniform inside the inclu-
sion even for a spherical inclusion, and their variations depend on the two characteristic
lengths of second gradient theory. When size of inclusion is large enough compared to
the characteristic lengths, the Eshelby tensor of the second gradient medium is reduced
to the classical one, as expected. It is also demonstrated that the existing Green’s func-
tions and Eshelby tensors of couple stress theory, Aifantis, Kleinert and Wei-Hutchinson

Inclusion special strain gradient theories could be recovered as special cases. This work paves the

Effective modulus way for constructing micromechanical method to predict size effect of composite materi-
als, as shown for the effective modulus of particulate composite derived with the proposed
theory.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Microcontinuum theory (Eringen, 1999) is considered as an efficient tool to characterize overall mechanics response for
microstructured materials (Buechner & Lakes, 2003; Chen, Lee, & Eskandarian, 2004; Eringen, 1999). This high order the-
ory incorporates the micro-deformation of microstructure inside of a material point in addition to translation of its inertia
center. Depending on choice of micro-deformation mode, different simplified microcontinuum theories are proposed. For
example, micromorphic theory (Eringen, 1999; Forest & Sievert, 2003) assumes an arbitrary constant micro-deformation, it
is the most general first grade microcontinuum theory. More specified theory can be developed by further assuming this
constant micro-deformation, for example an independent rigid rotation, this gives micropolar theory (Eringen, 1968). For
small deformation and slow motion assumption (Shaat & Abdelkefi, 2016), the micromorphic theory is consistent with mi-
crostructure theory of Mindlin (1964). Second gradient theory (Germain, 1973), which is also called strain gradient theory,
is a special case of microstructure theory (Mindlin, 1964) by specifying the micro-deformation to be macro-displacement-
gradient. Therefore the theory has only the macro-displacement as degree of freedom and is easy to be implemented. There
are several well-known simplified versions of second gradient theory, such as the couple stress theory (Koiter, 1964; Mindlin
& Tiersten, 1962; Toupin, 1962) corresponding to letting the micro-deformation gradient be only rotation gradient, Kleinert
strain gradient theory (Kleinert, 1989) corresponding to considering the gradient of volumetric strain in addition to rotation
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gradient as the micro-deformation gradient, etc. Some other models, like Aifantis (Altan & Aifantis, 1997; Gao & Park, 2007)
and Wei & Hutchinson’s strain gradient elasticity theory (Song, Liu, Ma, Liang, & Wei, 2014; Wei, 2006; Wei & Hutchinson,
1997), use strain gradient or second gradient of displacement as the micro-deformation gradient and define different con-
stitutive relations. The objective of developing these high order continuum theories is to characterize the size effect well
observed when size of structure is decreasing to micro or nano scale (Fleck, Muller, Ashby, & Hutchinson, 1994; Kouzeli &
Mortensen, 2002), the microstructure comes into play in this case which is unable to be accounted for by Cauchy continuum
theory without microstructure (Hu, Liu, & Lu, 2005).

In order to predict the size effect manifested in composites materials, proper homogenization method should be estab-
lished. Inclusion problem is an essential step to build micromechanical models, in which Eshelby tensor is a key factor.
Eshelby tensors in some microcontinuum models have already been obtained. For example, Eshelby tensors of spherical,
cylindrical inclusions (Cheng & He, 1995, 1997) and ellipsoidal inclusion (Ma & Hu, 2006) are derived for micropolar medium
and Aifantis strain gradient medium (Gao & Ma, 2009, 2010; Ma & Gao, 2010; Zheng & Zhao, 2004) derived Eshelby ten-
sor for spherical inclusion in couple stress medium. Zhang and Sharma (2005) examined Eshelby tensor of Kleinert's strain
gradient theory. Unlike the classical Eshelby tensor, these Eshelby tensors are not uniform inside the inclusion domain. But
based on the average of these Eshelby tensors, an average equivalent inclusion method could be established for composites
(Liu & Hu, 2005; Ma & Gao, 2014; Sharma & Dasgupta, 2002; Xun, Hu, & Huang, 2004), and it can be used to predict the
size-dependence of inclusion on overall elastoplastic property of composites.

As discussed above, the second gradient theory is a more general high order theory and easy to use, it may offer an
alternative and flexible tool to establish homogenization method for composites. However inclusion problem of a general
isotropic second gradient medium has not been addressed yet, which is the objective of this manuscript. The Green’s func-
tion and Eshelby tensor will be derived in analytical form, and their interconnections with the existing strain gradient
theories, couple stress, Aifantis, Kleinert, and Wei & Hutchinson’s models will be demonstrated. Finally effective modulus
of a particulate composite will be presented to illustrate the capacity to predict size effect. The manuscript is arranged as
follows, in Section 2, Green’s function of a general isotropic second gradient medium will be derived. The inclusion problem
will be examined in Section 3, and its connection with different strain gradient theories will be discussed in Section 4. Some
examples will be presented in Section 5 to illustrate characteristic of derived Eshelby tensor. In Section 6, effective mod-
ulus of a composite with spherical inclusion will be given to characterize size effect of mechanical behavior. Finally some
conclusions are presented.

2. Green’s function

For a linear isotropic second gradient continuum, the governing equations are (Mindlin, 1964):
geometrical relations:

1
&ij = j(ui,j +uj) =¢ji, M= VVU=u; = nji (2.1)
equilibrium equation:
Oiki — Tijkij + fe = 0 (2.2)
constitutive equations:
aw ow
Oij = 5~ =Lijueu  Tijk = 35— = lij 2.3
ij 88,’} ijkl <kl ijk anijk zjklmnnlmn ( )

where u; is displacement vector, ¢; and 7;; are strain and strain gradient tensors, o; and Ty are stress and high-order
stress tensors. f is body force vector. W is strain energy density function, its expression is (Mindlin, 1965):

1
W = 5A&iigjj + WEij€ij + arNijj i + 02 ik Mkjj + A3 Tiik)jjic + GaTlijeTijhc + A5 MijeNkji (2.4)

where A, @ are Lame constants, a;, ap, a3, da, as are additional constants introduced in second gradient theory. Gy, and
Tijumn are elasticity tensors of second gradient materials, their expressions are:

Gijia = A0S0 + b ji + L8y 8 ji (2.5)

a
Tijkimn = 71 (818 k8mn + 8imxSin + 88 jmSin + 88 j18mn)
a
+ 72 (81i8uBmn + 8ij8micSin + 8indjtSim + SucS jnSimt) + 2038:8nim
a
+ a4 (8im8 18kn + 818 mn) + 75 (8in8jmSua + in818iem + Bim jnSiic + 818 jnBimic) (2.6)

djj is Kronecker delta.



62 H. Ma et al./International Journal of Engineering Science 132 (2018) 60-78

Substituting geometrical Eq. (2.1) and constitutive Eq. (2.3) to equilibrium Eq. (2.2), the displacement equilibrium equa-
tion is obtained:

A+ ) ji + e — [0+ 20) Buj ji — w3 (uj ji — i) Ly + fi=0 (2.73)
or in vector presentation:
A2 =BVHVV . u—pu(1-BVHV xVxu+f=0 (2.7b)
where
2(a; + a4 az +as + as) 2(as +as)
2_ 2 _

I;. 1, are two material characteristic lengths of second gradient theory.
To derive fundamental solution of Eq. (2.7), the method of Sandru (1966) is used and following differential operators are
defined:

Oi = G+ 20)(1-FA)A. o= +2m)(1-FA) —p(1-54)

O3 =pn(1-BA)A, and Oy =0,A+0s (2.9)
The body force vector f can be decomposed into scalar and vector potentials as:

f=VIlj+VxII (2.10)

where I is a scalar potential, IT is a vector potential, and V - IT = 0.
It can be proved that if the following relations are satisfied,

EHAO:—H(), DgA:—H and V. A=0 (211)
solution of Eq. (2.7) is:
u=VAg+VxA (2.12)

The detailed proof is listed in Appendix A.
Let Q be an impulse body load applied at position X’ in an infinitely extended body, that is:

f=Q3(x-x) (2.13)

where §(x —X’) is Dirac delta function.
Following Sandru (1966), when f = VIl + V x I1, we have:

e gos()
n _éQX v(%) (2.14)

where 1= |x — X/|.
By suing Fourier transformation and inverse transformation, solutions of Eq. (2.11) are obtained:

Ao= - Q.Vr i__qvd=t™,
= gxorzm s Y iz s Y T
12 1—e "k 1
A= —4nMV x Q<r>—mv x (Qr) (2.15)

According to Eq. (2.12), the fundamental displacement field of second gradient continuum is:

1 (20 Atu 12 1—e/h
U= 8 <rQ'_ )»+2/,LQ" er> + 47T()»+2/L)Q'. Vv r

2 _e /b =1/l
‘4715MQ'W<1 i >_47:uQer (2.16)
or written in vector component presentation:
u; = GjQj = (G§j + G}y + G3)Q (217)
where G%=ﬁ(%5u - %r,u‘)

cl 2 1—eh
U 4w (A20) r i
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12 1—e 'k 1 ek
G5 ( ) 5, (218)
S

e r o Amu ot

Gjj is Green'’s function of second gradient theory. Gl.cj is the classical Green’s function, G}j and Gizj are the ones related respec-
tively to the characteristic length I, and L, of second gradient theory.

3. Inclusion problem
3.1. Eigen deformation problem

Consider an infinite linear isotropic second gradient material with eigenstrain 57,- and eigenstrain-gradient n;‘jk, which are
nonelastic deformations (Mura, 1987). The constitutive Eq. (2.3) must be modified to:

0ij = Gju (e — €5)  Tijk = Tijitmn Mimn — M) (3.1)

Substituting Eq. (2.1) and Eq. (3.1) to Eq. (2.2) and ignoring body force, we obtain:

1
icikmn(un,mi + Umni) — TijkimnUnimij + ff =0 (3.2)
where : f; = —(Gimn&jani — Tijkimn limn.ij) (33)

So the eigendeformation problem is transformed to an equivalent distributed body force problem.
To derive the displacement u; in terms of the obtained Green’s function, we employ the work reciprocal theorem of
second gradient medium:

/ﬁwﬂ:/”wm (3.4)
14 \%4

where the quantities with and without a prime are two distinct independent sets of load and resulted displacement fields.

Let f; = 88(x —X'), then uj, = G¢, + G}, + G}, = G;
Using Eq. (3.4) and property of Dirac function, we obtain:
ui(x) = /kaGki(X*X/)dx/ (3.5)

By substituting body force Eq. (3.3) into Eq. (3.5), displacement field due to previously prescribed eigendeformation can
be obtained:

14500 = = | Gimn G (% =X )X+ [ Tt Grsis(x — X'} (36)

Eq. (3.6) is a general expression and valid for any eigendeformation. With help of Egs. (2.17), (2.18), (2.1), (2.3), local elastic
displacement, strain and stress fields due to any eigendeformation can be obtained completely.

3.2. Eshelby tensors

Considering an inclusion € in an infinite linear isotropic second gradient material, uniform eigenstrain 57,- and

eigenstrain-gradient n;‘jk are prescribed in the inclusion. And eigendeformation is zero outside of 2. Here the inclusion

2 could be an arbitrary shape.
Then Eq. (3.6) can be rewritten as:

Us(X) = Ismn (X) €5 + Jstmn ) Mfiun (3.7)

where :  Imp (X) = — ikmn/sl_szs.idx/s Jstmn (X) = Ejklmn/gzcks,ijdx/ (3.8)

By differentiating both sides of Eq. (3.7) and according to geometrical equation, the strain and strain gradient in 2
induced by the prescribed eigenstrain and eigenstrain-gradient can be written as:

Est (X) = Sstmn (X)Srﬁm + §5tlmn (x)nl*mn’ Nrts (X) = Nrtsmn (x)‘c’\;m + Nrtslmn (X) r][*mn (39)
where:
1 a 1
Sstmn (X) = j[’tmn,s(x) + Ismn,t(x)]s Sstlmn (X) = i [Jtlmn,s(x) +jslmn.t(x)]
Nitsmn (X) = Ismn,re (X), Nrtslmn (X) = Jsimn,rt (X) (3.10)
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and

At

Ismn (X) = )\‘+2l"l’

d’smn( ) — )L+2 3mn¢ x) — (Ssnd),m x) — SmsP.n (x)
2un
m‘smnM,S(x, L) - 2/ 12[¢,smn X) = Msm (X, 11)]

+ 2l§[¢smn (X) - M,smn (X, 12)] + SSnM‘m(Xy lz) + ésmM,n(x’ 12) (311)

+

(A+u)(aq +as)
W Y stmn (X) +

nay —2(A + p)as 5
(A2

Mﬂ[(p slmn(x) slmn(x’ 11)] -

(A+2u1)
2a3+a28 2(a4 + as)

(A+21)
2(13 2(14
+ 7[8mnM,sl X, L) + Mg (x, )] + 75mlM,sn x L) - 785nM,ml x, )

2uar — (A + pn)az
20421) 1

ml¢,sn (X) + %Ssn(ﬁml (X) + —

2a; + az
2(A+21)

l%[‘b.slmn (X) - M,slmn (X, 12)]

]slmn (X) = - [Smn(ﬁ,sl (X) + 8ln¢.sm (X)]

2(15

[831¢ mn (X) 4 Ssm® 1n (X)]

+ [SmnM,sl x, )+ SlnM,Sm x, )]

miMsn (X, 1) —

- *Sslen(x 12) - ﬁ slin(x 12) [SmnS 1 +81n sm]M(x 12) - 38 J IM(X, 12) (3-12)

z 12 wiz ™"
The four tensors Ssmn, Sst,mn, Netsmn., lemn are Eshelby tensors of an isotropic second gradient medium, respectively. Sgimn
is Eshelby tensor corresponding to the classical one of Cauchy medium. Sgjun, Nesmn, Nytsimn are additional Eshelby tensors
due to second gradient theory.

It is seen that Eshelby tensors depends on the following three integrals and their derivatives:
—r/k

1 , 11, 1 re ,
Y (X) = E/rdx, PX) = E/?dx, M(x, k) = 471/ . dx (3.13)
Q Q Q

In classical Eshelby tensor, there are only the first and second integrals (Mura, 1987). For inclusion of special shape, such
as spherical, cylindrical and ellipsoidal, the two integrals can be derived analytically and the details can be found in
Mura (1987). For convenience, these analytical expressions are listed in Appendix B.

The evaluation of the third integral is difficult. But for spherical and cylindrical inclusions their analytical expressions
have been given by Cheng and He (1995, 1997). For ellipsoidal inclusion, Ma and Hu (2006) provided a simplified form
involving only one-dimensional integral. The detailed expressions of the third integral and its derivatives are listed in Ap-
pendix B for spherical, cylindrical and ellipsoidal inclusions respectively.

Here for simplicity, we give only expression of tensor Sg:mn, which is also the most interested one. It is written as:

Sstmn = Sg[mn + S;tmn + Sgtmn (3-14)
where
c Atk
Sstmn = w stmn( ) mn¢ st (X) [8sn¢.mt (X) + (S[n¢,sm (X) + 8ms¢,nt (X) + 8m[¢.sn (X)]

e m )»—1-2

A
S;tmn = mamnMst (X, ll)

S?tmn = Zl%[(ﬁ,stmn (X) = M semn (X, )] + *ISSHM,tm (X, L) + 8enM sm (X, 1) + SmsM ne (X, L) + OmeM sn (X, 1) ] (3.15)

)»+2 [¢ stmn (X) — M sgmn (X, [1)]

where S¢,.. is the classical Eshelby tensor, Sk, and S, are new parts introduced by second gradient theory and depend
on the characteristic length I, and [,, respectively. When strain gradient effects are neglected, i.e. I,=L,=0, the obtained
Eshelby tensor Eq. (3.14) is reduced to the classical one S ...

With help of the integrals in Eq. (3.13), analytical expression of S¢mn can be obtained for spherical and cylindrical inclu-
sions. For ellipsoidal inclusion, tensor Sgsmn can be derived with only one-dimensional integral in Appendix B.3. The other

three Eshelby tensors can also be evaluated in the same way.
3.3. Average Eshelby tensors
Unlike Eshelby tensor in Cauchy medium, Eshelby tensors in second gradient medium are not uniform inside the in-

clusion 2. In the following, we will give their averages over inclusion domain, which are useful to build homogenization
method.
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We calculate volume average over inclusion domain on both sides of Eq. (3.9). It is found that the following properties

hold whether for spherical, cylindrical or ellipsoidal inclusions:
(§stlmn(x))l =0, (Nstlmn)l =0

where (+); means volume average of said quantity over inclusion.

Eq. (3.16) means that in sense of average, Eshelby tensors in second gradient medium are uncoupled. That is:

(&st (X))I = (Sstmn (X)),S;m, (Mres (x)>1 = <Nrtslmn (X)),Tﬁ‘mn
For spherical inclusion, these average Eshelby tensors have analytical expressions and can be written as:

(Sstmn (X))[ = $105t0mn + S2(8smStn + Ssndme)
(Nrtstmn (%)), = 7 85n8yuire + iz (SurStsSim + St SrsSim + S51SmnSre + SsmBire)
+ i3 (8 8mrSen+818me Srn + SsmO1rOtn+O8smS1:0rn) + 4 (CsnSmrSir + SsnOmedyr)
+ 115 (8mnOrs01t +8mnOtsOir + S1nOtsOmr + 81 SrsOme)
where
- 1:&;22‘; S+ 5R§?{f§‘m¢<lur<to - @I (D)
5 = 30 +8u n 2L
15(A+2u1)  5R3(A+2u)

S1

SUNT() + o3 1T ()

R I CPIN Y I(PINGY!
iy = WZ(GS — 6a4 — 28a3) — W[M‘h +7a; +2(as +as)]
L oIy ICPINCGY
ny, = #}2315(804 — 13as — 28a, + 28as) — m[gah +as) +7Q2ay + 3a; + 4a3)]
L oIy oI ()
= —=—2-(8a4—38a5) - —————--8
fis 35URE (8ay as) 35(h+200) RO (a4 +as)
. D)) Q)OI ()
= 20 20 A(gs — 6ay) — —— 1124
fig 3503 (as — 6ay) 3504202 (as +as)
. DU)T(,) QNI (1)
s = ot o 2(7a + 4ay + 4as) — 350200 R [8(as + as) + 14(2a; + az)]

and ® (k) = —k(k+R)e®* . T'(k) = Rcosh(®) — ksinh(%), R is radius of spherical inclusion.
For cylindrical inclusion, they are

(Sapyo®)), = t18apdyp + t2(8ay 8 + Sapdpy )

(Naﬂypég)I = 0180p8y ¢ 8 p+2 (8acdppSye + 8uppcBye + 8y pasdpc + 8y pbucdps)
+f3(8ay8ﬂp8§§ + (Saptslg),agg + 80,)/8/353,); + 80[&8,3),5/,;) + f4(8ot&'8ﬁp8]/§ + (Sap(Sﬂg(Syg)
+5(8updecOyp + 8apdpsdye + Suydpcdep + Susdpy dep)

where indices «, B, v, p, &, ¢ range from 1 to 2, and
r-pw  De+p (R, (RN .1 (R (R
t = - = =) +sn( - -
'T 4G 20 2()»+2u)h(ll)l<1<ll>+2I1<12>K1(lz>
A+3u " R R 1 R R
t, = - = ) NS Y (e =
2= 300+ 20 2()»+2u)h(ll)l<1<ll> 2“(12)1(1(12)

~ 18as+5a4 — as R R 3(2(13 + (12) + ((14 + (15) R R
SEEURESEINT VT BE AT RERISTAME VTS
12ul; b b 125 (A+21) L N

~ as+a R R 2as —a R R
t = %Kl(*)h(*) + 5724[(1 (*)Il (*)
1217 (A+2p) L L 12l b b
~ 3(2a; +ay) +2(ag + as) R R 3a; —2(aq +as) R R
L (B (R) - 22 o Ry (R
2417 (A4+21) L L 24ul, b

)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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2 5a4 — a R R as+a R R
ty = 47251(1 (*)ll(*) + MIG(*)h <*)

121l L7 \L) 1212(a+2p)  \h l
A 9a, — 6as — 4ay + 2as R R 3(2(11 + 3a, -|—4Cl3) +4(a4+a5) R R
s = 3 1( )h( ) 3 K1< )h(r)

24uls 2417 (A+2w) 1

11(§) and [(1(%) are the first order modified Bessel functions of the first kind and second kind respectively.R is radius of
cylindrical inclusion.

For ellipsoidal inclusion, full analytical expressions of these average Eshelby tensors are difficult to be derived. But with
the help of formulas in Appendix B.3, these average Eshelby tensors over an ellipsoidal inclusion can be computed easily.

I

l

b (3.21)

4. Connection with existing simplified strain gradient theories

As discussed in introduction, some well-known simplified strain gradient theories, such as couple stress theory, Aifantis
and Kleinert and Wei & Hutchinson’s models, have similar forms of governing equation (Gao & Ma, 2009; Zhang & Sharma,
2005; Zheng & Zhao, 2004) as that of the general isotropic second gradient theory, it is therefore interesting to explore their
connection. In the following, we focus on Eshelby tensor Sgmpn for simplicity, and the other Eshelby tensors can be analyzed
in the same way.

4.1. Couple stress theory (abbreviated as CS)

Couple stress theory is the form III in Mindlin (1964) theory with only rotation gradient for micro-deformation gradient.
According to its strain energy density function (Zheng & Zhao, 2004), by setting

1 1
a;=0, a,=0, a3=0, as= i/ufs, as = —E/LIES (41)
connection of the two characteristic lengths in second gradient theory and CS are obtained:
I, =0, L=l (4.2)

where I, is material constant with dimension of length in CS theory. Eq. (4.2) shows that there is only one characteristic
length [, in CS.

Substituting Eq. (4.2) to Eq. (2.7), Eq. (2.17) and Eq. (3.14), we obtain the same governing equation and Green’s function
of couple stress theory. Eshelby tensors for spherical, cylindrical and ellipsoidal inclusions of couple stress theory can also
be obtained by using Eqs. (4.1) and (4.2), the results of Zheng and Zhao (2004) for spherical inclusion is found as a special
case.

4.2. Aifantis strain gradient theory (abbreviated as ASG)

ASG theory is the form II in Mindlin (1964) theory with special definition of high-order stress. According to its strain
energy density function (Gao & Ma, 2009), by setting

1.5 1 5 L
ay = E)‘lAifantis’ =0, a3=0, as= ilulAifantis’ as = EMlAifantis (4.3)
we obtain also the following relation between the characteristic lengths of ASG and second gradient theory:

l1=lz = lAifantis (44)
where [,; Fantis is material length scale parameter. It is seen that ASG theory has two equal characteristic lengths.

Using Egs. (4.3) and (4.4), the governing equation, Green’s function and Eshelby tensors of ASG are obtained, which are
consistent with those in Gao and Ma (2009).

4.3. Kleinert strain gradient theory (KSG)

According to the strain energy density function of KSG (Zhang & Sharma, 2005), we set

A+20 1 1
ar = Tleleinert - i#’llzdeinert’ az = jlu’ll%leinert’ =a4=05=0 (4.5)
then we have:
ll:ll/(leinert’ by = Ixteinert (4.6)

It is seen that the characteristic lengths in second gradient theory are the corresponding characteristic lengths in KSG.
Similarly, the governing equation, Green’s function and Eshelby tensor of KSG can be obtained directly by using Egs.
(4.5) and (4.6) in our work.
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4.4. Wei-Hutchinson strain gradient theory (W-HSG)

Inclusion problem of W-HSG has not been examined yet. Here we will derive it as a special case of our results.
According to the strain energy density function of W-HSG, we set

a;=0, a=0, a3=0, as=E ,, a5=0 (4.7)
Then two corresponding characteristic lengths are respectively:

2E 2E

11: mlw—h{ = hllw_Hs 12 = FIW—H = hZIW—H (4.8)

where I, ,, is material length parameter in W-HSG, E is Young's modulus. It shows that W-HSG can be considered as special
case of second gradient theory specifically with Egs. (4.7) and (4.8).
Substituting Eqgs. (4.7) and (4.8) to Egs. (2.7), (2.17) and (3.14), we obtain the displacement balance equation:

AR2u)VV -u—uV x V xu—=2EE Viu+f=0
or in vector component presentation:

(A + Uy ji + (g e — 2E8) (U ) i = 0 (4.9)
Green'’s function is given by:

Gij = G; + G+G};

1 28 At h2 (1 —e /(s
T B\ Re2n ) Y a2 r i

h2[2 _ e T/(haly_) =1/ (haly_y)
My oy 1-—e W-H 3 1 e W-H 5, (4.10)
4 r i 4T r

and Eshelby tensors of W-HSG are:

C 1 2
Sstmn = Sstmn + Sstmn + Sstmn

A
Sstmn = A.+2M WY stmn (X) — )H-z S st (X) — [8sn¢,mt (X) + 8en@ sm (X) + Sms® ne (X) + Ome P sn (X) ]
A Z/Lhzl
Sgtmn = mSmnM,st % hily ) — )u+2,bb [¢ stn (X) — M semn (X, Ry lyy_pp) ]
Sgtmn = thl\gv Hl@.stmn (X) — M semn (X, holy, )]
[‘SsnM tm (X hZ H) + 3tnM sm (X h2 H) + (SmsM nt (X h2 H) + Sth sn (X h2 H)] (4-11)

It is proved that these results can also be obtained directly by the method in Section 2 and 3.

5. Numerical examples

In this section, some numerical examples will be given to illustrate property of Eshelby tensor of second gradient theory.
And Eshelby tensors of special strain gradient theories discussed in Section 4 will also be included. For simplicity, only
spherical inclusion is considered in the following.

For spherical inclusion in second gradient medium, analytical expression of Eshelby tensor can be obtained with help
of Eq. (3.13) (detail see Appendix B.1) and Eq. (3.14). Only S;11; and Sy15> are computed in the following. R is radius of the
spherical inclusion. Lame constants used in computation are A =50 GPa, . = 26 GPa. We set I, = 1um, and [; is propor-
tional to L. Therefore, for CS there are l; =0, [, =I¢s = 1jum, for ASG there are I; =1, =1, = 1pum, and for W-HSG,
there arel; = 0.5, = 0.5,um. The two characteristic lengths of KSG equal to I; and I, respectively so that the result of KSG
can be considered as the same as those of second gradient theory, but they also set a; = a4 = as = 0.

Fig. 1 shows variation of components Sy1;; and Sy12, along axis x; with different values of I;. The radius of inclusion is
R = 11,. The corresponding results of CS, ASG, W-HSG and the classical model (calculated by Eq. (3.15a)) are also included.
It can be seen that all Eshelby tensors of strain gradient models vary with position inside of spherical inclusion. As shown
in Fig. 1a, S1111 decreases with increase of x; for all second gradient models. The classical Cauchy model predicts the largest
value of Si111, and different models control amplitude and variation of Sy11;. From Fig. 1b, it can be seen that, the length
parameter [; has a significant influence on S;j;, i.e. different strain gradient models have quite different values of Siqy;.
With increase of xq, S1122 increases slightly in CS, decreases in W-HSG and ASG. The value of Sq1p, is larger than that in
classical medium for CS medium and smaller for ASG medium.
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Fig. 1. Variation of Eshelby tensor component along axis x; with different Iy. (a) Sy111, (b)S1122-



H. Ma et al./International Journal of Engineering Science 132 (2018) 60-78

1.40 ;

1.35 1

1.30 1

Aifantis
(1,=1,)

1.20 +

1.15

1 / 10 100 1000
CS(1,=0) & classical result all

@@ K.

1.75 1

—a— classical
1701 —a—CS (1,=0)
1.65 4 —e— W-H (1,=0.5l,)
1.60 - —v— Aifantis (I,=11,)
1.55 - 1=,

KM,

1 10 100
all

2

(b) #,

Fig. 2. Variations of the effective moduli as a function of the size of inclusion. (a) K. (b) .
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Fig. 3. Comparison between the present model and different experimental results for the effective Young’s modulus. (a) Effective Young’s modulus of
10%SiC/Fe vs. inclusion size (b) Effective Young’s modulus of 10% and 20% SiC/Al vs. inclusion size.
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6. Effective modulus
For isotropic composite composed of a matrix of second gradient medium and spherical inclusions, according to the

average equivalent inclusion method and the generalized Mori-Tanaka method (Liu & Hu, 2005), effective bulk modulus K.
and effective shear modulus w. can be obtained analytically:

f
K=K|l1l+ —
‘ (1= )Sa + %
Me = Lo |:1 + f,mi| (6.1)
(1 - f)55 + H1—Ho
where
~ 3K 9K,
Sa =381 425 = g e T B +dpg) T
oo 6(Ko+2p0) 120 6
Sp =25 = 53Ky 1 4j10) T 58 (3K, +4M0)@(11)F(11) + 503<I>(12)F(12) (6.2)

Ko, to, K1, pq are bulk modulus and shear modulus of the matrix and inclusion respectively, [, I, are two characteristic
lengths of the matrix, f is volume fraction of inclusion, s1,s, are defined in Eq. (3.19).

Variations of K. and . as function of inclusion size with different [; are shown in Fig. 2a and b respectively. The material
parameters are K;=247 GPa, 411=209 GPa, Ky=67 GPa, 1+1=26 GPa and f = 0.15. Both K; and u. decrease with increase of
inclusion size, and tend to classical result for large size of inclusion for all models. K. with CS model is the same as classical
result due to only rotation gradient considered, as expected.

We have compared the effective Young’s modulus predicted by the present model with several experimental results in
literatures, and the classical results are also included. Composites with Fe matrix and 10% SiC particles with different sizes
of 3, 13, 21, 45um are taken for comparison, which was presented by Wang, Zhang, Zong and Yang (2013). Eq. (6.1) and
Ec = 39,('::";6 are used to evaluate the effective Young’s modulus. The characteristic lengths of strain gradient matrix are set
to bel; =3.9wm, I, = 6 um. And other material constants are taken form the experiment, which are E;=450 GPa, v;=0.17
for SiC and Ey=168 GPa, vy=0.25 for Fe matrix. As shown in Fig. 3(a), our results agree with the experiments while the
classical method cannot characterize the size-dependence of particles. It should be mentioned that this size-dependence
is not significant in elasticity unless the size of particle reaches nanoscale, the interface effect becomes pronounced, and
however it will become much more significant for overall plastic property of composites.

The comparison of effective Young’s modulus between classical results, the present model and experimental results are
shown in Fig. 3(b) for SiC/Al composites with different inclusion sizes and different inclusion volume fractions. In Fig 3(b),
hollow symbols are the experimental results taken from Chawla, Jones, Andres, and Allison (1998) for 2080Al with different
SiC sizes of 5, 6, 23 um, El-Daly, Abdelhameed, Hashish, and Eid (2012) for Al with 70nm SiC particles and Llorca, Suresh,
and Needleman (1992) for 2124Al with 3.5um SiC particles. The blue and black lines are estimated by our model and
classical model respectively. The material constants used in calculations are E;=450 GPa, v;=0.17 for SiC and Ey=75 GPa
(Chawla et al., 1998), vg=0.33 for Al matrix and the two characteristic lengths of strain gradient matrix are [; =2 m,
I, = 0.2 wm. Again the proposed model can capture the dependence of overall elastic property on particle size.

Our elastic micromechanical model predict successfully the size-dependence of Young’s and it can be easily extended to
predicted elastoplastic behavior (Liu & Hu, 2005), where size effect is much more pronounced.

7. Conclusions

Inclusion problem of linear isotropic second gradient continuum is examined in this paper. Green’s function is firstly
derived in analytical form, and Eshelby tensors are obtained for inclusion of arbitrary shape. They are all composed of three
parts, one is of classical part, and the other two are related to the characteristic lengths of second gradient theory. Analytical
Eshelby tensors and their averages are obtained for spherical, cylindrical and ellipsoidal inclusion. It is found that Eshelby
tensors are not uniform inside of inclusion, their variations depend intimately on the two characteristic lengths of second
gradient theory. We also demonstrate that Green’s functions and Eshelby tensors of some special second gradient theories,
including couple stress, Aifantis, Kleinert and Wei-Hutchinson strain gradient models, are special cases of our results by
proper definition of I, [,. Finally, effective modulus of isotropic composite with spherical inclusions and matrix of second
gradient medium are provided analytically. It is shown that influence of inclusion’s size can be taken into account and
classical results are recovered when size of inclusion is large enough. Our results have fundamental importance in building
different homogenization methods to predict overall property of composites.
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Appendices
A. The solution of Eq. (2.7)

Following Sandru (1966) and the defined differential operators Eq. (2.9), the solution of Eq. (2.7) is:

u=0F-0,VV.F (A1)
where : 0;03F = —f (A.2)
body force f can be decomposed into:
f=VIlj+V xII (A3)
Supposing the body force f is a rotational-free field, we have
f= VI, (A4)
If we define
O0sF=VAy (A5)
then Eq. (A.2) can be rewritten as:
0140 = —ITp (A.6)
with help of VV.F=V x V xF+ AF and 0; = 0,A + 3, Eq. (A1) is
u=VAy (A7)
Now we suppose the body force f is a solenoidal field, we have
f=VxIl (A.8)
and if: ;F=V x A (A.9)
Eq. (A.2) can be rewritten as:
OsA =-TI1 (A.10)
then the Eq. (A.1) is
u=V x A (A1)

Therefore, u = VAy + V x A is solution of Eq. (2.7).
B. Expressions of three integrals in Eq. (3.13)

B.1. Spherical inclusion

Y (X) = —%(r" — 10R?*r? — 15R%) (B.1)
2
and Y = _E(‘sijakl + 0 + 5jk5il) (B.2)
) = (7 3R (83)
1
and ¢ = —36;; (B.4)
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The analytical expressions of the third integral for a spherical inclusion are given by Cheng and He (1995):

M(x, k) = k2 + @(/<)/<M (B.5)
where: ®(k) = —k(k + R)e R/* r=/x? +x% +x2, R is the radius of the spherical inclusion.
To obtain its derivatives, N(r, k) = M(x, k) and D = %% are defined, then,
oM dN or
9 (D'N) = x;D'*'N (B.7)
8x,- !
so: M;(x, k) = x;DN
M,,'j (X, k) = (8,-jxk =+ 8,‘/()(_,' + (Sij,‘)DzN —+ X,'XijDBN
M,ijkl x, k) = A~,'jle2N + E,’jk’D3N + XfXijX1D4N
M ijim (X, k) = CijtamD*N + DjjiymD*N + XX jxXyXxmD°N
M ijktmn X, k) = EijtimnD3N + EjitmnD*N + Gijigmn DN + XX jXiXiXmXn D°N (B.8)
where:
(k) = —k(k+R)e®* T(rk) = rcosh(%) —k sinh(%) (B.9)
(k)
DN = 3 I'(r, k)
PN — @ (k) | sinh(f) _3T(r k)
r3 i k 2
DN — ® (k) [sinh(p) 3T (k)
r3 i k 2
®(k)[ 105T(r,k) 45sinh(f) 10cosh(f) sinh(L)
AN — _ k) k K
PN="""7"" T er e
DSN — ® (k) [ 945 (r, k) B 420sinh(y) N 105 cosh(}) 15 sinh(}) N rcosh(p)
r7 i r4 kr2 k2r k3 k4
®(k)[ 10395I(r,k) 4725sinh(f) 525cosh(f) 210sinh(f) 21cosh(%) sinh(%)
6N _ k7 k k7 k k
DN = 7oL 16 + kr4 k2r3 k3r2 kAr + k5 (B.10)
and

Aijkl = 8;j0u + Sudji + 8k di

Bijui = 8ijXiX1 + Sk Xy + 8 pXiXy + 8yX Xy, + 8 jiXixXy + SpxiX;

Cjk,m = 8ij0iXm + S jiXm + S jkbuXm + 8ijOkmXi + 8ijOymXk + SikS jmXi + SikSimXj + 8k SimX,
+ 8k OpmXi + 618 jmXk + SitOkmX;j + 8j10imXk + 8 j10kmXi + SySimXj + Sd jmX;

ﬁijk,m = 8ijXiX)Xm + OipXjXXm + & kXX Xm + SyX Xy Xm + 8 jiXiXpXm + SeXiX jXm
+ SimX i XpX[ + 8 jmXiXiX) + SpmXiX ;X[ + SymXiX jXy,

Eijamn = 8ij8ki8mn + 88 18mn + 81x818mn + 8ijkmSim + 8ii81mSkn + 88 jmSm + SikSimSjn + & jxSimSin
+0k01mBin + 818 jmSikn + 8itSkmSin + 818imbin + 8 j10kmSni + SikGimSjn + 81k jmOni

F,-jk,mn = 8ij0kXmXn + ik jiXmXn + 0 jk0iXmXn + 8;jOkmXiXn + 8ij0umXiXn + 8ikd jmX1Xn + OikOymX jXn + & jkSimX(Xn
+ 8 jkOpmXiXn + 810 jmXiXn + 8itSkmXjXn + 81 8imXXn + 8 j10kmXiXn + SiSimX jXn + 810 jmXiXn + 0ijSknXiXm
+ 8ik S jnXiXm + 8 jkSinXiXm + 8318 jnXyXm + 81 8inXiXm + Sk SinXjXm + Simd nXiX) + 8 jmOinXiX) + OpmSniX Xy
+ 81mOinX Xk + 8ij0mXiXim + SikSniXjXm + 8k SmXiXm + Oy OknX jXm + 8 j10knXiXm + 818 jnXiXm + OimOknX Xy
+ 8 jmOknXiX| + SgmOjnXiX| + SimOnjXiXy + 8ijSmnXiX| + SikOmnXjX( + & jkSmnXiX; + SitSmnX Xy + 0 jiOmnXiXy
+ SSmnXiXj + SimOmX Xk + 8 jmOniXiXy + OgmOniXiXj + SjmOynXiX
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Gijkimn = OijXkXXmXn + 03X jXiXmXn + 8 i XiX|XmXn + 8iX jXgXmXn + & jIXiXkXmXn + OkXiX jXmXn + OimX j XX Xn
+ 8ijiXkX1Xn + (Ska,'XleXn + 5[mXinXan + (S,’anXkXIXm + (San,'XleXm + (San,'XleXm + (Sn[X,'XijXm

+ (SmnXinXkX[

The average of the third integral and its derivatives in spherical inclusion are:

(M(x,k))g = k> + %31&
My k), = 2OTW;,
(M i1 (%, k)>9 = q)(5’;)31,:2(k)'§1'jk1 = CD;I%l;Z(k) (84811 + 8y + 8k b))
(M ijimn (%, k))Q = %Eiﬂdmn
D )T (k)

= — i (8ij81a0mn + 80 18mn + 8 k8 Smn + 8i8kmSin + 8ij8imSin + 8k jmSin + SikSimbin

35R3k4

+8k0imOin + 8 k0imSin + 8118 jmSkn + S:110kmS jn + 810imOkn + 8i8kmOni + S1Simdjn + S1ied jmSni)

(M (X, k) g = (Mij(X, K)o, = (Mjjuam (X, k), = O

where ® (k) = —k(k + R)e ®*  T'(k) = Rcosh (E) — ksinh (I:

k

B.2. Cylindrical inclusion

The analytical expressions of the first two integrals are found in Ma and Gao (2010).

They are:

YX) = g5 (@ 07+ 0r)

pX) = 5@ +c3)

and

1
Yapyp = —Z(5aﬂ5yp+5a1/5ﬂp+5ﬁ;/5ap)

1
¢,aﬂ = _jaaﬂ

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

where z = ,/x% +x§ and cq, ¢y, c3 are constants whose values are of no interest here since only the derivatives of 1/(x) and

¢(x) are involved in the expressions of Eshelby tensors (Ma & Gao, 2010).

The analytical expressions of the third integral in Eq. (3.13) for a cylindrical inclusion are given by Cheng and

He (1997) and Ma and Gao (2010):

M(x, k) = k2 + <I>(I<)10(IZ—<)

(B.18)

where ® (k) = —kRK; (%), Io(f) and 1(1(%) are 0 order and 1 order modified Bessel functions of the first kind and second

kind respectively.
By defining N(z. k) = M(x. k) and D = 1 £, there are:
D'N = Q(k? l,(E

(kz)! "\k

), [>1, no summation for [

then:
Ms(x,k) =0
M, (X, k) = x,DN
M 45 (X, k) = 845DN + XoXgD*N
M oy, (X, k) = (84pXy + SayXp + 8y X )D?N + Xo XX, D°N
Mgy o (X k) = Ay, ,)D?N + By g, yD>Ntxaxgxy X, DN
Mgy ot (%K) = Capy e D’N + Dapy e D*N+XaXpXy Xp X DPN

(B.19)
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Mgy pec (X, k) = Egpypec DN+ By pe DN + Gy e c DN + Xo XXy X pXe X DN (B.20)
where:
Aapyp = SupByo+8ay8pp+0py8ap
Bupyp = SupXyXo + SayXgXp + 8y XaXp + SapXyXg + 8 pXaXy + 8pyXaXg
Capyoe = BapBypXe + BuySp,Xe + 8y BupXs + BapdyeXp + 8upBpsXy + Suy SpeXp + By 85X + 8 BagXy
+0py 8 pXa + 8apdyeXpg + SapdpeXy +0pp0ueXy +3pp0yeXa +OpydueXp + Opy SpeXa
Dapype = SupXyXpXe + SayXpXpXe + 8y XaXpXe + SapXyXpXs + g pXaXyXe + 8oy XaXpXs
+ 80 XgXyXp + 8geXaXyXp + 8, eXaXpXp + O XaXpXy
Eapypss = Sapdyodsc + 8ay8ppdec + 8, Supdec + 8apbysdpe + 8updpedyc +BaySpedoc + Say 8 g
+8py8uz8pc + 8y 8¢ pdac + 8updyedpe +0apdpedyc +8pp8uedyc +8pp0ye8us +8pySardpe
+ 85y 8pedas
Fapypes = SapdypXeXs + Bay8ppXeXs + 85y SupXeXs + BapdyeXpXs + 8upSpeXyXs + Suy SpeXpXs
+8ay8peXpXs + 8py SuXpXs + Oy B pXaXs + 8apdyeXpXs + dapBpeXyXe + 8pplarXyXs
+088p8yeXaXs + 8py BugXpXe + 8py OpeXaXc + 8updy cXpXe + apdpcXy Xy + Bapde Xy Xp
+ 8y 88 XpXe + Say OpcXpXe + 8oy 8 XpXp + Oy SacXpXe+0py, 8pcXaXs + Opy O XaXp
+8apSy cXpXe + SupdpcXyXe + 80pOscXyXpg + 0p,0ucXyXe + 88,0y cXaXe + 8,88 XaXy
+ 8oy 8ucXpXe + 8pyOpcXaXe + 8py e XaXpg + 80z 8pcXyXp + Sae Sy cXpXp + 80z 8pcXpXy
+8p:8acXyXp + 8pe 8y cXaXp + SpedpcXaXy + 8y£acXpXp + 8y £8pXaXp + 8y e 8pcXaXp
+8p680cXpXy + 8,608 XaXy + 8,ps8y cXaXp
Gapypec = SupXyXoXsXe + SayXpXpXeXe + 85 XaX pXeXe + SapXy XpXeXe + 8 pXaXy XeXs + 8 py XaX pXeXe
+80eXpXy XpXe + OpeXaXy XpXe + 8y eXaXgXpXs + 8 peXaXgXyXe + SucXpXy XpXe + 8 g XaXyXpXe

+ 8y cXaXgXpXe + OpcXaXpgXyXe + Or XaXgXyXp (B.21)
The average of the third integral and its derivatives in cylindrical inclusion are:
R R
(M(x,k)) g = k* — 2k°K; (7)11 (7)
k k
R R
(M ap(x k), = —84pK <E>I1 (E) (B.22)

1 R R~ 1 R R
<M~aﬁrp(x’ k)>sz = _@Iﬁ(ﬁ)h(ﬁ)/\aﬁw =k (E)h (E)(‘Saﬂfsyp +8aydpp +8apdpy)

1 a a\ a
(M-Otﬂyﬂég(x’ k)>g = _mlﬁ (ﬁ)h (E)Eaﬂypég
1 a a
= 5k (E)h (E) (8apBypdsc + 8uydppdsc + 8pyBaplec + 8updyedps + 8updpedyc
+0uy8ps8ps + Baydpsdpc + 8pyBasBps +8py 8 pdac + Bapdyedpc + 8apdpsdyc
+8pp00s0yc + 80y £8ac +8pydardps +0pydpedac)
(Mo (X, k) g = (Mapy X, K)o, = (Mapype (X, k), =0

B.3. Ellipsoidal inclusion
a and b are defined as the half short axis and half major axis of an ellipsoid respectively. And the major axis lines with

axis xs.
Because only the derivatives of ¥/(x) and ¢(x) are involved in expressions of Eshelby tensors, the expressions of the two
integrals are too complicated to be listed here. Their derivatives are (Mura, 1987):

Vijia = —8ij8ull — atlic] — (8uji + Sda) [ — atly] (B.23)
@.ij = —0iili (B.24)
where
=% L_1_ 2 _ 2. 82 o _ 1 p*(3g-2)
11—12—2, 13—1 g, 0113—0123—2(p2_1), b133_3 3(p2—1)
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3g-2

1
2 2 g2y 1 ‘<
0111—(1122—‘1112—4 80 -1

p>1 g= W[pﬁ—coshl(p)]
p —_—

p<1 g= %[cosh’l(p) - py/1-p?] (B.25)
(1-¢7)
In these formulas, the repeated lowercase indices are summed up from 1 to 3, the uppercase indices take on the same
numbers as the corresponding lowercase ones but are not summed. And @y =a, =a, a3=b, p=Db/a
According to Ma and Hu (2006), the third integral can be simplified as:

—r/k 9
M(x, k) = %/ge dx = k2 — k g/o [p(k) - A(x, k)]du (B.26)

. _ 1 u+b2 u+b2 2 2
where: p(k) = m(l + % u+a2)exp(—% m), u = b°tan“6

A(x, k) = Iy(Bq) cosh (Cx3) (B.27)

1 u a
_ 2 2 B= — C=
q X1 4+ X%, k"u—i—az’ Wit a

Iy is the Mth order modified Bessel function of the first kind.
Its derivatives are (Ma & Hu, 2006):

Mix. k) = k2 — k22 /m [p(K) - A ;(x, k)|du
0
M i(x. k) = K k22 / pk) A 4i(x, k) |du
M i (X, k) = k? — p(k) - A (x, k)]du
z]kl(x k) = k2

[
[
[p(K) - Ay (%, k) ]du
[p(k) - A i (. k) |du
[

3,

3,
Maan(.) = 12~ 3 [~
kf/

M jkgmn (X, k) = k* — P(k) - A jjkimn (X, k)]dll (B.28)
where
A (X, k) = x4DN
A op (X, k) = 845DN + XoxgD*N
Aapy (X, k) = (8upXy + 8ayXpg + 8y Xa)D*N + xaX X, DN
AgpypX k) = aﬂpr N+BaﬁW,D N+xaxﬁxyxpD N
Aapyps %K) = Capy peD’N + Doy ps D*N-+xaXg Xy X% DN
Apypic X K) = Eapype DN+ Fupy pe cD*N + Gy o DN + XXXy XpXe X DON (B.29)

The Greek letters range from 1 to 2, and the expressions of A

apyp Bapyor Capypsr Dapyper Eapypscr Fapypts Gapypss
are the same as (B.21).

D= %diq N(q) = A(x, k) = Io(Bq) cosh (Cx3), (B.30)
!
D'N = cosh (Cx3)(g> I(Bg), !=>1, I is an integer and no summation here (B.31)

and
A3 = Csinh (Cx3)Ip(Bq)
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A 33 = C?cosh (Cx3)Io(Bq), A a3 = (A o) 5
A3 = Csinh (Cx3)lo(BA). A a33 = (A o) 33. Aaps = (A ap) ,
A 3333 = C*cosh (Cx3)Io (Bq), A 0333 = (A o) 333, A.apzz = (A, aﬁ)'33s

Aapys = (A, D‘ﬂ)’)g
A 3333 = Csinh (Cx3)Io(BA). A a3333 = (A, o) 3333 A ap333 = (A ap) 35

Aapyss = (A’ aﬂy),33’ Aapyps = (A» aﬂyp),g
A 333333 = C° COSh (Cx3)Io(BQ). A 033333 = (A o) 33333 A apzzzs = (A aﬂ)v3333,

A,aﬂy333 = (A, aﬂ}’),333’ A’aﬂwﬁ?» = (A, aﬁyp)gg’ A,aﬂwﬁ = (A, aﬂypé),g (B.32)
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