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Abstract
The post-processing of the measured velocity in particle image velocimetry (PIV) is a critical step in reducing error and pre-
dicting missing information of the flow field. In this work, time-resolved PIV data are incorporated with the incompressible 
Navier–Stokes (N–S) equations to reduce the measurement error and improve the accuracy. A pressure correction scheme 
(PCS) based on the projection method is adopted to solve the N–S equations, and an optimization algorithm is introduced to 
balance the fidelity between the PIV data and the numerical solutions. The PCS for PIV data, called PIV–PCS, cannot only 
reduce the errors in the velocity divergence and the curl of the pressure gradient but also ensure that the flow field satisfies 
the dynamic constraints imposed by the momentum equation. An important weight coefficient s that balances the level of 
the velocity modification with the residual of the governing equation is defined and numerically assessed. A method for 
optimizing the value of s is provided. The new approach is evaluated by two time-resolved PIV experiments: one on the 2D 
wake flow of a circular cylinder at low Reynolds number and one on tomographic PIV for the 3D wake flow of a hemisphere 
at high Reynolds number. All the numerical assessments and experimental applications are compared with the divergence-
free smoothing (DFS) method. The results indicate that the presented PIV–PCS method is superior to the DFS method in 
terms of reducing the measurement error and recovering the real physical flow structures.

1  Introduction

Particle image velocimetry (PIV) is regarded as the most 
reliable non-invasive technique to quantitatively measure 
the motion of flows. With the development of tomographic 
PIV (Elsinga et al. 2006), three-dimensional (3D) flow fields 
can be obtained with high accuracy. The PIV technique has 
been widely used in the field of experimental fluid mechan-
ics. However, people want to access more information about 
flows from PIV, such as pressure, density and temperature, 
and not simply velocity. Meanwhile, since the velocity is 
deduced from the particle intensity distribution in 2D images 
or 3D volumes by cross-correlation or particle tracking algo-
rithms, PIV measurements often suffer from various sources 

of experimental error such as insufficient tracer particles, 
out-of-plane issues of particle motion and ghost particles in 
tomographic PIV. The errors in the velocity field not only 
affect the identification of flow structures but also can propa-
gate into the calculated pressure, acceleration and other flow 
quantities (Andrea and Bernhard 2016). Therefore, error 
reduction and missing information prediction (such as pres-
sure, density and temperature) are of important significance 
for PIV community.

This paper only focuses on the error reduction in PIV. 
Therefore, available error reduction methods are summa-
rized in Table 1, and they are classified into three catego-
ries: mathematical models, kinematic models and physical 
models. This classification strategy is based on the imple-
mentation of error reduction, not limited to post-processing. 
Moreover, methods listed in Table 1 are not only for reduc-
ing measurement error, they can also serve for achieving 
other purposes. Error reduction by post-processing methods 
usually consist of data validation, interpolation and smooth-
ing (Garcia 2011). Data validation is applied to identify the 
outliers, where one of the most popular methods for data 
validation in PIV software is the normalized median test 
proposed by Westerweel and Scarano (2005). After the 
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outliers are detected, the incorrect and missing velocities 
need to be replaced by a local mean or linear, spline or Krig-
ing interpolations (Gunes and Rist 2007). Data smoothing 
is usually adopted in the final step to reduce the random 
noise in PIV measurements. This is achieved by convolving 
the velocity field with a proper filter kernel (Raffel 2007). 
To improve the efficiency of post-processing, Garcia (2011) 
proposed a robust post-processing technique that performs 
all the steps simultaneously. This method combines a penal-
ized least squares approach (PLS) and the discrete cosine 
transform (DCT) to validate and smooth the PIV data, called 
DCT–PLS or the all-in-one method. Based on DCT–PLS, 
a vector field correction method was proposed to automati-
cally classify the flows with scattered and clustered outliers 
and to treat them in a discriminatory manner (Tang et al. 
2017). Proper orthogonal decomposition (POD) is another 
effective approach to restoring gaps in data (Venturi and 
Karniadakis 2004), and detecting and replacing spurious 
vectors (Wang et al. 2015; Higham et al. 2016). Although 
conventional methods normally achieve good performances 
in terms of handling errors in PIV data in a mathematical 
manner, they unfortunately do not satisfy the physical laws 
of flow motions, which could be either the kinematics or 
dynamics of fluids.

For time-resolved PIV (TR-PIV) data, the temporal infor-
mation of the image sequences regarding particle kinemat-
ics can be used to reduce both the random and bias errors. 
These methods are normally embedded in the stage of raw 
velocity estimation. Sciacchitano et al. (2012b) proposed 
a multi-frame pyramid correlation that combines the cor-
relation maps of different temporal separations to enhance 
the precision of cross-correlations. For the multiplicative 
algebraic reconstruction technique (MART) of tomographic 
PIV, a motion tracking enhancement MART (MTE-MART) 
method was proposed to improve the reconstructed parti-
cle intensity fields by eliminating suspicious particles who 
could not be tracked among multiple exposures (Novara 
et al. 2010; Lynch and Scarano 2015); such particles are 
normally considered as ghost particles. It was found that 
this method is more effective than MART in terms of com-
putational cost reduction and ghost particle suppression. 
Recently, an advanced particle tracking velocimetry (PTV), 
called the shake-the-Box (STB) scheme (Schanz et al. 2014, 
2016), was used to obtain high-resolution velocity fields for 
volumetric flow measurements. The STB method uses the 
temporal information to improve the precision of locating 
particles. Therefore, this method enables the processing of 
densely seeded flows on a similar order of seeding density 
within the tomographic PIV measurements (Schneiders and 
Scarano 2016).

Regarding fluid dynamics, the governing equations, 
especially the N–S equations, can be considered as poten-
tial physical constraints for displacement estimation or the 

post-processing of PIV/PTV data. Given the constraint from 
the governing equations, certain unmeasured quantities can 
be deduced from velocity fields. For instance, the unmeas-
ured component of the velocity gradient tensor �w∕�z can 
be directly calculated from the incompressible continuity 
equation in a dual-plane PIV measurement (Ganapathisub-
ramani et al. 2005, 2006). Another successful application 
is to access the unmeasured pressure field by solving the 
incompressible momentum equation (Liu and Katz 2006; 
John et al. 2010; Oudheusden 2013). Along these lines, 
Sciacchitano et al. (2012a) recovered the missing velocity 
field of PIV measurements directly by solving the N–S equa-
tions. The authors used an incompressible finite volume N–S 
solver to fill the gappy data by imposing boundary condi-
tions (BCs) from PIV data. The results indicated that the 
accuracy of this method is higher than that of mathematical 
interpolations.

In addition to the prediction of flow information, the other 
general applications of the governing equations are in reducing 
measurement error or recovering spatial/temporal details by 
forcing the governing laws to constrain the experimental data. 
Okuno et al. (2000) constructed a multi-objective optimization 
problem that consists of the residues of the momentum equa-
tion, the continuity equation and the difference between the 
estimated and observed image data to solve the velocity. They 
used an evolutionary programming (EP) to obtain the solu-
tions. Suzuki et al. (2009) developed a hybrid unsteady-flow 
simulation technique by combining PTV and direct numeri-
cal simulation (DNS). As a result, the reconstructed velocity 
field can satisfy the governing equations with a fine-resolution 
compared to numerical simulation (Suzuki et al. 2009; Suzuki 
2012). However, this hybrid simulation needs to be performed 
on the full computational mesh, which is the same as the mesh 
used in DNS. The vortex-in-cell (VIC) method proposed by 
Schneiders et al. (2014) uses the vorticity transport equation 
to increase the temporal resolution of a TR-PIV measurement. 
Its advanced version, namely the VIC+ method, optimizes for 
BCs and vorticity field to fit the vorticity transport equation 
and the measurement data, which are adopted to reconstruct 
dense velocity of volumetric measurements (Schneiders and 
Scarano 2016). With the sliding VIC method, multiple instan-
taneous measurements at a single time instant are achieved 
by both backward and forward time integrations with the 
VIC simulation. Averaging the multiple repeatedly simulated 
measurements can reduce the random noise without the effect 
produced by spatial and temporal smoothing (Schneiders 
et al. 2015). A B-spline-based method called ‘FlowFit’ and 
proposed by Gesemann et al. (2016) uses a joint optimiza-
tion of divergence and acceleration as physical constraints 
to recover spatial details and pressure as well as to reduce 
noise. The weighting factors in the FlowFit method need to 
be determined based on the flow properties and measurement 
qualities (Schneiders and Scarano 2016). Moreover, part of 
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the N–S equations can also be used to optimize the PIV or 
PTV data. The divergence-free condition is used to reduce the 
noise in PIV measurements (de Silva et al. 2013; Wang et al. 
2016a, 2017), and an irrotation correction (Wang et al. 2016c) 
is applied to the pressure gradient to improve the accuracy of 
the pressure estimation.

As listed in Table 1, the N–S equation has already been 
adopted to determine the velocity from noisy measurement 
data by Okuno et al. (2000) and Schneiders et al. (2015). In 
this work, we will explore the suitability of solving the N–S 
equations in the measurement domain using the measured 
BCs. For combining the numerical solver and noisy PIV 
data, a new optimization function is deduced from the pro-
jection method of computational fluid dynamics (CFD). The 
robustness of this method to noise is discussed in detail. Two 
experimental applications are considered: a 2D flow around a 
circular cylinder at low Reynolds number and a 3D wake flow 
of a hemisphere with a laminar boundary layer.

2 � Working principle

The working principle of error reduction for TR-PIV data 
based on N–S equations will be introduced for the case of a 
two-dimensional incompressible flow for simplicity. The 3D 
case will be analyzed in the experimental applications. Under 
the two-dimensional hypothesis, this method is appropriate 
only if the out-of-plane component is negligible with respect 
to the other two components in the measured plane. A detailed 
discussion about the two-dimensional hypothesis can be found 
in the paper by Sciacchitano et al. (2012a). The two compo-
nents lying within the measured plane are denoted by u and 
v, corresponding to the horizontal x direction and the vertical 
y direction.

2.1 � The pressure correction scheme for projection 
method

The N–S equations in non-dimensional conservation form for 
two dimensions (2D) read

In this equation, the velocity ( � = [u, v] ) and coordinate 
( � = [x, y] ) are scaled by a reference velocity Uref  and length 
Lref . Thus, the time is normalized by Lref∕Uref , the pressure 
p is scaled by �U2

ref
 , and the Reynolds number Re is equal 

to �UrefLref∕� . The parameters � and � are the density and 
dynamic viscosity coefficient, respectively. The subscript 

(1)

ut + (u2)x + (uv)y = −px +
1

Re
(uxx + uyy)

vt + (uv)x + (v2)y = −py +
1

Re
(vxx + vyy)

ux + vy = 0.

represents the partial derivative with respect to time t or the 
x and y directions.

Projection methods are widely adopted to solve the N–S 
equations. These methods were proposed in the late 1960s 
in the ground-breaking work of Chorin (1968) and Témam 
(1969). The most attractive feature of projection methods is 
that, at each time step, one only needs to solve a sequence 
of decoupled elliptic equations for the velocity and pressure 
(Guermond et al. 2006). Moreover, an optimization algorithm 
can easily be introduced into the linearized equation of the 
velocity. The pressure correction scheme, hereafter abbrevi-
ated PCS, is a time-marching technique adopted in projection 
methods (Guermond et al. 2006). Comprehensive descriptions 
of the numerical method are given in the paper by Guermond 
et al. (2006) and the book by Strang (2007). In this work, we 
will make a brief introduction to the original PCS. In PCS, the 
N–S equation is decomposed into three terms: the nonlinear 
term (Eq. 2), the viscosity term (Eq. 3) and the pressure cor-
rection term (Eq. 4):

The solution at the k + 1 time step is estimated in the fol-
lowing three steps:

Step 1 Calculate the intermediate variable �∗ in the explicit 
nonlinear term as Eq. 2. The velocity field �� and pressure 
field pk have been solved from the previous step.

Step 2 Solve the intermediate variable �∗∗ in the implicit 
viscous term as Eq. 3 by constructing a linear equation set. If 
we use a square matrix �u and �v to replace the Laplace opera-
tor of u and v, this equation can be rewritten in matrix form:

where � is the identity matrix. An implicit treatment of the 
viscous term can relax the restriction on the time separation 
dt.

(2)

u∗ − uk

dt
= − (uk ⋅ uk)x − (uk ⋅ vk)y − pk

x

v∗ − vk

dt
= − (uk ⋅ vk)x − (vk ⋅ vk)y − pk

y
,

(3)

u∗∗ − u∗

dt
=

1

Re
(u∗∗

xx
+ u∗∗

yy
)

v∗∗ − v∗

dt
=

1

Re
(v∗∗

xx
+ v∗∗

yy
),

(4)

uk+1 − u∗∗

dt
= − pk+1

x
+ pk

x

vk+1 − v∗∗

dt
= − pk+1

y
+ pk

y
.

(5)

(
� −

dt

Re
�u

)
�∗∗ = �∗

(
� −

dt

Re
�v

)
�∗∗ = �∗,
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Step 3 Solve the Poisson Eq. 6. This equation is obtained 
by applying the divergence-free condition to the velocity 
field ��+� . Thus, the pressure correction Eq. 4 can be rewrit-
ten as

Here, ∇ ⋅ �∗∗ is the divergence of the intermediate variable 
calculated from Eq. 3. Both of the terms on the right-hand 
side of Eq. 6 are known, and this equation can also be writ-
ten as �pp

k+1 = b∗∗ if the Laplace operator is replaced by a 
square matrix �p and the terms on the right-hand side are 
replaced by b∗∗ . After the pressure pk+1 is calculated by solv-
ing the Poisson equation, the velocity field is updated:

The velocity field ��+� can gradually satisfy the divergence-
free condition after this correction.

The �∗ and �∗∗ are the intermediate variables of the 
velocity field, and the parameter dt is the time step. In this 
context, the time derivative is approximated by a backward 
difference formula of first order (BDF1), and the terms on 
the left-hand side of Eqs. 2–4 can also be replaced by a high-
order BDF or the more popular Adams schemes (Guermond 
et al. 2006). These Poisson equations (Eqs. 5 and 6) can be 
easily and efficiently solved by applying a sparse Cholesky 
decomposition.

2.2 � Optimization with the PIV field

PIV data are always contaminated by varying degrees of 
noise. It is intuitive and logical to optimize the PIV velocity 
field by introducing physical constraints imposed by the N–S 
equations. We propose a modified PCS combined with PIV 
data (PIV–PCS) to optimize the PIV field. Figure 1 shows 
the flowchart of PIV–PCS optimization algorithm. From the 
equations listed in Fig. 1, we can clearly see the differences 
between PIV–PCS and original PCS, and these differences 
will be introduced in this section.

For TR-PIV, the PIV-based pressure field pm can be 
calculated by the Poisson equation or linear integration 
approaches (Liu and Katz 2006) from the measured velocity 
field �m , the subscript ‘m’ denotes measurement. Instead 
of the numerical solution pk from the previous step for the 
original PCS, in PIV–PCS, we use the estimated pressure 
pk+1
m

 at the k + 1 time step as the initial pressure for Eqs. 2 
and 4. The modified equations can be found in Fig. 1 of 
flowchart of PIV–PCS. We do not use the pressure gradient 
deduced from the PIV data because the error in the pressure 
gradient can be amplified by the time derivative. If we accept 

(6)Δpk+1 = Δpk +
1

dt
∇ ⋅ U

∗∗.

(7)
uk+1 =u∗∗ − dt ⋅ (pk+1

x
− pk

x
)

vk+1 =v∗∗ − dt ⋅ (pk+1
y

− pk
y
).

the assumption that the PIV data are sufficiently accurate 
to provide the BCs, it is reasonable to conclude that the 
numerical solution of the pressure pk+1 in Eq. 4 is equal 
to pk+1

m
 . Substitute this conclusion into Eq. 7 ( pk is already 

replaced by pk+1
m

 ), it will be proved that the numerical 
solution �∗∗ = �k+1

m
 when the PIV data are free of noise.

Considering the measurement error, there are two 
significant problems when numerically solving the velocity 
and pressure in the measurement domain by imposing 
BCs and initial conditions from the PIV data. First, the 
error in the measured velocity fields will propagate from 
the PIV data to the numerical solutions. Second, the time 
separation is always larger than the requirement of numerical 
simulation, this will result in a temporal truncation error for 
time derivative. The influence of the temporal truncation, 
however, is much smaller than the measurement error 
propagation. Moreover, PIV-based pressure measurement 
errors are dominated by spatial modulation and not by 
temporal truncation errors (Lynch et al. 2014; van Gent 
et al. 2017). Thus, the optimization in PIV–PCS is mainly 
achieved by reducing the measurement error propagation. 
This technique consists of minimizing a criterion that 
balances the fidelity of the PIV data with a penalty term 
that corresponds to the numerical solution. According to 
the method proposed by Garcia (2010), one thus seeks to 
minimize the cost function of u:

where || ⋅ || denotes the L2 norm. �∗∗ is the unknown velocity 
field, which will be solved by minimizing Ju . The cost func-
tion of v has the same form as Ju . �k+1m

 is the velocity at k + 1 
time step obtained by the PIV measurement, and the param-
eter N is the grid number of the computational mesh. � is 
the location of the simulation grid, and �∗ is the temporary 

(8)

Ju =
1 − s

N

∑

�

‖‖�
∗∗ − �k+1

m
(�)‖‖

2
+

s

N

∑

�

‖‖‖‖

(
� −

dt

Re
�u

)
�∗∗ − �∗

‖‖‖‖

2

,

Fig. 1   The diagram for PIV–PCS method. The equations are given in 
matrix form for brevity
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result obtained from Eq. 2. The parameter s is a real positive 
scalar that controls the weight of the numerical solution: as 
s increases from 0 to 1, the numerical component in �∗∗ also 
increases. The first term on the right-hand side represents the 
residual sum of squares between the solution and the PIV 
data, in which �k+1

m
(�) denotes the PIV field interpolated on 

the computational grid. In this work, a highly accurate spline 
interpolation is adopted. The second term on the right-hand 
side is the penalty term of Eq. 5.

The minimization of Ju and Jv yields the following linear 
system that can be used to update the �∗∗ and �∗∗:

Here, �̃u and �̃v are equal to � − dt

Re
�u and � − dt

Re
�v , 

respectively. The superscript ‘ T ’ stands for the transpose. 
The difference between �̃u and �̃v is caused by the 
application of a staggered mesh, which will be introduced 
in Sect. 2.3. Equation 9 is used to replace Eq. 5. In these 
linear systems, �∗∗ and �∗∗ are the only unknown variables 
if the parameter s is given.

The weight coefficient s is in the range of 0 ≤ s ≤ 1 . 
When s increases from 0 to 1, the result of Eq. 9 shifts from 
measurement to numerical simulation. Even if the parameter 
s is forced to be 1, the uncorrected BCs may contaminate 
the numerical solutions. Moreover, the high wave-number 
measurement error may be amplified by the nonlinear opera-
tor (Suzuki et al. 2006, 2009). In the paper by Suzuki et al. 
(2009), a linear combination between DNS and PTV data 
was proposed to achieve a high-fidelity simulation. They 
used the linearized N–S equation to analyze the stability of 
the hybrid algorithm when the time separation dt is small. In 
this context, we adopt the suggestion that the s should satisfy

so that the error will not be amplified under small dt. This 
equation is deduced from the Kelvin–Helmholtz instability 
of a shear layer, and the coefficient � is approximately 0.2 for 
a planar shear layer in the paper by Suzuki et al. (2009). The 
maximum vorticity in Eq. 10 is calculated from the mean 
velocity field excluding the boundaries. In this context, we 
propose that � should be approximately ten for the PIV–PCS 
method from the numerical assessments, which will be intro-
duced in Sect. 3.1.

The optimized velocity field can be obtained by substitut-
ing �∗∗ from Eq. 9 into Eqs. 6 and 7. We must focus on the 
pressure solved from Eq. 6 whose source terms contain the 
pressure and divergence of the measured velocity (Suzuki 
et al. 2009). The solutions obtained for pressure is used to 
satisfy the divergence-free condition, which implies that the 

(9)

[
(1 − s) ⋅ � + s ⋅ �̃T

u
�̃u

]
�∗∗ = (1 − s) ⋅ �k+1

m
+ s ⋅ �̃T

u
�∗

[
(1 − s) ⋅ � + s ⋅ �̃T

v
�̃v

]
�∗∗ = (1 − s) ⋅ �k+1

m
+ s ⋅ �̃T

v
�∗.

(10)s ≤ 1 − �dt
||||
�v

�x
−

�u

�y

||||max

,

pressure solved from Eq. 6 is not the real physical pressure 
when the velocity field is contaminated by errors.

2.3 � The staggered mesh and discretization method

In the field of CFD, a staggered mesh, as shown in Fig. 2, is 
a classical scheme to overcome numerical instabilities. Nor-
mally, u, v and p are defined at different points, the pressure 
pi,j is located at the center of the (i, j) cell, the horizontal 
velocity ui,j is placed on the right vertical cell interfaces, and 
the vertical velocity vi,j is placed on the above horizontal cell 
interfaces. The original points of u, v and p are located at the 
bottom-left corner of the computational domain, and their 
positions are different, as shown in Fig. 2b. The variables at 
the boundary points are unknown, and the method of apply-
ing the boundary conditions will be introduced in Sect. 2.4.

The spatial discretization can be conveniently performed 
on the staggered grid. According to Sect.  2.1, the N–S 
equation is decomposed into three types of terms: nonlinear 
terms, viscosity terms and pressure correction terms, and 
solved step by step. From Eq. 2, it is obvious that (u2)x and 
(uv)y should be defined at the same points as u, and (uv)x and 
(v2)y should be defined at the same points as v. Moreover, the 
product uv cannot be directly calculated since u and v are 
defined at different points in the staggered grid. The method 
for addressing the spatial discretization on the staggered grid 
can be found in the book by Strang (2007).

The classical CFL-type stability conditions must be 
satisfied to guarantee the numerical stability. The classical 
CFL number, which is given in Eq. 11, represents the ratio 
between the maximum displacement and the grid node 

(a) (b)

Fig. 2   a The u, v and p grid in a cell; b the diagram of the staggered 
mesh. The thick black line represents the edge of the computational 
domain, and the red and blue vectors represent the horizontal veloc-
ity u and vertical velocity v, respectively. Any point truly inside the 
domain is an interior point, whereas points on or outside the bounda-
ries are boundary points. For the velocity, the solid arrows represent 
the velocity components at the interior points, and the dashed arrows 
represent the velocity components at the boundary points. For the 
pressure, the solid squares indicate interior points, and the hollow 
squares indicate boundary points
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spacing ( dx and dy ). Generally, the CFL number should 
satisfy the stability condition and must be at least less than 
one. If we apply the PIV–PCS method to optimize the 
PIV data, the CFL condition must be considered before 
performing the experiment because the time separation 
between adjacent velocity snapshots and grid node spacing 
is determined by the configuration of the PIV system.

2.4 � The boundary conditions

The above spatial discrete schemes only work for the inte-
rior points of the staggered mesh, and the finite-difference 
equations need to be addressed in a special manner to satisfy 
the boundary conditions. From the discussion in Sect. 2.1, 
we know that the pressure calculated from Eq. 6 is identi-
cal to the measured pressure if the PIV data are accurate. 
This implies that the intermediate variables �∗∗ are equal to 
��+� from Eq. 7. Therefore, it is natural to impose Dirichlet 
conditions on Eq. 9 by interpolating the PIV velocity field 
to the boundary points.

The Dirichlet condition of the pressure at a corner of the 
domain and the Neumann condition (pressure gradient) on 
the boundary nodes are enforced to the Poisson equation for 
pressure. The pressure gradient is estimated from the TR-
PIV measurements by N–S equations. The boundary points 
(the thick black lines shown in Fig. 2) are not located at the 
center of the cells. Thus, the ghost cells (the cells outside 
the boundary) are used to discrete the difference equation on 
the boundary nodes.

Note that the influence of the PIV error on the BCs must 
be emphasized. Especially for the pressure estimation, 
a small velocity error can be magnified by an order of 
magnitude with a small time separation when deducing the 
pressure gradient from the N–S equations at the boundary. 
Thus, the velocity on the boundary needs to be filtered 
beforehand. In the paper by John et al. (2010), three methods 
are proposed to smooth the velocity field. We adopt a POD-
based smoothing method to filter the boundary velocity in 
this paper. The most energetically significant modes are 
used as the physical-based filter, and the last few modes, 
contributing less than 1% of the total energy, are removed 
as noise modes. To make a comparison, BCs with raw PIV 
data are also adopted. These two types of BCs are referred 
to as BCs–POD and BCs–Raw. Note that we only use the 
POD method to obtain the filtered boundary conditions; the 
interior velocity remains as raw PIV data. An effective way 
to address the BCs proposed by Schneiders and Scarano 
(2016) is to find the optimal BCs using an optimization 
procedure such as the VIC+ method.

(11)CFL = max

(
max(�) ⋅ dt

dx
,
max(�) ⋅ dt

dy

)
< 1.

2.5 � Working procedure

The proposed method can be applied to both the 2D and 3D 
data of TR-PIV measurements. Based on numerical assess-
ments, which will be shown in the next section, the PIV–PCS 
cannot reduce the modulation error caused by the interrogation 
window; therefore, the present work primarily concentrates on 
reducing the measurement noise.

Before substituting the PIV data into the numerical equa-
tions, the PIV data need to be normalized by reference velocity 
and length scales. It is noteworthy that the time in the numeri-
cal equations is a non-dimensional variable, not a real time. 
The proposed method has no other restriction on the spatial 
resolution except for the limitation of the CFL number.

Figure 1 shows the flowchart of PIV–PCS optimization 
algorithm, which consists of the following steps:

Step 1 The initial TR measured velocity field �m , which 
is free from large amplitude errors, such as outliers, is fil-
tered by a POD-based smoothing method, as introduced in 
Sect. 2.4. The filtered velocity field is prepared to calculate 
the BCs.

Step 2 The initial pressure field pm is estimated from the 
raw PIV data and BCs. The pressure field is calculated on the 
PIV grid, and a second-order central-difference scheme is 
adopted for both the time derivative and the spatial gradient.

Step 3 The staggered mesh is generated according to the 
measurement domain. The computational domain is made 
smaller than the measurement domain to avoid boundary 
errors in the measurement. The numerical operators �̃u , 
�̃v and �p are generated beforehand into sparse matrices 
because these operators are invariant for each discrete time 
instant.

Step 4 The intermediate velocity �∗ is solved on the stag-
gered mesh from the velocity field �k using Eq. 2. Note that 
the pressure pk in Eq. 2 has been replaced by pk+1

m
 . At the 

first time instant, the �1 is initialized by the measurement 
velocity.

Step 5 The optimized intermediate velocity �∗∗ is solved 
using Eq. 9. The parameter s is determined using the condi-
tion of Eq. 10.

Step 6 The optimized velocity �k+1 is calculated from 
Eq. 7 after solving the pressure using Poisson’s Eq. 6. Note 
that the pressure pk in Eqs. 6 and 7 has been replaced by 
pk+1
m

.
Step 7 Repeat steps 4–6 until all the PIV data are 

post-processed.

3 � Numerical assessments

To assess the PIV–PCS algorithm, a 2D flow around a circular 
cylinder is simulated using an immersed boundary method 
based on the discrete stream function formulation developed 
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by Wang and Zhang (2011). The numerical domain spans 
−4D ≤ x ≤ 20D and −10D ≤ y ≤ 10D , with the cylinder 
being centered at the origin (0, 0), as shown in Fig. 3. The 
diameter of the circular cylinder D is equal to 10 mm. The nor-
malized N–S equation is solved on a 2D uniform mesh with a 
spacing of 0.008D, and the time step is 0.0005. The maximum 
CFL number is approximately 0.08, which is much lower than 
1. A uniform free streamwise velocity U∞ is prescribed at the 
inlet boundary, and an average static pressure of zero is set 
across the outlet boundary (p = 0). The no-slip condition is 
prescribed at the cylinder surface, and the free-slip condition is 
imposed on the remaining domain boundaries. The Reynolds 
number is defined as ReD = U∞D∕� , where U∞ is the free-
stream velocity and � is the kinematic viscosity. In this paper, 
the Reynolds number is set to 100 because the 3D effects can 
be neglected at this low Reynolds number (McClure and Yaru-
sevych 2017).

Synthetic PIV data are obtained by linearly interpolating 
the simulated data in the region 1D ≤ x ≤ 7D and 
−2.5D ≤ y ≤ 2.5D , and the region is the same as the real 
measurement domain introduced in Sect. 4.1. After sampling, 
the spatial spacing and temporal step are 0.0502D and 0.001, 
respectively. This implies that the acquisition frequency 
is up to 1000 Hz. The grid number of the data is 99 × 119 
in the x and y directions, and 2368 frames are sampled in 
a time sequence. To more accurately simulate the real PIV 
data, correlated Gaussian noise is considered to assess the 
performance of the present method (Azijli and Dwight 2015; 
Andrea and Bernhard 2016). Gaussian random noise is added 
to the simulated velocity field as

(12)
un = u ⋅ (1 + �u ⋅ Γu)

vn = v ⋅ (1 + �u ⋅ Γv),

where u and v are the velocity field data and un and vn are 
the noisy data. Normally distributed random noise Γu and Γv 
with a standard deviation proportional to the magnitude of 
each velocity component is added to each exact value (John 
et al. 2010). The noise level ( �u ) is varied between 0 and 
3% in 0.25% increments to estimate the error response. We 
do not consider the large-amplitude outliers because they 
are easily detected, removed and replaced by many methods 
(Westerweel and Scarano 2005; Garcia 2011; Wang et al. 
2015). The spatially correlated Gaussian noise is obtained 
by averaging the independent noisy data with a 3 × 3 ker-
nel (Wang et al. 2017). According to the paper by Garcia 
(2011), the error is estimated using the normalized root 
mean squared error (NRMSE) between the original ( �0 ) 
and optimized data ( 𝐔̂ ) given by

Here,  || ⋅ ||F denotes the Frobenius norm. Because the veloc-
ity will gradually converge to the real solution over time, the 
first 400 frames and the boundary points are ignored when 
calculating the NRMSE. The performance of PIV–PCS 
will be quantitatively compared with the median filtering, 
DCT–PLS and divergence-free smoothing (DFS) methods. 
The median filter is a nonlinear filtering method used to 
reduce noise, and it is commonly used when processing 
PIV data. DCT–PLS, proposed by Garcia (2011), combines 
a penalized least square approach and the discrete cosine 
transform to smooth the PIV data. DFS imposes a diver-
gence corrective scheme on the PLS–DCT method and can 
smooth out both noise and divergence errors simultaneously 
(Wang et al. 2016a).

3.1 � About the parameter s

Because of the measurement error, the weight coefficient s 
is used to balance the results between the numerical solu-
tion and the measurements. The value of s depends on the 
condition of Eq. 10. Figure 4 shows the 2D contours of the 
dependency of the NRMSE of the velocity on the noise level 
under different s. The BCs are addressed without and with 
POD in Fig. 4a, b, respectively. Because the error monotoni-
cally decreases with increasing s from 0 to 0.94, we only 
consider the parameter s in the range from 0.94 to 1.0 with 
an increment of 0.005. Overall, the error is very small. It is 
apparent that the error increases with the noise level for a 
fixed s. Moreover, the error exhibits a rapid increase when s 
gradually approaches 1 for both BCs–Raw and BCs–POD. 
This implies that incorrect values of the BCs will reduce 
the fidelity of the numerical simulations. According to the 
contour map, we propose an optimal s of 0.985 for this case. 
Substituting the optimal value into Eq. 10, � should be on the 

(13)NRMSE = 0.5 ⋅

�‖û − u0‖F
‖u0‖F

+
‖v̂ − v0‖F
‖v0‖F

�
× 100.

Fig. 3   The numerical domain of the simulation of the 2D flow around 
the circular cylinder. A PIV experiment at the same Reynolds num-
ber is also conducted in the region, as indicated by the measurement 
domain. The diameter of the cylinder is 10 mm, and the Reynolds 
number based on that diameter is 100
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order of 10. This is why we suggest that � is approximately 
10 in Sect. 2.2 for the PIV–PCS method.

We also plot the root mean square (RMS) of the differ-
ence between the numerical simulation and PIV–PCS as 
a function of time in Fig. 5. The left and right planes are 
for the streamwise and vertical velocities, respectively. The 
RMS difference of PIV–PCS with s = 0.985 ( � ≈ 10 ) is less 
than those of s = 0.5 and 1.0. For the streamwise velocity, 
the errors in the PIV–PCS are approximately constant over 
time. In contrast, the error given by s = 1.0 for the verti-
cal velocity presents an increasing trend over time due to 
the artificial noise. A proper s ( s = 0.985 ) can suppress the 
increase in instabilities. In addition, the error convergence 
rate of s = 0.985 is much faster than that of s = 1.0.

If the sampling frequency is reduced to 50 Hz (still far 
greater than the vortex shedding frequency), the choice of � 
remains suitable. In this case, the figures, which are similar 
to Figs. 4 and 5, are provided in the “Appendix”. According 
to Eq. 10, the optimal s is approximately 0.7.

3.2 � The performance with respect to reducing error

First, the performance of the PIV–PCS method is evaluated 
without artificial noise. The exact boundary conditions are 

obtained without applying smoothing by POD. Figure 6 
shows the instantaneous contour maps of the vorticity ( � ) 
and normalized pressure 

(
p

1∕2�U2
∞

)
 for the original data and 

the present method, respectively. Both the vorticity fields 
and pressure fields calculated by the present method are 
essentially identical to the original fields. The NRMSEs of 
the velocity, vorticity and pressure are approximately 0.4% , 
1.4% and 0.3% , respectively. This means that the velocity can 
be recovered with high accuracy by the present method with-
out considering noise.

The performance of the PIV–PCS method is assessed 
on the synthetic PIV data with spatially correlated noise, 
and compared with the DCT–PLS, median filter and DFS 
methods in terms of PIV error reduction. Figure 7 shows 
instantaneous vorticity contours addressed using different 
methods. The original data with spatially correlated noise 
are displayed in Fig. 7a, and the data processed by the 3 × 3 
median filtering, DCT–PLS with robust smoothing, DFS 
and the present PIV–PCS method with s = 0.985 are pre-
sented in Fig. 7b–e, respectively. The noise level is 2% . 
From Fig. 7b, c, we can see that the DCT–PLS and median 
filter methods cannot smooth out the correlated noise. Note 
that conventional filtering methods will also smoothen the 

Fig. 4   The 2D contour map of the NRMSE as a function of noise level ( �
u
 ) and s. The parameter s is only presented in the range of 

0.94 ≤ s ≤ 1.0 . a BCs–Raw, b BCs–POD. Note that the range of the colormap is different

Fig. 5   The time evolution of 
the RMS difference between 
numerical simulation and PIV–
PCS for the streamwise velocity 
(a) and vertical velocity (b). 
The black, purple, green and red 
lines represent the results with 
artificial noise and PIV–PCS, 
with s = 0.5, 0.985 and 1.0. The 
noise level �

u
 is 5% . The range 

of the y-coordinate is different

(a) (b)
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Fig. 6   A comparison between 
the original vorticity and pres-
sure field with those calculated 
from the present numerical 
method without adding noise. 
a, b An instantaneous vorticity 
field. c, d An instantaneous 
pressure field. The left and 
right planes are for the original 
data and the present method, 
respectively

Fig. 7   An instantaneous vorticity field. a Raw vorticity field with spa-
tially correlated noise, where the noise level is 2% . b The vorticity 
field processed by median filtering with a size of 3 × 3 ; c The vor-

ticity field processed by the robust DCT–PLS; d The vorticity field 
processed by DFS; e The vorticity field processed by the present 
PIV–PCS method
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original correct data. The DFS achieves a better perfor-
mance using the divergence-free constraint, although the 
contour lines remain distorted by unexpected noise. From 
visual inspection of the contours, the presented method 
shows the best performance on reducing the correlated 
noise among all the tested methods.

The quantitative comparison with respect to error reduc-
tion is given in the plots of Fig. 8. The NRMSEs of the 
velocity and vorticity are given in Fig. 8a, b, respectively. 
Note that the range of the vorticity NRMSE is much larger 
than that of the velocity. When the velocity field is free of 
noise, none of the methods can fully recover the velocity 
because the velocity is already smoothened by the average 
kernel with size of 3 × 3 when adding the correlated noise. 
This result is proved in Fig. 8c, d, where the NRMSEs 
of the velocity and vorticity are plotted as a function of 
filter size under the free-noise condition. The errors in 
both the velocity and vorticity increase with increasing 
filter size. For the velocity, the error in the PIV–PCS is 
always slightly larger than the spatial filtering because of 
the incorrect boundary conditions. For the vorticity, the 
error in the present method is higher than average filter-
ing when the filter size smaller than 3 and slightly lower 
than that of average filtering with increasing filter size. 
The PIV–PCS can not reduce the modulation error of PIV 
data, this implies that the PTV data with high resolution 

is more suitable for the present method. Another phenom-
enon observed in Fig. 8a is that the velocity is deteriorated 
by the boundary filtering when the noise level �u is less 
than 2% , while the error in the vorticity is almost the same 
within the whole range of noise levels. Overall, the error 
in PIV–PCS presents a slowest-growth trend with increas-
ing noise level among all the methods in terms of velocity 
and vorticity.

3.3 � The performance in terms of estimating 
pressure

From the discussions in Sect. 3.2, we know that the measure-
ment error can be reduced by the present PIV–PCS method. 
However, the influence of error on pressure is more compli-
cated than that on velocity. The pressure solved from Eq. 6 
is not what we expect because the term on the right-hand 
side, ∇ ⋅ �∗∗∕dt , is sensitive to the noise. Mathematically, 
the pressure solved from Eq. 6 is used to make the veloc-
ity satisfy the divergence-free condition. As analyzed in the 
PIV-based pressure measurements, the error will propagate 
from the velocity field to the pressure field (de Kat and 
van Oudheusden 2012; Pan et al. 2016). de Kat and van 
Oudheusden (2012) proposed that the RMS error of the pres-
sure �p for Eulerian form can be given as

Fig. 8   The NRMSEs of the 
velocity (left plane) and vorti-
city (right plane) as a function 
of noise level �

u
 (a, b) and 

average filter size (c, d) without 
synthetic noise. In figure (a, b), 
the PIV–PCS with BCs–Raw 

 and BCs–POD are 
compared with median filtering 

, DCT–PLS  and DFS 
. In figure (c, d), the errors 

caused by the present method 
with BCs–Raw  and average 
spatial filter with different sizes 

 are presented
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where �u is the noise in the velocity, h is the grid spacing, dt 
is the velocity time separation, |∇u| is the magnitude of the 
gradient of the streamwise component of the velocity, and 
|�| is the velocity magnitude. For TR-PIV, the error can be 
amplified by a small time separation, and the error in the 
pressure is dominated by the first term of the right-hand 
side, that is,

Here, |�|max is the maximum of the velocity magnitude, and 
the CFL number is defined as Eq. 11. This result indicates 
that the error in the pressure increases with decreasing CFL 
number, although a small CFL number is beneficial to the 
stability of the numerical solution.

In this context, the CFL number of the synthetic PIV 
data is approximately 0.026. If the boundary velocities are 
not smoothened by any filtering approaches, the error in 
the initial pressure estimated from the noisy PIV data is 
approximately 27 times higher than that of the velocity, and 
PIV–PCS cannot decrease the error in the pressure. There-
fore, a method of POD-based smoothing is adopted to min-
imize the effects of measurement noise at the boundaries.

The NRMSEs of the pressure obtained by the present 
method are compared with the result from directly solving 
the Poisson equation (Oudheusden 2013), where the pres-
sure is discretized using a standard five-point formula and 
the gradient of the velocity is estimated by a second-order 

(14)�p ∝ �u

√
h2

2dt2
+ |∇u|2h2 + |�|2

2
,

(15)�p ∝ �u

√
|�|2

max

2 ⋅ CFL2
.

central-difference scheme. The boundary velocity is also 
filtered using the POD method. The NRMSEs of the pres-
sure are plotted in Fig. 9a, where the filled regions indicate 
the standard deviation of the pressure field error. The pres-
sure error of the present method increases from 0 to 23% as 
the noise levels increase, and that of the pressure Poisson 
approach increases from 4 to 10% across the whole range of 
noise levels. The NRMSEs of the pressure under the present 
method exhibit a stronger noise sensitivity than directly solv-
ing the pressure Poisson equation. The error in the Poisson 
approach is up to 4% at �u = 0% . To explore the reason for 
this, we plot the NRMSE of the pressure as a function of 
filter size (Fig. 9b); there is no noise in the synthetic PIV 
data. In this figure, the pressure error in the present method 
is substantially smaller than that of the Eulerian approach. 
This figure indicates that spatial smoothing can contaminate 
the pressure solution, especially when directly solving the 
pressure using Poisson’s equation.

An advantage of the PIV–PCS method is that the pressure 
can be directly solved again from the optimal velocity fields. 
The boundary conditions are imposed from the PIV data; 
thus, POD-based smoothing must still be applied when 
solving the Poisson equation. The error in the pressure for 
each �u is shown in Fig. 9c and compared with that of DFS. 
First, comparing Fig. 9a, c, it is obvious that the divergence-
free correction can improve the accuracy of the pressure 
estimation, although the improvement is not very significant. 
The error in the pressure for DFS still increases from 0 to 
10% when the noise level increases from 0 to 3% . Second, the 
pressure error, solved from the velocity field of PIV–PCS, 
is reduced to approximately 2.2% across the whole range 
of noise levels, being much lower than that of DFS. This 

Fig. 9   The NRMSEs of pressure, where filled regions indicate the 
standard deviation of the pressure field error. a NRMSEs of pres-
sure as a function of noise level, where the red represents the present 
method and the green represents the result from directly solving the 

pressure Poisson equation (Poisson approach). b The NRMSEs of the 
pressure as a function of filtering size without noise. No special pro-
cess is applied to the boundary. c The pressure field is directly solved 
from the velocity field obtained from the DFS and PIV–PCS methods
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implies that the present method can provide an optimal 
velocity field for solving the pressure.

4 � Experimental applications

To verify that the PIV–PCS proposed in this paper is also 
suitable for real-world experiments, two PIV data sets are 
studied. The first data set is a 2D wake flow around a circu-
lar cylinder at the same Reynolds number with the previous 
numerical simulation in Sect. 3. The second data set is a 
3D wake flow of a hemisphere at higher Reynolds number. 
Because there are no perfect reference solutions for experi-
ments, we will use the velocity divergence and pressure-gra-
dient curl to make a quantitative comparison. The boundary 
velocities are processed by BCs–POD. The results of DFS are 
also shown in this part for comparison. Especially, a tempo-
ral polynomial filtering (TF) is adopted within the first 2D 
case to inspect the differences between spatial filtering and 
temporal filtering.

4.1 � 2D wake flow of circular cylinder

This experiment is conducted in a small, low-speed water 
channel with a work section of 380 mm × 380 mm × 800 
mm (height × width × length). To compare with the numeri-
cal solution, the Reynolds number based on the cylinder 
diameter is also set to 100. The free-stream velocity U∞ is 10 
mm/s, with the free-stream turbulence intensity Tu being less 
than 0.6% . Note that Tu is calibrated by PIV measurement in 
the case of free streaming; therefore, the free-stream turbu-
lence intensity may be overestimated due to the noise in the 
PIV data. An acrylic-glass circular cylinder with a diameter 
of 10 mm was horizontally positioned in the middle plane of 
the water channel, and the length of the cylinder is 380 mm. 
The condition of the 2D flow is guaranteed in terms of the 
high aspect ratio of the cylinder and low Reynolds number.

The flow field is measured by a 2D TR-PIV system, which 
contains a semiconductor laser generator and a high-speed 
PHOTRON camera. The continuous 532-nm laser beam was 
expanded to a laser sheet with a thickness of approximately 
1.0 mm, and the output power is approximately 4.0 W. The 
plane of the laser is located along the middle of the cylinder 
in the axis direction. The particle images are recorded by a 
high-speed CMOS camera (Fastcam SA8/15K-M2) with a 
resolution of 1280 × 1024 pixels at a sampling frequency of 
500 Hz. The long side of the image is along the streamwise 
direction. A 50-mm, f1.4 SIGMA prime lens is used. This 
configuration yields a digital resolution of approximately 17 
pixels/mm. The tracers are hollow glass micro-spheres with 
a mean diameter of 12 μ m, and the density is 1.1 g∕cm3 . The 
images are captured 10 min after seeding the particles so 
that the tracers would be uniformly distributed in the water. 

Limited by the memory of the camera, 4000 images are 
captured in one run within approximately 8.0 s.

Before calculating the velocity, image processing, includ-
ing background subtraction and Gaussian smoothing, is 
applied to the raw particle images to minimize the noise. 
Because of the small displacement between two neighbor-
ing frames, the correlation function is computed from two 
records at a separation of 18 frames, corresponding to a 
maximal displacement of approximately 10 pixels. Image 
analysis is performed with a window deformation iterative 
multigrid technique [WIDIM, Scarano (2002)], where the 
final window size is 32 × 32 pixels with 75% overlap. The 
measured velocity field is smoothened to be free of obvious 
outliers (Westerweel and Scarano 2005). The velocity fields 
are cropped corresponding to the measurement domain indi-
cated in Fig. 3. This yields a measurement grid of 126 × 105 
with a spacing of 0.048D. According to Eq. 10, the optimal 
s is approximately 0.975.

The instantaneous field of DNS, raw PIV data, DFS, TF 
and PIV–PCS (from top to bottom) are shown in Fig. 10. To 
display the same flow structure, the DNS data were chosen 
by finding the maximum correlation coefficient between the 
DNS fields and the PIV fields. 21-point kernels were used 
in temporal polynomial filtering. The vortical structure is 
identified using the �ci method. The value of �ci is defined as 
the imaginary part of the eigenvalue of the velocity gradients 
(Zhou et al. 1999), and the rotational direction is given by 
the sign of the vorticity. The �ci field of the raw PIV data 
is distorted by the noise, and the center of the vortices is 
difficult to be located. Although the DFS method improves 
the identification of vortical structures, the pressure con-
tour of DFS is almost the same as the raw PIV data. After 
being processed by PIV–PCS, the �ci field is very smooth, 
and the shape of the vortices can be clearly defined. The 
pressure distribution of PIV–PCS and TF are closest to that 
of DNS from visual comparison. Note that the pressure in 
Fig. 10j is calculated by solving the Poisson equation from 
the PIV–PCS velocity fields. The magnitudes of both the 
vorticity and pressure are smaller than those of DNS; this 
is caused by the spatial low-pass filtering introduced by the 
PIV interrogation.

The time series of the RMS of the divergence, RMS of 
the curl of the pressure gradient, the vertical velocity v and 
the pressure p are presented in Fig. 11. The divergence is 
estimated by employing a central discretization in the interior 
grids and a one-side differencing scheme at the boundary 
points. The pressure gradient is estimated from the velocity 
fields by employing the N–S equations. The standard devia-
tion of the divergence and curl for every time step is plot-
ted in Fig. 11a, b. Both DFS and PIV–PCS can reduce the 
divergence to a low level; however, the PIV–PCS provides 
a smaller curl, approximately 1, than DFS, approximately 
7.5. The TF method can significantly reduce the pressure 
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Fig. 10   Instantaneous fields at 
t = 2.0. The left plane displays 
the contours of the vortical 
structure, and the right plane 
displays the contour maps of 
the pressure. From top to bot-
tom: the results from DNS, the 
experimental data, DFS, tem-
poral polynomial filtering with 
21-point kernels and PIV–PCS 
with s = 0.975. The absolute 
contour levels represent �

ci
 from 

0.1 to 1.0 in steps of 0.2. The 
positive contour levels of the 
pressure are from 0.1 to 0.2 in 
steps of 0.1, and the negative 
levels of the pressure are from 
−1.1 to −0.1 in steps of 0.1
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curl, though it has little influence on velocity divergence. The 
vertical velocity at the center of the measurement domain 
( x∕D = 4 , y∕D = 0 ) is shown in Fig. 11c. For comparison, 
the velocity signal in the time range of [4, 5] is zoomed in, as 
shown in the sub-figure. We can see that the velocity fluctua-
tions of the raw PIV data, DFS and TF are much higher than 
those of PIV–PCS. These non-physical velocity fluctuations 
can result in a failure in calculating time derivatives. The red 
curves obtained by PIV–PCS are very smooth in the time 
direction and exhibit a good consistency with the experimen-
tal data. In Fig. 11 d, the pressure shows a similar behavior as 
the vertical velocity at the same point. The pressure obtained 
by DFS is almost the same as that from the raw PIV data, 
and the TF and PIV–PCS can result in more accurate pres-
sure. This implies that only using a constraint on the spatial 
divergence is not sufficient to recover the real velocity fields.

4.2 � 3D wake flow of hemisphere

This tomographic experiment on the 3D wake flow of a 
hemisphere was designed to investigate the three-dimensional 
formation and generation of hairpin vortices in a laminar 
boundary layer. The hairpin vortex is one of the principle 
characteristic elements in wall-bounded turbulence (Smits 
et al. 2011), and it plays a key role in coherent structures, as 
described in Adrian et al. (2000) and Adrian (2007). Acarlar 
and Smith (1987a, b) studied the hairpin vortex generated 

by the interaction of a hemisphere or fluid injection with a 
developing laminar boundary layer. Both flow visualization 
and anemometry measurements were applied to examine the 
characteristics of the hairpin vortex. In this context, we will 
not focus on the physical process of the development of the 
hairpin vortex; our goal is to optimize the tomographic PIV 
data using the PIV–PCS method. An investigation of the 
physical flows can be found in Wang (2017), which will be 
published as a journal article later.

This experiment was performed in a water tunnel at 
Beihang University, China. A hemisphere with a diameter D 
= 20 mm was mounted on a flat plexiglass plate, and the plate 
was vertically posited in the test section of the water tunnel. 
The plate is 2 × 0.5 m2 , and an elliptic leading edge was 
employed. The hemisphere was located at 0.7 m downstream 
from the leading edge to guarantee the condition of a laminar 
boundary layer. The velocity profile of the boundary layer 
was calibrated using laser Doppler velocimetry (LDV). The 
data used in this paper were gathered at a free-stream velocity 
of 145 mm/s. Therefore, the Reynolds number based on the 
hemisphere diameter ReD = V∞D∕� is approximately 2750, 
where � is the kinematic viscosity of water at a temperature 
of 18 °C. The x direction is defined as in the direction of 
the free-stream velocity, and the z direction is defined as the 
wall–normal direction.

A TR-tomographic PIV system was used to record the 
images and quantitatively analyze the velocity fields. The 

Fig. 11   Time histories of 
divergence (a), curl of pressure 
gradient (b), vertical velocity 
(c) and pressure (d). The diver-
gence and curl are estimated 
as the standard deviation at 
every time step, and the verti-
cal velocity and pressure are 
estimated at the center point of 
the measurement domain. For 
comparison, the results of DFS 
and TF (temporal polynomial 
filtering) are also plotted
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experimental set-up of the tomographic PIV is shown 
in Fig.  12. A high-frequency double-pulse laser with a 
wavelength of 532 nm was used to illuminate the measurement 
volume; the energy of the laser was set to 30 mJ/pulse. The 
thickness of the illuminated volume is approximately 20 mm, 
and the bottom of the volume approaches the wall. Hollow 
glass beads with a median diameter of 10 μm and density 
of 1.05 g∕cm−3 were used to seed the flow field, and their 
motions were captured by four Photron high-speed CMOS 
cameras (Fastcam SA2), which were laterally placed to form 
a ‘ × ’ shape. The view angle between any two cameras was 
approximately 30o . The image resolution was set to 2048×
1024 pixels to fit the measurement region and reduce the 
camera memory requirements. The digital resolution was 
approximately 16 pixels/mm, and the particles per pixel (ppp) 
was approximately 0.05.

The particle images were recorded at the frequency 
of 250 Hz, and the number of samples was 1250. Before 
reconstructing the intensity volume, the raw images were 
processed by subtracting the background, performing a 
sliding minimum and smoothing with a Gaussian filter. 
The measured volume, with a size of 110 mm × 46 mm 
× 20 mm, was reconstructed using the intensity-enhanced 
MART (Wang et al. 2016b). A volume deformation iterative 
multi-grid technique with a final interrogation volume size 
of 48 × 48 × 48 at 75% overlap was used to estimate the 
displacement. The velocity fields were validated using 
normalized median test and smoothed using a Gaussian 
filter. The vector spacing is 0.768 mm = 0.0384D along all 
three directions.

Because of the large time separation, the CFL number 
based on the free-stream velocity is approximately 0.8, 
which is very high for numerical simulations. As intro-
duced in Sect. 2.2, the large time separation will increase 
the truncation error and the instability of the numerical 
solution. The acquisition frequency (250 Hz) is slightly 
low to fully capture the time evolution of all the struc-
tures. However, it is sufficient for the main flow structures 
( ∼ O(10) Hz). According to Eq. 10, the optimal s is 0.42 
under this experimental configuration.

The PIV–PCS method is compared with DFS. Figure 13 
shows an example of the instantaneous flow organization 
identified using the �ci method. The isosurfaces of �ci = 0.6 
are colored based on the value of the streamwise velocity 
u. Figure 13a–d presents the results of the raw tomographic 
PIV data, DFS, and PIV–PCS with s = 0.42 and 0.9. All 
the results clearly exhibit the primary hairpin vortex behind 
the hemisphere. These vortices have strong vorticity and 
periodically shed from the shear layer of the hemisphere. In 
addition to the primary flow structures, secondary hairpins 
are formed by the interactions between the lifted-up low-
momentum fluid and higher speed outer flows (Acarlar and 
Smith 1987a). The secondary hairpins indicated by the 
letters ‘L’ and ‘R’, representing left and right, respectively, 
cannot be clearly identified from the raw data. The 
secondary vortex structures are very clear after processing 
using the DFS and PIV–PCS methods, especially for those 
vortices upstream of the measurement region. In the original 
experimental data, a vortex at the location indicated with 
an arrow is not connected as a complete hairpin structure 

Fig. 12   a Experimental set-up for tomographic PIV; b the schematic 
top view (top) and side view (bottom) of the flow structures. These 
vortex structures are identified with �

ci
= 1.3 and colored based on 

the streamwise velocity. The blue box indicates the numerical region 
used by PIV–PCS
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due to the strong velocity fluctuations. However, after 
processing by DFS and PIV–PCS, an integral hairpin vortex 
is presented in the same location instead of a broken vortex. 
From visual inspection of the results, we can see that the 
results obtained using DFS and PIV–PCS with s = 0.42 are 
very similar. The obvious difference appears at the location 
indicated by L1. The flow structure of PIV–PCS presents a 
better arch-shaped vortex compared to the structure of DFS. 
The measurement error is suppressed, and the flow structures 
are more distinct for both DFS and PIV–PCS. It is difficult to 
conclude which one is better from visual comparison alone. 
Thus, some quantitative comparisons will be given in the 
next paragraph. Note that an unphysical error is generated 

at the downstream edge of the measurement region when 
s = 0.9. This is caused by the large separation time, which 
can increase the numerical instability and truncation error.

The probability density distributions (PDFs) of the diver-
gence and curl magnitude of the pressure gradient for the 
original data, DFS and PIV–PCS with s = 0.42 are pre-
sented in Fig. 14. Their RMS values are given in Table 2. 
All the gradients are estimated using a center-difference 
scheme. According to the governing equations, the velocity 
field should be divergence free, and the field of the pressure 
gradient should be irrotational. Because the divergence-free 
condition is imposed on the staggered grid for PIV–PCS, 
whereas DFS strictly satisfies the divergence-free condition, 

Fig. 13   Instantaneous flow field visualized by isosurfaces of �
ci
 = 0.6. These flow structures are colored based on the streamwise velocity. The 

original velocity field (a) is processed by DFS (b) and PIV–PCS with s = 0.42 (c) and 0.9 (d), respectively
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the PIV–PCS shows a worse performance in reducing the 
divergence error compared to DFS, as shown in Fig. 14a. 
For the curl of the pressure gradient, the PIV–PCS shows 
the best performance among all methods. The RMS of the 
curl is reduced from 17.76 for the original data to 6.35 for 
PIV–PCS. It is believed that the curl of the pressure gradient 
can be reduced to a lower level if the sampling frequency 
were to be high enough.

5 � Conclusions

The full N–S equations are utilized as physical constraints 
to reduce the measurement error for 2D and 3D TR-PIV 
data in this work. The new technique proposed in this 
article, called PIV–PCS, uses the PCS in the projection 
method of CFD to solve the incompressible N–S equations 
with the boundary conditions introduced by the PIV data. 
Because of the noisy boundary conditions, the error may 
be amplified by the nonlinear operators of the solver. An 
optimization algorithm is employed to balance the experi-
mental and numerical parts of the objective function. The 
N–S equations are decomposed into nonlinear terms, vis-
cosity terms and pressure correction terms, and the optimi-
zation is performed with the viscosity term. Based on the 
numerical assessments, we also give the optimal s, which 
is a key parameter controlling the degree of optimization. 
In contrast to the conventional smoothing filter method, 
the solution from PIV–PCS can effectively smoothen out 
the measurement noise without introducing unwanted spa-
tial and temporal errors.

Numerical assessments were performed on the DNS data 
of a 2D wake flow over a circular cylinder at a Reynolds 
number of 100. The PIV–PCS method was compared with 
DFS and another conventional filtering techniques. The pro-
posed technique offers the best performance among all the 
methods when dealing with the correlated noise; however, it 
should be noted that PIV–PCS cannot reduce the modulation 
error of PIV data due to the filtered BCs. The performance 
with respect to pressure is more complicated. We suggest 
that the pressure should be solved from the optimized veloc-
ity and not directly from the pressure correction equation. 
The error in the pressure from the present method is also 
much lower than that of DFS.

The present method is validated through two real experi-
ments: a planar PIV measurement on a 2D wake flow of a 
circular cylinder with a Reynolds number equal to that of 
DNS data and a tomographic PIV measurement on a 3D 
wake flow of a hemisphere at a Reynolds number based on a 
diameter of approximately 2750. Both experiments confirm 
the advantages of PIV–PCS for reducing noise in terms of 
the velocity divergence and the curl of the pressure gradient.
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Fig. 14   PDF of the divergence (a) and curl magnitude of the pressure 
gradient (b) for the velocity fields of tomographic PIV, processed by 
DFS and PIV–PCS with s = 0.42

Table 2   RMS of the divergence and curl magnitude of the pressure 
gradient for the velocity fields of tomographic PIV, processed by DFS 
and PIV–PCS with s = 0.42

Raw data DFS PIV–PCS
s = 0.42

RMS of divergence 0.82 0.04 0.06
RMS of curl magnitude 17.76 10.65 6.35
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Appendix

To inspect the suitability of � = 10 at lower sampling 
frequencies, the 2D NRMSE map and the time history of 
the RMS difference under a sampling frequency of 50 Hz 
are given in Figs. 15 and 16, respectively. The illustrations in 
Figs. 15 and 16 are the same as that in Figs. 4 and 5, except 
certain values are different. The error in Fig. 15 is higher 
than that in Fig. 4 because of the larger time separation. 
The error increases with the noise level and still presents 
a minimum in the region of 0.7 ≤ s ≤ 0.8 . The optimal s 
computed by � = 10 is equal to 0.7, which is very close 
to the result from the figure. In Fig. 16, the time evolution 
of the error for u and v shows a different behavior. The 
PIV–PCS error of s = 0.7 for horizontal u overlaps with that 
of s = 0.97 ; however, the error in the vertical component v 
of s = 0.7 is substantially smaller than that of s = 0.97 . The 
plot of s = 1.0 is not shown due to the large error. From these 
figures, the adoption of � = 10 is found to be reasonable for 
estimating the optimal s.
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