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Abstract

In this work, a multiscale model based on the Fast Fourier Transform (FFT) technique is applied to
describe the mechanical behavior of porous materials. The effects of the microstructures (such as pore
shape, number, size, distribution and orientation) on the overall strength of the porous medium and its
microstress distribution are fully studied. The elastoplastic model is further extended by including a
damage process. The influences of microstructure on the damage evolution of the porous medium are
discussed and illustrated numerically. Then the proposed multiscale damage model is applied to study the
macroscopic behavior of porous sandstone. According to the microstructure of the studied material, a
representative elementary volume with randomly distributed spherical pores is considered. The solid
phase of the sandstone is assumed to obey the Drucker—Prager criterion. Taking advantage of the FFT-
based method, the evolution of generated damage is clearly illustrated during the loading process at the
microscopic level. Comparisons between numerical results and experimental data show the efficiency of
the proposed numerical model.
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Introduction

Porous materials (rocks, chalk, sandstone, cement based materials, etc.) have been widely studied
during the last decades for many engineering structures. The pore has a great influence on the
permeability and on the material strength. The macroscopic mechanical behavior of a porous
material is strongly affected by its porosity which is a main property for the durability analysis.
In order to account for a pore’s effect, many micromechanical constitutive models have been
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proposed. Among these models, the most famous and widely used one is proposed by Gurson
(1977). In the framework of kinematical limit analysis theory, a macroscopic criterion was deliv-
ered in Gurson (1977) for a von Mises material containing a spherical or cylindrical void with a
uniform macroscopic strain rate boundary condition. This most widely used criterion takes into
account the porosity f of a porous material and improves significantly the phenomenological ones.
Based on this pioneering work, a huge number of extensions have been proposed: introducing
heuristic parameters to improve the Gurson’s criterion (Leblond et al., 1994; Tvergaard, 1981,
1982); changing the incompressible von Mises type matrix to a compressible one (Drucker—Prager
type matrix (Guo et al., 2008; Jeong, 2002; Maghous et al., 2009), Mises—Schleicher type matrix
(Durban et al., 2010; Lee and Oung, 2000; Monchiet and Kondo, 2012; Shen et al., 2015b), Green
type matrix (Shen et al., 2014a.b, 2013, 2012)); considering the void shape from sphere to spheroid
(Garajeu and Suquet, 1997; Gologanu et al., 1993, 1994, 1997; Keralavarma and Benzerga, 2010;
Monchiet et al., 2014; Pardoen and Hutchinson, 2003; Shen et al., 2011); taking into account the
tension—compression asymmetry and the anisotropy of the matrix (Benzerga et al., 1999; Cazacu
and Stewart, 2009; Monchiet et al., 2008). On the other hand, some criteria have been established
for a porous material with a von Mises type matrix by using variational techniques (Michel and
Suquet, 1992; Ponte Castaneda, 1991; Sun and Wang, 1989, etc.). Recently, a quasi-lower bound
was proposed in Cheng et al. (2014) with a stress variational homogenization and improved by
Shen et al. (2015a) by adopting a fully statically admissible microscopic stress field. Lately, a
homogenized Gurson type criterion for porous ductile materials considering both void shape and
plastic anisotropy effects was proposed in Morin et al. (2015). The void growth and void coales-
cence theories have been unified in a yield criterion in Morin et al. (2016). The Mohr—Coulomb
type matrix was studied in Anoukou et al. (2016) by using a kinematic limit analysis approach for
a ductile porous medium.

In most of the above-mentioned models, different kinds of homogenization techniques have been
used. As it is generally difficult to exactly consider local fields of stress, strain and damage at a
microscopic scale, simplifications and assumptions are therefore needed. For instance, in order to
establish a macroscopic criterion, a unit-cell is usually necessary to present the studied porous
material. For example, a hollow sphere subjected to a uniform macroscopic strain rate boundary
condition was studied in the famous Gurson’s model. For a porous medium with spheroidal voids, a
spheroidal volume containing a confocal spheroidal void is considered. With the homogenization
procedure, the effect of porosity on the effective yield surface of porous materials can be explicitly
taken into account, but the influences of interactions between voids and other microstructure infor-
mation (void shapes, sizes, orientation and distribution, etc.) are not so easily considered simultan-
eously in a criterion. A numerical study is an efficient way to solve this problem. Concerning the
three-dimensional computational homogenization for a porous medium with multiple voids, the
effective behavior of ductile metals containing spherical voids was recently studied in Fritzen
et al. (2012) on a computational basis. According to the computational results, the Gurson-
Tvergaard-Needleman (GTN) model was extended. The influence of pore clustering on the macro-
scopic material behavior has been investigated in Bilger et al. (2005) by using the Fast Fourier
Transform (FFT). Based on works of Moulinec and Suquet (1994, 1998), the FFT method is con-
sidered as an alternative approach to the finite element method (FEM) to compute the effective
properties of composite materials with a periodic microstructure. Different from the FEM, this
method does not require the process of meshing. By discretizing the studied heterogenecous material
into a series of grid points, the FFT approach is able to efficiently describe non-regular geometrical
forms of complex microstructure. Different mechanical properties can be assigned to each point
according to its location inside the heterogeneous microstructure. This approach was further



Li et al. 3

improved by some accelerated schemes to improve its computational efficiency (Eyre and Milton,
1999; Michel et al., 1999, 2000, 2001; Monchiet and Bonnet, 2012).

However, most of the previous works on FFT simulations have been essentially devoted to metal
or composite materials under tensile loading. The solid phase was described by a pressure-indepen-
dent criterion. Furthermore, porous materials with a single porosity have been generally investi-
gated. The objective of the present work is to provide a new numerical micromechanical model
based on the FFT method to describe effective nonlinear behaviors of porous geomaterials under
compression-dominated stresses. Both plastic deformation and induced damage will be considered.
The plastic behavior of the solid phase is described by a pressure-sensitive non-associated plastic
model. Particular attention will be paid to the progressive damage process in porous materials with
different pore distributions. The paper is organized as follows. The FFT-based numerical method is
firstly recalled in section “FFT-based numerical method”. Taking advantage of this method without
meshing, the effects of microstructure (with different void number, shape, size and orientation) on
the macroscopic behavior of a porous medium are extensively studied in section “Influence of
microstructure on the mechanical behavior of porous material”. Then in section ‘““Extension to a
damage model”, the emphasis is put on the description of the damage process in porous materials.
In particular, the influences of microstructure on the damage evolution are studied. In section
“Application to the sandstone with a simple damage criterion”, the proposed plastic-damage
model is applied to describe the mechanical behavior of a typical porous sandstone.

FFT-based numerical method
General framework of FFT technique

In this section, the FFT technique will be firstly recalled based on the works of Moulinec and Suquet
(1994, 1998). For the sake of clarity, we consider an inhomogeneous linear elastic material. The unit
cell of the material is subjected to a uniform macroscopic strain E on its boundary. Due to the
material heterogeneity, the local stress and strain fields are not uniform. The non-uniform strain field
is defined by a periodic fluctuation displacement field " (x). Therefore, the local strain field inside the
unit cell, g(u(x)), can be expressed by

&(u(x)) = &(u*(x)) + E ¢y

with the conditions <&> =F and < guw*(x)) > =0, and the operator < - > denoting the
volumetric averaging on the unit cell.

The problem to be solved here is to determine the local stress field using the local constitutive
relations and then to evaluate the macroscopic stress by making the volumetric average over the unit
cell, as the macroscopic response to the prescribed macroscopic strain. To this end, denote C(x) as
the non-uniform local elastic stiffness tensor. The local governing equations are given by

a(x) = C(x) : &(x) Vx e Q
dive(x) =0 VxeQ, u'# o-n—# 2)
&(x) = %(Vu*(x) +V7iur(x))+E Vx € Q

In these relations, the symbol # denotes the periodic condition while —# the anti-periodic one.
By introducing a homogeneous elastic reference material with a constant stiffness tensor C° and
after defining a polarization tensor field t(x) = (C(x) — Cc’: &(x), the above local problem can be
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reduced to the periodic Lippman—Schwinger problem (Moulinec and Suquet, 1998). The solution of
this problem in the real space can be determined by using the periodic Green operator I'’(x). One
gets

g(x) = —I'(x) xt(x) + E (3)

The convolution operator in the real space “*” is difficult to calculate but it can be reduced to a
simple product operator in the Fourier space. Indeed, the expression of the Green operator in the
Fourier space is explicitly known. Therefore after making the FFT, the solution to the local problem
can be easily expressed by

8o =-T%): %8 VE£0, #HO)=E “4)

In this solution, 7 and [ are the polarization tensor and periodic Green operator in Fourier space
respectively. Further, the constant stiffness tensor C° of the isotropic elastic reference material can
be expressed in terms of the two Lamé coefficients A° and u°. The Green operator in the Fourier
space can be explicitly given by

AN+ u EgEE

pOA0 +2u0) gt ©

A 1
Cii(8) = W(&kiﬁ/é] + 8i&ikr + Su&ik + 8ikikr) —

Therefore, the FFT-based numerical method consists of finding an appropriate non-uniform
strain field and the corresponding stress field, which verify the local constitutive relations, equilib-
rium equations and boundary conditions on the unit cell. To do this, an iterative algorithm is

needed. By making use of the Green operator property I'? x (C” : &) = ¢, and based on the previous
works by (Moulinec and Suquet, 1994, 1998), the following iterative algorithm is adopted

Initialization : &(x) = E Vx e Q
'(x) =C(x): (x) VxeQ
Iterate i 4 1 the previous &and ¢’ being known at each position x
(a) ¢ = F(a') 6)
(b) Verify the convergence and update the stress/strain
(c) G =) -1 :6'(Q) YE#0, ¥O)=E
(d) G = FE)
(e) o' l(x) =C(x): etl(x) VxeQ

In these relations, x and & denote the coordinates in real space and Fourier space, respectively.
The symbols F and F~! represent correspondingly the FFT and inverse FFT operators. The con-
vergence condition is controlled by the equilibrium equation and performed in Fourier space to
avoid the difficulty of the computation for the differential operator

_(<dive'@lP =)' < 1g-§'@IF > 12 _

err’ = : = h
[| <o'(x)> || 116'(0)]|

(N

and the matrix 2-norm is utilized here as the norm of the second-order tensor. w is a chosen value of
convergence tolerance.
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The choice of the reference stiffness tensor C° can significantly affect the rate of convergence. In
practice, according to Moulinec and Suquet (1998), the best rate of convergence is provided with the
following values of Lamé coefficients A° and p° for the reference material

1
1% = —(inf A(x) + sup A(x))
2 “xeV xeV
] (®)
n’ = 5 (inf p(x) + sup pu(x))
xeV xeV

Discrete FFT model

In the above FFT-based numerical model, a continuous polarization tensor field should be deter-
mined. In practice, in view of its numerical implementation, a discrete FFT-based model is defined
(Moulinec and Suquet, 1994, 1998). We shall determine a discrete distribution of the polarization
tensor at a limited number of points. Therefore, the unit cell is discretized by a regular grid com-
posed of a limited number of points in each direction in real space. For example, this discrete grid is
composed of N1 x N2 x N3 voxels in the three-dimensional case. The coordinates of voxels in real
space are denoted by x,(i1, i>, i3) which are linked to the coordinates in Fourier space, (i1, iz, i3). The
number of points in each direction depends on the choice of resolution. The relationships between
the two coordinates and the grid information are given by

T}
xp(ii’iz,iS):ik.N_]](’ ik:()sls"'e9Nkfla k=13233 (9)

The coordinates of &(iy, i, i3) for the case of Ny is even

CoL o Ne—=1)\ 1
i) = (i~ 5 ) (10)
and the case of N, is odd
N, 1
&irs oo is) = <ik -5+ 1>Tk (1)

where T is the period of the model in the kth direction (k=1, 2, 3).
Therefore, the iterative numerical algorithm presented above will be applied to each discrete point
x, in real space or &, in Fourier space.

Application to nonlinear heterogeneous materials

The above numerical method for a linear inhomogeneous material is now extended to nonlinear
heterogeneous materials. As indicated in Moulinec and Suquet (1994, 1998) and Jiang and Shao
(2012), it is generally convenient to express nonlinear constitutive relations in an incremental form.
For this purpose, the total loading path is divided into a limited number of steps N. Starting from
the initial conditions, at the end of step n, the local fields of stress, strain and internal variables
((6",&", V")) are all known. Considering now the loading step n+ 1, an increment of macroscopic

strain AE"™! is applied to the unit cell. The problem to be solved is to find the corresponding

. . n+1 . . o .
macroscopic stress increment A by using nonlinear local constitutive relations.
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To this end, the iterative algorithm presented above is now applied to each loading step. The
time-independent behavior is only considered here. Without losing the generality, the local nonlinear
constitutive relations can be expressed in the following incremental form

Aa(x) = C™(x) : Ag(x) (12)

The fourth-order tensor C'*"(x) denotes the tangent operator which depends on the loading
history and loading direction.

Accordingly, the FFT-based iterative numerical algorithm for nonlinear heterogeneous materials
at the loading step n+ 1 is defined by (for the sake of simplicity, the step index (7 + 1) in omitted in
the iteration loop)

Initialization : &"*0(x,) = &'(x,) + AE"™™  Vx, € ,
Call the elastoplastic subroutine to calculate C*™* 0 (x,, p+10)
a.(nJrl)O(xp) — an(xp) + Ctan(n+l)0(xp) . As(n+1)0(xp) pr eQ
Iterate i + 1 The previous &'and ¢' are known at each position x,
@ & = F(d)
(b) Verify the convergence and updatethe stress/strain (13)
() §rl(e,) = 8(E,) — 19, 1 6'(E,) V&, #£0, & (0) = E"D
) gl = FoIET
(e) Call the elastoplastic subroutine to calculate Ctan(iﬂ)(xp, Py
) o' (x,) = a"(x,) + C*"D(x,) - Ae(x,) Vx, € Q
(2) Conserve V!

Comparison with the FEM solution

For the purpose of validation, the accuracy of the FFT-based method is firstly verified by comparing
with reference solutions obtained from finite element simulations. A simplified porous medium is
considered with a porosity f'=10%: a cubic unit cell containing a centered spherical pore (Figure 1).
These two methods adopt totally different strategies to discretize the structure. The FEM method
meshes the structure with a certain shape of element (37,040 hexagonal elements in Figure 1(a)). On
the contrary, the FFT-based method discretizes the structure with regular voxels (128 x 128 x 128
voxels in Figure 1(b)).

The solid matrix in Figure 1(a) and 1(b) is characterized by a von Mises criterion with an isotropic
plastic hardening

f=0eq—(00+HY")=0 (14

o : 2 . L
where o¢q indicated the equivalent stress and computed as oeq = (35 5) /2. s is the deviatoric part of

the stress 6. H and m are two plastic hardening parameters. The plastic variable y is determined by
an associated plastic flow rule

N

. o) 3 .
gp:)b'—fzf)'/ , y=2X (15)
do 27 oy
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Figure 1. Microstructure with a centered spherical void: porosity f=10%. (a) FEM mesh with 37040 hexagonal
elements. (b) FFT discretization with regular 128 x 128 x 128 voxels.

Table 1. Elastic and plastic parameters of the solid matrix.

E (GPa) v oo (MPa) H (MPa)

3

10.0 0.25 45.0 150.0 0.5

Table 2. Numerical comparison between FFT method and finite element solution.

FFT FEM

Resolution (N) Points ~ CPU time (s) of (MPa) Error (%) Mesh Nodes CPU time (s) of (MPa) Error (%)

8 512 388.2 63.1 1.54 | 1920 409.1 71.1 10.92
16 4096 1341.8 64.3 0.31 2 17810 8982.9 67.3 4.99
32 32768 135789 63.3 1.25 3 40887 50393.0 65.5 2.18
64 262144 25908.9 63.7 0.62 4 215850 454392.0 64.5 0.62
128 2097152 226831.0 63.9 0.31 5 313324 877980.0 64.1 -

FFT: fast Fourier transform; FEM: finite element method.

The elastic and plastic parameters of the solid phase for the two methods are given in Table 1.
The unit cell is subjected to a uniaxial strain tension along its 3rd axis and the prescribed macro-
scopic strains are E33>0, Ejj=FE»=E|;=E;3=F;3;,=0.

In order to compare the accuracy and efficiency of these two methods, five different types of mesh
for the FEM method and five different sorts of resolution for FFT-based method are performed as
shown in the Table 2. All calculations were performed with parallelization of multiple processors on
an x64-based Dell computer with eight processors: Intel(R) Core(TM) 17-4790 CPU @3.6 GHz.
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Figure 2. Comparison between FFT method and FEM solution with different meshes and resolutions: (a) CPU time
consumption; (b) stress—strain curves.

For the matter of efficiency, the CPU time consumption for different meshes and resolutions is
illustrated in Figure 2(a). It is predictably increasing with the nodes and resolution for the two
methods, and it is noted that for a low resolution and a small number of nodes, the CPU time
consumption of the two methods is approximately at the same level. However, for a higher reso-
lution and a large number of nodes, the FFT methods exhibits a higher efficiency, particularly for
the most refined mesh and resolution (last row of Table 2), since the scale of the number of voxels of
the FFT method is considerably larger while the CPU time is greatly less. It is also worth noting that
the FFT method is able to provide a good accuracy with a relatively low resolution, for example,
with a resolution of 32 voxels, which makes the FFT method more efficient since the accuracy of the
FEM requires a much larger number of nodes. Therefore, it is obvious that the FFT method is more
efficient than the FEM.

The corresponding strain—stress curves are illustrated in Figure 2(b) which clearly indicates that
the accuracy of each method strongly depends on the mesh and resolution number, more obviously
for the FEM calculations. However, it is noted from this figure that the numerical results for these
two methods approach each other as the mesh and resolution are refined, which is specified with the
peak stress o, in Table 2. Assuming the FEM calculation with the most refined mesh as the reference
solution, one can see that the error of the peak stress for the FEM is decreasing rapidly while it
remains at a very small level for all calculations of the FFT methods. In order to illustrate more
clearly, the results with the finest mesh and resolution, i.e. the red solid line for the FEM and the red
dashed line for the FFT, are taken out from Figure 2(b) and exhibited specifically in Figure 3(a) for a
porous medium with a porosity f=10%. It is noted evidently that the homogenized mechanical
response predicted by the FFT-based method is consistent with the one obtained by the FEM, and
the accuracy of the FFT-based method is verified (Figure 3(a)). To complete the computational
results, the same structure, i.e. a cubic unit cell with a centered spherical void, with a porosity
f=15% is performed with these two methods. As shown in Figure 3(b), the numerical results of
the two methods are in good agreement.
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Figure 3. Comparison of the stress—strain curves between the FFT method and the FEM solution with the most fine
mesh and resolution: (a) f=10%; (b) f=15%.

Table 3. Elastic—plastic parameters of the compressible matrix.

E (GPa) y oo (MPa) H (MPa) m o "

28.0 0.385 8.0 180.0 0.25 1.2 0.6

Influence of microstructure on the mechanical behavior of porous material

Based on the FFT-based numerical model presented in section “FFT-based numerical method™, the
influences of microstructure on the macroscopic behavior of porous material will be fully studied in
this section. The advantage of the FFT-based numerical model is the ability to investigate different
kinds of porous geometry (shape, orientation, number) and distribution without fundamental dif-
ficulty. For the purpose of further study on porous geomaterials, a pressure sensitive matrix which
obeys a Drucker—Prager type criterion with a non-associated plastic flow rule is adopted. The plastic
criterion ¢ and plastic potential G take the following forms

¢ = aoy, + Oeq — (00 + Hym) <0

m (16)
G:Wﬁm-l-ﬁeq—(ffo-i-HV )

in which « and  are the frictional and dilatancy coefficients, respectively. H and m are two plastic
hardening parameters, and y is the equivalent plastic shear strain in the solid phase.

The volume fractions of the void in the different microstructures are all set to be f=10%. The
same properties of the matrix will be adopted. The corresponding elastic and plastic parameters are
given in Table 3. The unit cell is subjected to a uniaxial strain compression along its 3rd axis and the
prescribed macroscopic strains E

Ex3s<0 Ey=En=Epn=E3=FE3=0 (17)
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In order to better show the influence of microstructure on the effective behavior of porous material,
we start from the compressible matrix with one pore (spherical or ellipsoidal). After that, a com-
pressible matrix with plenty of pores will be studied.

Porous medium with one centered pore

Effect of pore shape. In order to consider the effect of pore shape on the macroscopic behavior of
the porous medium, three microstructures are generated with different pore shapes in the center. As
illustrated in Figure 4, three typical pore shapes are studied: spherical, oblate and prolate. The
definition of the aspect ratio of spheroidal pores is shown in Figure 4(d) as 4,=a;/b,. The ones
used in this section are a;/b; = 1/2 for the oblate pore and «,/b; =2 for the prolate. The solid phase
of the cube obeys a pressure sensitive criterion (16). The unit cell is discretized by a regular grid in
three dimensions 128 x 128 x 128.

With a uniaxial strain compression test, the comparisons of the overall responses (stress—strain
curve) of porous media with different pore shapes are shown in Figure 5. It can be seen that the
effective strength of the porous material with the prolate void is slightly stiffer than the spherical one.
The strength reduction with the oblate void is the biggest. In order to better analyze the reason, the
vertical stress distributions at the microscopic scale are compared in Figure 6 for these three cases. In
Figure 6(a), local stress o33 is illustrated for the half of the microstructure with a centered spherical
void in three dimensions and the ones in the middle section of the studied cubic cell are shown in
Figure 6(b)-6(d) for the three cases. For the spherical void, a stress concentration is clearly observed
in the region (blue and purple color) perpendicular to the load direction (equatorial circle). On the

(@) (b) ()

X,
Prolate pore Oblate pore

Figure 4. Microstructures used for the FFT simulation with different pore shapes with the same porosity f=10%
(dark gray: solid matrix; white: pore): (a) spherical: aspect ratio = |; (b) oblate: aspect ratio = |/2; (c) prolate: aspect
ratio =2; (d) aspect ratio: A,=a,/b,.
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Figure 5. Overall response of porous media with one pore (see Figure 4: spherical, oblate or prolate). Black line:
prolate pore; blue line: spherical pore; red line: oblate pore.
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Figure 6. Distributions of microscopic stress o33 (Pa) for different pore shapes: (a) spherical void in three
dimensions; (b) spherical void in two dimensions; (c) oblate void in two dimensions; (d) prolate void in two
dimensions.
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contrary, the region (red color) along the load direction shows a lower stress level compared with the
rest of the matrix (green color). The same phenomenon is noticed for the prolate and oblate voids;
however, the difference is the amount of stress concentration and the region with lower stress. It is
noted that the region on the equatorial circle of the oblate pore has much more stress concentration
but a large amount of the low stress region occurs in the perpendicular direction. Different from the
oblate void, the prolate one induces less stress concentration as well as stress dispersion. For the
spherical one the stress concentration and dispersion are both moderate. Therefore, considering the
stress distribution on the whole field, the overall stress level is lowest for the oblate void but highest
for the prolate void.

Effects of aspect ratio of the spheroidal pore. Following the previous analysis, the aspect ratio is
definitely another main factor which influences the overall strength of the porous medium. Various
aspect ratios of the oblate and prolate pores are therefore considered in the following numerical
simulations. The uniaxial strain compression is prescribed in the 33 direction and the numerical
results are shown in Figures 7 and 8, respectively.

In general, it can be seen from the two figures that the influence of the aspect ratio for the oblate
void is much more obvious than that for the prolate one. For the structure with the oblate pore, the
effective strength decreases rapidly with the decrease of the aspect ratio (the smaller the aspect ratio,
the flatter the oblate, and one is specific for the spherical void). It is also worth noting that the lateral
strain is significantly affected by the aspect ratio, especially for the oblate pore. On the contrary, the
aspect ratio has little influence on the overall strength of the structure with the prolate pore.
However, slight effects can be also observed.

Unlike the spherical pore, the influences of pore orientation on the macroscopic behavior should
be considered for the oblate or prolate pore. For the simplicity, a cubic cell with one oblate or
prolate pore with different orientations (the angle between the major axis of the pore and the loading
direction: 6 =0°, 45°, 90°) will be considered. The aspect ratio is the same as the one used in Figure 4

r 120 £, (MPa)

-100

p

L l

E]l

E33

0 L 1 1 )

0.015 0.010 0.005 0.000  -0.005 -0.010 -0.015  -0.020

Figure 7. Influence of the aspect ratio of the oblate pore on the overall strength of the porous medium.
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r -120 =..(MPa)

-100

-80

—Ar=1

4o ——Ar=15

—Ar=2

E33

L 1 1 FaY 1 1 1 J

0.015 0.010 0.005 0.000  -0.005 -0.010 -0.015  -0.020

Figure 8. Influence of the aspect ratio of the prolate pore on the overall strength of the porous medium.

for the oblate and prolate pore. The comparisons of the overall responses (stress—strain curve) for
the oblate or prolate pore with different orientations are shown in Figure 9(a) and 9(b), respectively.
It is noted that the highest strength is obtained for both the oblate and prolate voided materials
when the angle 6=0°. With 6=90°, the lowest strength is found. The influence of oblate void
orientation on the effective behavior is larger than for prolate void orientation. The microscopic
stress distributions are shown in Figure 10. Stress concentration (blue and purple color) is observed
clearly at the boundary of the equatorial plane for all the cases. The stress distributions are different
with different microstructures. It is shown that the axial region (red color) possesses lower stress
compared with the dominant matrix region (green). For both the oblate and prolate pore, there is a
lower stress concentration (blue) and smaller red region in the case of §=0°. The one with 6 =90°
has a much larger red region compared with other two cases.

Porous medium with randomly oriented and distributed pores

In porous materials, especially porous geomaterials, the type and distribution of the pores are
generally complex. In the representative volume element, different shapes, sizes and orientations
may exist simultaneously. Based on the above section for one pore, a cubic cell containing a different
number of pores will be studied in this section to consider these effects on the overall behavior by
using the FFT-based numerical method. Different kinds of microstructure are generated with dif-
ferent pore shapes and orientations in Figure 11; as an example the porosity is f=10% and the
number of pores is 40. For the sake of simplicity, in each microstructure, every pore has the same
shape, but the orientation can be different. Figure 11(a) shows a cubic cell with randomly distributed
spherical pores with the same radius. The randomly oriented and distributed oblate or prolate pores
are illustrated in Figure 11(b) and Figure 11(c), respectively.

The comparisons of the overall strain—stress curve between the three different microstructures are
shown in Figure 12 (dashed lines). It can be seen that the strength of the porous medium containing
prolate voids is very close to that of the porous medium with spherical voids. The mechanical
strength for these two cases is higher than that of the porous medium with oblate pores. This is
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Figure 9. Comparisons of stress-strain curve of a porous material having one oblate or prolate pore with different
orientations (6 =0°, 45°, 90°): (a) one oblate void with different orientations; (b) one prolate void with different
orientations.

probably due to the fact that the compressive stress is applied perpendicularly to the small axis of
oblate pores. These pores behave as open penny-shaped cracks under compressive stress. Compared
with the mechanical strength obtained from the cubic cell with one single pore (solid lines) with the
same porosity f=10%, as shown in Figure 12, some differences can be observed. For the cases of
prolate and spherical pores, the strength with one single pore is higher than that with 40 pores.
However, for the case of oblate pores, the strength with one single pore is slightly lower than that
with 40 pores. As the macroscopic strength is obtained from the average volumetric of local stresses,
the local stress distributions for the three different distributions of pores are shown in Figure 13. The
location of the sections illustrated in Figure 13(b)—13(d) are at the middle plane of the cubic cell (as
shown in Figure 13(a)). The basic difference between the case with one single pore and that with 40
pores is the interaction effect between pores. However, in view of the results presented here, it is not
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Figure 11. Microstructures with randomly oriented distributed pores: (a) spherical void; (b) oblate void; (c) prolate
void. Oblate pore: aspect ratio = 1/2; Prolate pore: aspect ratio = 2.
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Figure 12. Comparisons of stress-strain curve for porous materials with randomly distributed voids. Solid line:
microstructure in Figure 4; dashed line: microstructure in Figure | I.
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easy to give a definite conclusion about this interaction effect. It seems that the interaction effect
depends on the pore shape and loading path. For the particular case of uniaxial strain compression
studied here, it seems that the interaction between pores induces a compensation effect of local
stresses for the porous materials with spherical and prolate pores while a very small amplification
effect is observed for that with oblate pores. As mentioned in Kachanov (1994), the impact of
interactions on the effective moduli decreases as porosity decreases. The distribution and aspect
ratio of elliptical pores have also influences on the interaction. Further studies are necessary to
capture a general trend of interaction effects by performing an statistical analysis by considering a
high number of microstructures and different loading paths.

Extension to a damage model

In the above sections, a FFT-based numerical model is proposed to study the effects of pores on the
macroscopic behavior of porous materials. With the increase of loading, the plastic deformation will
accumulate. According to some microscopic analyses with digital image correlation techniques,
microcracks can initiate and propagate in the porous material when the stress or plastic deformation
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exceeds a critical value. The microcracking process affects the mechanical behavior. In order to take
into account the damage generated during the loading, a simple damage model will be proposed in
this section based on the FFT technique.

The main advantage of the FFT-based numerical approach is that it is able to efficiently consider
non-regular geometrical forms of microstructure. The heterogeneous material field is discretized into
a series of grid points. Each point has a mechanical property according to its location in the het-
erogeneous microstructure. Taking advantage of these properties of the FFT-based approach, we
assume that the point located in the solid matrix will lose its capability of supporting force when the
accumulated plastic deformation y in this point exceeds a critical value ¢

Y= e (18)

That is to say, the properties in these points satisfying the condition (18) will be replaced by the ones
of pore. In the present study, the criterion (18) is adopted for the purpose of simplicity. The growth
and coalescence of pores are all controlled by this law during the compression tests. However, based
on this trial work, other more reasonable, efficient and realistic damage evolution laws can be
proposed in the future work.

Damage model with one centered pore

In order to evaluate the proposed damage model, it is first applied to the porous material with one
centered pore. Following the previous analysis, the microstructures with oblate, spherical and pro-
late pores are thoroughly investigated and the numerical results are shown in Figure 14. For the
simplicity of comparison and analysis, all results are performed with the same damage threshold
€0=0.015. In order to clearly show the effects of the damage process, the undamaged strain—stress
curves (red lines) are presented simultaneously with the damaged ones (black lines). At the same
time, the damage evolution is illustrated at different stages of the loading process at points A, B, C,
D. It can be observed from the figures that the strain—stress curve of the damage material remains
exactly the same as the undamaged one before the damage occurs. As soon as damage takes place,
the curve starts deviating from the red line (sound materials) but still increases until the point B. It is
implied that the structure does not lose its capacity at once but failure occurs when the damage zone
largely develops around the whole pores (see Figure 14 of damage evolution at point B).
Furthermore, it is indicated that the medium with oblate pores commences damage earlier and
the one with prolate pores occurs aftermost which is consistent with the previous analysis that
stress concentration is more severe for the medium with oblate pores, and the damage propagates
exactly at that region. Moreover, the damage grows perpendicular to the loading direction which is
also in good agreement with the former analysis. Beside of the suddenly fall (starts at point B for all
cases) due to the simple damage criterion, the strain-stress curve shows that the medium with oblate
pore is more ductile as can be seen from Figure 14(a) that the damage propagates gradually before
point B.

Damage model with randomly distributed pores

With the same procedure the materials with randomly distributed voids are investigated in this
section. The strain—stress curves are presented for both sound materials and damaged materials
with damage evolution at different stages of the loading process at points A, B, C, D (see Figure 15).
On the contrary, in the case of a porous medium with one pore, it is indicated that the damage
strain—stress curves for the microstructure with randomly distributed pores are quite similar, for
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example, the point of the damage occurrence, the process of damage growth and the final stage.
From the viewpoint of microstructure evolution, the three cubic figures in the right show that very
little damage first takes place among different pores (point B). After a few increments of loading the
damage largely develops and coalesces (point C). Afterwards, the damage grows rapidly until the
region without distribution of pores (point D). In other words, the random distribution of pores
reduces the influences of the void shape. Furthermore, compared with the same shape with one
centered pore (see Figure 14), the results of randomly distributed pores show less peak strength
respectively which indicates that the randomly distributed voids accelerate the damage process since
the stress interactions are more complex than the analysis in the previous sections.

Application to the sandstone with a simple damage criterion

The proposed damage model will be adopted to describe the mechanical behavior of “Vosges sand-
stone’” which comes from the Vosges mountains in France. The sandstone is a typical porous quasi-
brittle rock which is mainly composed of quartz grains (93%), with a porosity f=20%. With the
increase of confining pressure, its mechanical behavior exhibits a brittle-ductile transition from low
to high confining pressures (Besuelle et al., 2000; Menendez et al., 1996). The distribution of pores in
the sandstone is generally complex. In an ideal approach, the Representative Volume Element
(RVE) used for numerical modeling should be chosen from three-dimensional segmented images
issued from a microscopic analysis, for instance using a microtomography technique. However, such
data are not available for the studied sandstone. Furthermore, at this stage of study, the emphasis is
put on the verification of the FFT method efficiency for porous rock-like materials with plastic
deformation and damage processes. Therefore, the RVE is simply generated in a numerical way with
randomly distributed and uniformly sized pores to characterize the basic information of the real
sandstone. The cubic unit cell is discretized by a regular grid of points (128 x 128 x 128) and con-
tains 40 pores, as shown in Figure 16.

As in the previous work by Jiang and Shao (2012), a non-associated Drucker—Prager model is
adopted to characterize the mechanical behavior of the solid matrix. The plastic criterion ¢ and
potential G with an isotropic plastic hardening function R(y) are given in the same form as equation

Figure 16. The representative elementary volume of porous sandstone with a porosity f=20%.
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(16). In order to perform numerical modeling of the macroscopic behavior of sandstone, the elastic
and plastic parameters of the solid phase should be first determined. The direct identification of the
constituent properties in heterogeneous materials from relevant experimental data is still an open
challenge which is clearly not the ambition of the present paper. No experimental data are available
in terms of local stresses and strains for the sandstone. We have adopted an iterative numerical
optimization technique. Knowing the porosity, the local elastic and plastic parameters of the solid
phase are iteratively fitted from the macroscopic stress—strain curves obtained from a triaxial com-
pression test with 5 MPa confining pressure and the obtained values are given in Table 4. However, it

Table 4. Elastic—plastic parameters of the sandstone used in the simulations.
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Figure 17. Comparisons between the results predicted by FFT-based damage model and experimental data of
sandstone with different confining pressures: (a) 5 MPa ¢y =0.0065; (b) 10 MPa €, =0.0155; (c) 20 MPa ¢, = 0.0275;
(d) 40 MPa €5 =0.0420.
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is important to point out that the same values of parameters are used for all other tests with different
confining pressures.

Using the same set of elastic and plastic parameters, the numerical predictions for undamaged
and damaged materials are compared with experimental data as shown in Figure 17 with different
confining pressures (5, 10, 20 and 40 MPa). However, it is well known that the confining pressure has
a great influence on the mechanical behavior of rock-like materials such as sandstone. With the
increase of confining pressure, the initial damage threshold generally increases such as for the initial
plastic yield stress and the peak strength which are determined by a pressure-dependent plastic
criterion. It is also needed to determine an appropriate damage initiation criterion taking into
account such a confining pressure effect. For the sake of simplicity in the present work, different
values of the damage threshold ¢, are simply used for different confining pressures. This aspect
should be improved in our future work by the identification of a pressure-dependent damage

Figure 18. Evolution of damage generated in the microstructure: (a) Stage | (Point B); (b) Stage 2 (Point C);
(c) Stage 3 (Point D); (d) Stage 4 (Point E).
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criterion. With this method, both the lateral and axial strains are well predicted by the proposed
numerical model for all confining pressures.

It can be seen from Figure 17 that the numerical predictions of undamaged models (black lines)
are in good agreement with the experimental data (points) in the forepart of the curve but generally
provide a much too stiff response when the stress becomes higher. On the contrary, the numerical
calculations of damaged models (red lines) are generally consistent with the entire experimental data
thanks to the induced damage process. To be more specific, one takes a compression test with
10 MPa confining pressure (Figure 17(b)) as an example. One can clearly observe that the red line
(with damage) is lower and closer to the experimental data than the black line (without damage)
even before the peak stress point B. That means that the damage process occurs simultaneously with
the plastic process before the peak point B and the mechanical behavior of the porous material
before and after the peak stress state. The evolutions of damage generated in the microstructure at
different stages corresponding to the points B, C, D and E at the stress—strain curve are illustrated in
Figure 18. Further, with the FFT-based numerical method, the damage propagation and coales-
cence are clearly observed. At a primary stage (Figure 18(a)), a small damage zone (red part) is
generated at the nearby region of pores and afterwards the coalescence of damage zone occurs at the
space of pore clustering (Figure 18(b)—18(c)). At the final stage (Figure 18(d)), an extensive coales-
cence zone is formed between different clusters of pores. These connected damaged regions make the
whole field degraded. However, with only one chosen microstructure studied here, one should be
careful in providing a general conclusion about the damage evolution kinetics inside the porous
material.

Conclusion

A FFT-based micromechanical model has been proposed in this work for the description of plastic
deformation and damage processes in porous rock-like material. The accuracy and efficiency of the
FFT-based micromechanical model for porous materials is first checked by comparing with FEM
numerical results. Without the need for mesh generation, the FFT-based model has the advantage of
capturing complex distributions of pores or other heterogeneities. Different microstructures have
been considered for investigating the effects of pore shape, number, size and orientation on the
macroscopic behavior of the studied porous material. It is found that for the porous material with
one single pore under uniaxial compression, the mechanical strength for spherical and prolate pores
is higher than that for oblate pores. When a random distribution of pores is considered, the effect of
interaction between pores also depends on the pore shape. For spherical and prolate pores, the
interaction induces a compensation effect in terms of peak strength while an amplification effect is
observed for oblate pores. The emphasis of the present study was then put on the induced damage
process in rock-like porous materials. Even a very simple damage criterion has been used to capture
the creation of new pores, it was possible to get some interesting results on the damage evolution
kinetics. It is found that damage generally initiates from regions close to pore surfaces and then
propagates inside the solid matrix. The macroscopic failure of porous materials is inherently related
to the coalescence of pores around the peak stress region. In order to check the ability of the
micromechanical model to reproduce experimental data, the mechanical behavior of a typical sand-
stone under triaxial compression tests has been investigated using the proposed model. In a general
way, there was a good agreement between the numerical results and experimental data for both axial
and lateral strains with different confining pressures. However, a number of improvements should be
performed in future works. A statistical analysis needs to be performed considering a large number
of microstructures in order to obtain a better understanding of the interaction effects of pore
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distribution. A pressure-dependent damage criterion should also be proposed. As a further ambi-
tion, segmented three-dimensional images directly issued from microscopic analyses should be used
in FFT-based numerical simulations in order to account for the real microstructures of the
materials.
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