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ABSTRACT
The work relates to the effect of temperature on the model 
parameters in local approaches (LAs) to cleavage fracture. 
According to a recently developed LA model, the physical 
consensus of plastic deformation being a prerequisite to 
cleavage fracture enforces any LA model of cleavage fracture 
to observe initial yielding of a volume element as its threshold 
stress state to incur cleavage fracture in addition to the 
conventional practice of confining the fracture process zone 
within the plastic deformation zone. The physical consistency 
of the new LA model to the basic LA methodology and the 
differences between the new LA model and other existing 
models are interpreted. Then this new LA model is adopted 
to investigate the temperature dependence of LA model 
parameters using circumferentially notched round tensile 
specimens. With the published strength data as input, finite 
element (FE) calculation is conducted for elastic-perfectly 
plastic deformation and the realistic elastic-plastic hardening, 
respectively, to provide stress distributions for model 
calibration. The calibration results in temperature independent 
model parameters. This leads to the establishment of a ‘master 
curve’ characteristic to synchronise the correlation between 
the nominal strength and the corresponding cleavage 
fracture probability at different temperatures. This ‘master 
curve’ behaviour is verified by strength data from three 
different steels, providing a new path to calculate cleavage 
fracture probability with significantly reduced FE efforts.

1.  Introduction

A framework for statistical modelling of plastic yielding initiated cleavage fracture 
of structural steels [1] was recently published to extend a new local approach (LA) 
model proposed in [2] to the more generic cases, such as including different dis-
tributions of microcracks. The present work is an effort to validate this framework 
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using some published data-sets on cleavage fracture. More specifically, it is targeted 
to validate the temperature independence of model parameters using notched 
specimens. The framework also suggested the stress state independence of model 
parameters, the validation of which will be reported separately. To begin with, we 
will highlight some most closely related aspects as background information, with 
an emphasis on elaborating the major differences between the new LA model and 
some typical LA models. The reader is referred to [1–3] for an in-depth critical 
review on existing LA models for cleavage fracture. Following a brief introduction 
to the new LA model in Section 2, the physical consistency of the new LA model 
to the basic LA methodology and the differences between the new LA model and 
other LA models are summarised in Section 3.

Ferritic low alloy steels are commonly used in the fabrication of many key 
engineering structures with very stringent reliability requirements. For example, 
reactor pressure vessels (RPVs) are the most critical components of a nuclear 
power plant [4,5]. Today, essentially all the RPVs in the commercial light water 
reactors are made of ferritic low alloy steels. The body centred cubic crystal struc-
tures of ferritic steels endow them with the inherent susceptibility to cleavage 
fracture. Cleavage fracture is a random event and can lead to catastrophic struc-
tural failures. Extrinsically, the randomness of cleavage fracture is manifested by 
a large variation of fracture toughness values measured on a group of nominally 
identical specimens under same testing conditions at a same temperature and by 
a pronounced specimen geometrical constraint dependence of fracture tough-
ness. Intrinsically, the random occurrence of cleavage fracture is attributed to the 
stochastic distribution of the potential cleavage cracking initiators (e.g. carbides, 
martensite–austentie (M–A) constituents, and other second-phase brittle parti-
cles) in terms of their spatial location, orientation, shape and size in combination 
with the randomly orientated cleavage planes, which are well-defined, low-index 
crystallographic planes of matrix ferrite grains in polycrystalline steels. The ever 
stringent safety requirement for key engineering structures such as RPVs and the 
random characteristics of cleavage fracture inherent to ferritic steels inevitably 
call for physically consistent and mathematically rigorous statistical approaches, 
often known as the LAs, for cleavage fracture assessment. The efforts on statis-
tical modelling of cleavage fracture date back to the early 1980s [6,7] and from 
then on have actively continued [1,2,8–17]. Essentially, all the LAs to cleavage 
fracture possess the following common features: (1). physically, the precedence of 
plastic yielding over cleavage fracture is observed as a consensus; In addition, the 
occurrence of cleavage fracture is dominated by the maximum principal tensile 
stress criterion; (2). mathematically, the weakest link postulate applies to cleav-
age fracture process; the cumulative failure probability is always formulated as a 
function of certain volume integral incorporating tensile stress distribution with 
certain model parameters to be calibrated. The reader is referred to Pineau [13] 
for a comprehensive review and Lei [1] for a detailed commentary on the LAs 
to cleavage fracture. Here, we will concentrate on elaborating the ambiguity of 



PHILOSOPHICAL MAGAZINE﻿    3

model parameter calibration, which is the persistent critical challenge to LAs to 
cleavage fracture. In brief, the ambiguity of model parameter calibration refers 
to the much uncertainty and dependence of the calibrated model parameters on 
temperature, test piece geometry (shape and size), and loading condition (loading 
mode and speed).

Despite the differences of each specific LA model, it is commonly agreed that a 
statistical model of cleavage fracture is logically expected to unitedly characterise 
and predict the cleavage fracture behaviour of a given steel in different geometries 
(smooth, notched, and cracked specimens of different size), under different load-
ing conditions (loading mode and loading rate), and at different temperatures. This 
is the exact point that distinguishes a predictive statistical model from a descriptive 
one. It naturally establishes the calibration of statistical model parameters as a crit-
ical step in the validation, justification and subsequent application of any statistical 
model with prediction capability. The logical requirement on the transferability 
or scalability of a statistical model between different test conditions (specimen 
geometry, temperature, and loading condition) demands the model parameters 
to be fairly consistent and be reliably calibrated without ambiguity. Otherwise, the 
model degenerates into a descriptive tool with much limited prediction power.

Take the Beremin model [7,13] for example. It is essentially a two-parameter 
Weibull distribution as below:

 

where P is the cumulative probability of failure, Vpl denotes the volume of the 
plastic deformation zone as the cleavage fracture process zone, m and σ0 are the 
two model parameters known as Weibull modulus and the scale parameter, respec-
tively, σ1 is the maximum tensile principal stress, V0 is an elementary volume 
representing the mean volume occupied by each micro-crack in a solid, dV is the 
differential volume.

Equation (1) was formulated due to the following two critical steps:

(1) � The cumulative probability of failure (P) in a solid of volume V is 
described as

 

where p(V0) is the fracture probability of an elementary volume (V0) induced 
by an embedded microcrack under an arbitrary stress state.

(1)P = 1 − exp

[
−

(
∫Vpl

�m
1 ⋅ dV∕V0

)
∕�m

0

]
= 1 − exp

[
−
(
�W ,Beremin∕�0

)m]

(2)with �W ,Beremin =

(
∫Vpl

�m
1 ⋅ dV∕V0

)1∕m

(3)1 − P = exp

[
− ∫V p

(
V0

)dV
V0

]
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(2) � The size (a) distribution density function of micro-cracks induced by 
plastic deformation obeys a power law, 

 

where μ and κ are material constants.

Due to the maximum tensile principal stress σ1 fracture criterion, Equation 
(4) led to [7]:

 

where ac = 2E�∕
[(
1 − �2

)
�2
1

]
 is the critical size of a penny-shaped microcrack 

according to the Griffith law, γ is the effective fracture surface energy of the matrix, 
E is Young’s modulus and ν is Poisson’s ratio.

The two model parameters (m and σ0) in Equation (1) need to be calibrated 
numerically from a set of fracture experiments before any practical application. 
As shown in Equations (6a,b), m varies with the shape factor (κ) of microcrack 
size (a) distribution, and σ0 depends on the elastic properties (E, ν), the surface 
energy of the material (γ), and the scale of microcrack size distribution (μ), which 
are less sensitive to plastic constraint or temperature. Therefore, m and σ0 should 
be intrinsic material constants dependent exclusively on material microstructures 
and approximately independent of constraint and temperature. On the contrary, 
the calibrated values of m and σ0 vary dramatically with temperature and specimen 
geometries and loading conditions. A typical example is the result of Beremin 
model calibration of a structural steel by Wiesner and Goldthorpe [8]: Within 
the temperature range from 143 to 77 K, m varies between 13 and 23 for round 
notched bar tensile specimens, ranges from 37 to 60 for the V-shape notched 
four-point bending specimens, and from 11 to 49 for the fracture mechanics 
specimens, along with significant variations of σ0.

In order to resolve the ambiguous calibration of Beremin model, continuing 
efforts have been made along the following three technical paths to expand the 
Beremin model into the so-called Weibull stress models [10–13,15–17]:

(1) � Incorporating the plastic strain (εp) effect. The Weibull stress σW is empir-
ically modified to adopt the plastic strain (εp) correction:

 

(4)f (a) = � ⋅ a−�

(5)p
(
V0

)
= ∫

∞

ac(�1)

f (a)da =
(
�1∕�0

)m

(6a,b)�0 = (m∕2�)1∕m
√

2E�∕(1 − �2), m = 2� − 2

(7)�W =

(
∫Vpl

�m
1 ⋅ h(�p) ⋅ dV∕V0

)1∕m
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where h(εp) is a function of the plastic strain (εp). See [7,11,15] for some 
suggested expressions of h(εp). The adoption of h(εp) in Equation (7) as well 
as the different expressions of h(εp) is purely empirical and lacks strict math-
ematical derivation as in Beremin model (from Equation (1) to Equation 
(6a,b)).
(2) � Introducing a fixed-value threshold stress (σth) or a minimum Weibull 

stress σW,min. The cumulative failure probability formulation is empiri-
cally modified to adopt a fixed-value threshold stress (σth) or a mini-
mum Weibull stress σW,min without strict theoretical derivation, such as :

Note that in Equations(8b) [11] and (9) [12], the minimum Weibull stress 
σW,min corresponds to the threshold toughness of the material, Kmin, in the 
following three-parameter Weibull model of fracture toughness (KJc

) in the 
ASTM standard test method E1921–02:

 

with Kmin = 20MPa
√
m for common ferritic steels regardless of crack-front 

length and temperature (K0 is a temperature dependent scale parameter). 
Since at KJc

= Kmin, P
(
KJc

)
= 0 in Equation (10), which means cleavage 

fracture cannot occur, there has to be at �W = �W ,min, P = 0 in Equations 
(8b) and (9) in order to keep mutual consistency of Equations (8b) and (9).

These modifications are problematic in the following aspects:

(1) � In all the three cases, the Weibull stress σW is still calculated by Equation 
(2) or (7). Therefore, similar to Equation (7), Equations (8a,b) and (9) 
are empirical modifications rather than based on a presumed microc-
rack size distribution as in Equation (4). In other words, a strict math-
ematical derivation of Equations (7), (8a,b) and (9) from the basic 
weakest-link formulation Equation (3) does not exist. This is quite 

(8a)p = 1 − exp

[
−

(
�W − �th

�0 − �th

)m]
[10]

(8b)p = 1 − exp

[
−

(
�W − �W ,min

�0 − �W ,min

)m]
[11]

(9)p = 1 − exp

⎡⎢⎢⎣
−

�
�
m∕4

W
− �

m∕4

W ,min

�
m∕4

0
− �

m∕4

W ,min

�4⎤⎥⎥⎦
[12]

(10)P
(
KJc

)
= 1 − exp

[
−

(KJc
− Kmin

K0 − Kmin

)4
]
,
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obvious for Equations (7) and (8a,b). As for Equation (9), it is more 
likely derived from Equation (10). As mentioned by Petti and Dodds 
[12], under plane-strain small scale yielding (SSY) conditions, the exist-
ence of self-similar fields with amplitudes dependent only on J-integral, 
or equivalently KJ =

√
EJ∕(1 − �2), leads to the following relationship: 

 

More generically, a non-dimensional constraint function g(M) is included to 
rewrite Equation (11a) as

 

where B is crack-front length, k0 is a constant coefficient. The combination 
of Equations (10) and (11a) yields Equation (9). The parameter M ∝ σys/Javg 
measures the constraint effect, Javg is the through-thickness average value 
of J-integral. g(M) characterises the amount of constraint loss once plane-
strain, small scale yielding (SSY, with M = 1) conditions degenerate in spec-
imens under increased plastic deformation. However, the proportional 
relationship revealed in Equations (11a,b) is based on the Beremin model, 
which, as shown in Equation (5), assumes an infinite value for the maxi-
mum microcrack size (amax = ∞), or equivalently, Kmin = 0, �th = 0. This is 
self-contradictory: On one hand, if we accept Equations (11a,b) as a valid 
relationship, the Beremin model will be justified, which yields the following 
well-known two-parameter Weibull model of fracture toughness [7,13]:

 

As a result, Equation (10) should not hold true simultaneously with 
Kmin = 20MPa

√
m. Consequently, Equation (9) would not exist. On the other 

hand, if we accept Equation (10) as a valid relationship, Kmin = 20MPa
√
m 

implies that Kmin ≠ 0, �th ≠ 0. Then the Beremin model (Equation (5) or 
(12)) would be incorrect, hence the relationship in Equations (11a,b) based 
on the Beremin model should not be adopted, which makes the transforma-
tion from Equation (10) to Equation (9) unattainable.

(11a)�m
W = k0BJ

2 = k0[
(
1 − �2

)
∕E]2BK4

J

(11b)�m
W = k0[

(
1 − �2

)
∕E]2BK4

J g(M)

(12)P
(
KJc

)
= 1 − exp

[
−

(KJc

K0

)4
]
,

Table 1. Summary of calibrated model parameters based on Equation (10) [10].

Steel Specimen T (K) V0 (mm3) m σ0 (GPa) σth (GPa)
A508 RNB(shallow) 153 23 2.78 0.0

RNB(shallow) 123 0.001 24 3.16 0.8
RNB(sharp) 123 8 4.98 0.0

A533B SEN(B) 103 0.01 4 8.75 3.25
0.1 4 4.5 1.0
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The same argument on the incompatibility between Kmin ≠ 0(�W ,min ≠ 0) 
and the adoption of σW defined by the Beremin model in Equation (2) also 
applies to Equation (8b).
(2) � As stated by Petti and Dodds [12], in contradiction to the basic assump-

tion of Equation (10) that Kmin = 20MPa
√
m remains invariant of con-

straint variations, crack-front length, and temperature, ‘the temperature 
dependence of Kmin represents an open research issue at this time. Future 
work must address the effects of temperature on Kmin and the role in 
applications of the Weibull stress model’. Many studies such as [3] and 
[18] have analysed the temperature dependence of Kmin. In addition, the 
value of σ0 in Equations (8b) and (9) has to be adjusted with temperature 
in order to pursue the temperature independence of Weibull modulus 
m [11,12].This actually goes back to the fundamental concern on the 
applicable range of the Master Curve approach represented by Equation 
(10). As mentioned by Petti and Dodds [12],

If the Master Curve actually does represent the toughness-temperature relation for 
the selected reference condition, the T0 value (for the reference condition) would not 
change when computed at a different calibration test temperature (θ) using this proce-
dure. Here, the computed T0 values are 307, 313, and 318 K for the square, 1T-SE(B) 
reference condition for calibration temperature (θ) of 248, 298, and 328 K, respectively. 
For this material (A508 steel as a commonly used nuclear pressure vessel steel), the 
Master Curve apparently overpredicts the increase in toughness with temperature for 
a square 1T-SE(B) reference condition.

Since the determination of Kmin at different temperatures involves a series of 
expensive experiments, if Kmin remains a necessary input condition to enable the 
statistical modelling practice using Equations (8b) and (9), the presumed impor-
tance or even the necessity to develop statistical modelling of cleavage fracture 
is diluted significantly.

(3) � The introduction of σW,min at Kmin = 20MPa
√
m in Equations (8b) and 

(9) is applicable only for fracture mechanics specimens. In principle, 
a statistical model for cleavage fracture should be also applicable to 
notched specimens or other specimen geometries without a pre-crack. 
However, even for fracture mechanics specimens, as highlighted by 
Gao et al. [11], the value of σW,min needs to be adjusted to accommo-
date intrinsic differences in the length of crack. For plane-strain, SSY 
conditions, σW,min  ∝  B1/m, where B is specimen thickness (or crack-
front length); for surface crack specimens, σW,min ∝ L1/m, where L is the 
length of the semi-elliptical crack front. The geometrical constraint in a 
notched or un-cracked specimen is much different from that in a pre-
cracked specimen, it remains a mystery on how to determine the value 
of σW,min for a specimen without a pre-crack. Consequently, it is unclear 
how to apply Equations (8b) and (9) to specimens without a pre-crack.
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(4) � As elaborated in detail in [3], the determination of the threshold σth in a 
three-parameter Weibull model such as in Equation (8a) lacks a ration-
ale. Hadid-Moud et al. [10] calibrated Equation (8a) with cleavage frac-
ture data of steels A 508 and A533B, respectively. For A508 steel, shallow 
and sharp-notched round-notched bars (RNB) were tested at 153 and 
123 K; while for A533B steel, single edge notched bend, SEM(B), speci-
mens were tested at 103 K. Table 1 summarises the calibrated parameter 
values in [10] that provided the best agreement. As noted in [10],

The four Weibull parameters in the distribution function are inter-dependent and thus 
one has to be pre-selected for the calibration process. Unlike the analysis for the pre-
cracked data, V0, was arbitrarily fixed to be 0.001 mm3 while m was considered a free 
parameter.

As a result, for these notched specimens, A508 steel exhibits not only temperature 
dependence of threshold stress σth and the scale parameter σ0 instead of a fixed 
value as presumed although the value of m remains unchanged (m = 23, 24) but 
also constraint (notch sharpness) dependence of all the three parameters (m, σth 
σ0).

(3) � Involving both the plastic strain (εp) effect and a fixed-value threshold 
stress (σth). A simple example is the combination of Equation (8a) with 
Equation (7) in [11]. Since both Equations (8a) and (7) are empirical 
expressions, the drawbacks associated with each of them are inherited 
by their resultant combination.

As a result of these efforts, the calibrated m does not change with temperature, 
while σ0, and σth are temperature dependent [10–12]. Moattari et al. [16] described 
the effect of temperature on σ0 as the sum of athermal and thermally activated 
stress contributions. In addition, the effect of geometrical constraint on the two 
model parameters has not been addressed. Overall, the dependence of temperature 
and specimen geometry on the model parameters (m and σ0) is still in debate. This 
situation implies that the Beremin model and the modified models may suffer 
from some more fundamental physical imperfections, which necessitates a revisit 
to the formulation process of the Beremin model. Recently, a set of consecutive 
studies [1–3,17,19] have been pursued to understand the fundamental aspects of 
the stochastic cleavage fracture process. One of the critical conclusions is about the 
threshold stress (σth) for cleavage fracture. As interpreted in detail in [1,2,17], the 
precedence of plastic yielding over cleavage fracture determines the existence of a 
non-zero threshold stress (σth) higher than or at least equal to �1,0 = ��ys(� ≥ 1), 
i.e. �th ≥ �1,0 = ��ys. Here, σ1,0 is the maximum principal tensile stress (σ1) on a 
volume element at the occurrence of its initial plastic yielding, σys is the yielding 
stress, � is a coefficient. According to the von Mises yield criterion,

 
(13)

(
�1,0 − �2

)2
+
(
�2 − �3

)2
+
(
�3 − �1,0

)2
= 2�2

ys.
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where σ2 and σ3 are the other two principal stresses. Moreover, �th = �1,0 = ��ys 
has been justified in [14–16], indicating that the threshold stress (σth) for cleav-
age fracture varies with temperature and strain rate (via �ys) and geometrical 
constraint or stress state (via �), instead of being a fixed value. To emphasise this 
very critical point of a non-fixed-value threshold cleavage stress (σth), consider 
three volume elements A, B, and C, each of which contains a microcrack with n 
being its normal to the microcrack surface. The volume element A is subjected 
to uniaxial tension, while B and C are in triaxial tension. However, C has a more 
severe stress triaxiality than B. These three different volume elements can be 
taken as the representative points in a smooth, a notched or a cracked specimen 
subjected to uniaxial tension, respectively, as shown in Figure 1, or can resemble 
different points located within a same notched (or cracked) specimen in tension, 
as exemplified in Figure 2.

Figure 1 schematically illustrates the variation of �1,0 = ��yswith temperature 
for the three different volume elements. Note that ηC > ηB > ηA = 1. TA0, TB0, and 
TC0 denote the highest temperature for the occurrence of cleavage initiation in 
volume elements A, B and C in sequence. Now, let’s assume that there would exist 
a fixed-value threshold cleavage stress σth = Const independent of temperature 
and stress triaxiality (geometrical constraint), as represented by the orange solid 
horizontal line. At an arbitrary temperature Tx, due to the maximum principal 
tensile stress criterion, when σ1 ≥ σth, cleavage fracture should occur in all the 
three volume elements A, B and C. However, since there is σ1,0,A(TX) < σ1,0,B(TX) 

Figure 1. (Colour online) Schematic interpretation of the non-existence of a fixed-value threshold 
stress for cleavage fracture.



10   ﻿ G. QIAN ET AL.

< σth < σ1,0,C(TX), it tells that for volume elements A and B, cleavage fracture does 
take place after the occurrence of plastic yielding, which is in accordance with 
the consensus of plastic yielding as a prerequisite condition to cleavage fracture; 
while for volume element C, it would suggest that cleavage fracture might occur 
prior to plastic yielding in the case of σth < σ1 < σ1,0,C(TX), which violates the basic 
consensus. In fact, due to the consensus, at T = TX, only when σ1 ≥ σ1,0,C(TX), can 
cleavage occur in volume element C. Furthermore, since there is TA0 < TB0 < TX, 
cleavage fracture does not occur in volume elements A and B at T = TX. One can 
try any other value of the threshold stress σth to test the sequential occurrence of 
plastic yielding and cleavage fracture in all the three volume elements. So long 
as σth is assigned a fixed value independent of temperature and stress state, the 
common physical understanding of cleavage fracture being preceded by plastic 
yielding is always violated. Since it is well established that at sufficiently low tem-
perature, cleavage fracture stress equals to yielding stress in the case of uniaxial 
tension (volume element A in Figure 1), the relationship �th = �1,0 = ��ysholds.

This finding has several direct consequences. First, since Equation (5) for the 
fracture probability of a volume element, p

(
V0

)
, possesses the normalisation 

condition 0 ≤ σ1 ≤ σ0 instead of ��ys = �th ≤ �1 ≤ �0. In theory, the adoption of 
Equation (5) implies that cleavage fracture can occur prior to plastic yielding 
(0 ≤ �1 ≤ �th = ��ys), which violates the basic physical mechanism of cleavage 
fracture preceded by plastic yielding. In practice, since the integral in Equation 
(1) or (2) is always confined within the plastic deformation zone, ��ys ≤ �1 ≤ �0 is 
taken, so either p

(
V0

)
 or the cumulative probability P never reaches zero, that is, 

Figure 2. (Colour online) Schematic difference between Equation (5) for the Beremin model and 
the reformulated Equation (14).
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neither of them observes the normalisation condition as an axiom of probability. 
For the power-law size (a) distribution of plastic yielding induced micro-cracks 
in Equation (4), p

(
V0

)
 is reformulated as below in [17]:

where σu is a material constant. Equation (14) suggests that σ0 varies with σ1,0 
(hence stress state and temperature dependent) instead of being a material con-
stant as assumed by Beremin model. Figure 2 schematically highlights the differ-
ence between Equation (5) for the Beremin model and the reformulated Equation 
(14), in which a round notched tensile bar is embedded to show three points (A, 
B, and C) with different stress states and hence the value of σ1,0. Also, the finite 
element (FE) model of one-eighth of the specimen to be used in this study is also 
embedded in Figure 2.

Second, the invalidity of Equation (5) and hence the Weibull stress definition 
Equation (2) inevitably refutes Equation (7) as its modification for the plastic 
strain (εp) correction. Third, Equation (8a) as the modified Weibull stress for-
mulation via the introduction of a fixed-value threshold stress is disproved due 
to their inheritance of Equations (2) and (7).

The recognition of temperature and stress state dependence of cleavage thresh-
old stress σth led to a reformulated statistical model for cleavage fracture in [2] 
and a proposed framework of statistical approaches to plastic yielding initiated 
cleavage fracture in [1]. Calibration of the reformulated statistical model with 
data generated from Monte Carlo simulation at individual volume element scale 
yielded temperature and stress state independent values of both statistical proper-
ties (m and σ0) in [2]. This motivates us to apply the reformulated statistical model 
to investigate the effect of temperature on the two model parameters (m and σ0) 
with experimental data from realistic notched or cracked specimens.

This work will proceed in the following sequence: (1). A brief introduction to 
the reformulated LA model; (2). An interpretation of the physical consistency 
of the new LA model to the principles of LA methodology with a summary of 
its differences with major existing LA models; (3). A summary of experimental 
data-set from a third party; (4). A detailed scheme for FE analysis and model 
calibration; (5). Result and analysis, followed by conclusions.

2.  A brief to a new statistical model for cleavage fracture

In [1,20], it was proven in detail that Equation (3) as the basic weakest link for-
mulation for the cumulative probability of brittle fracture is inaccurate. Therefore, 
the following model for the weakest link postulate based cumulative failure prob-
ability was proposed under the assumption of a uniform spatial distribution of 
microcracks:

(14)p
(
V0

)
= (�m

1 − �m
1,0)∕�

m
0 , �0 =

m

√
�m
u − �m

1,0
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Under the maximum tensile stress (σ1) fracture criterion, σ1 ≥ S, with S being the 
critical cleavage fracture stress for a given microcrack size a, p

(
V0

)
 in Equation 

(15) is determined by
 

where f(a) and g(S) are the probability density function (PDF) of microcracks with 
respect to microcrack size (a) and the critical fracture strength (S), respectively.

In principle, Equation (16) and hence Equation (15) are applicable to any 
given expression of f(a) or g(S) for statistical microcrack distribution, so long as 
it physically exists. In total, nine (9) different PDFs of microcracks were evaluated 
to deduct the corresponding analytical solutions for p

(
V0

)
 in [1]. The resultant 

mathematical expressions of the cumulative probability P possess different levels 
of complexity, which will in turn have specific impacts on the model calibration. 
As examples, when the PDF of microcracks is described by the power law of size 
distribution in Equation (4), the combination of Equations (14) and (15) leads to

 

When the PDF of microcracks is described by the Weibull distribution of micro-
scopic strength (S),
 

where m and σ0 are material constants,
 

 

(15)P = 1 − exp

{
∫Vpl

ln
[
1 − p

(
V0

)]
⋅

dV

V0

}

(16)p
(
V0

)
= ∫

amax(�1,0)

ac(�1)

f (a)da = ∫
�1

�1,0

g(S)dS

(17)P = 1 − exp

[
∫Vpl

ln

(
�m
u − �m

1

�m
u − �m

1,0

)
⋅

dV

V0

]

(18)g(S) = m ⋅ [(S − �th)
m−1∕�m

0 ] ⋅ exp[−(S − �th)
m∕�m

0 ]

(19)p
(
V0

)
= 1 − exp

[
−

(
�1 − �th

�0

)m]

(20)p = 1 − exp

[
− ∫Vpl

(
�1 − �1,0

�0

)m
dV

V0

]
= 1 − exp

[
−
(
�W∕�0

)m]

(21)with �W =

[
∫Vpl

(�1 − �1,0)
m
⋅ dV∕V0

]1∕m
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Equation (21) is the redefined Weibull stress σW in analogy with Equation (2). 
It allows to take advantage of the well-developed calibration procedure for the 
following two-parameter Weibull statistics to calibrate Equation (20):
 

In comparison, a more complex procedure will be needed to calibrate Equation 
(17) owing to the existence of the stress state dependent quantity �m

1,0 in the 
denominator.

Equation (20) strictly adheres to plastic yielding as a prerequisite for cleavage 
fracture. Therefore, it is expected to be able to overcome the ambiguous calibration 
of the two Weibull parameters due to their temperature and constraint depend-
ence. This work will adopt Equation (20) for studying the effect of temperature 
on the two model parameters m and σ0. Before that, it is beneficial to summarise 
the consistency of the micromechanics based models and the major differences 
between the new model adopted in this study and the models proposed by other 
authors within the framework of LA methodology.

3.  The consistency of micromechanics based LA models and the merits 
of the new model

A detailed critical review of existing micromechanics based LA models and a 
thorough description of the new model was given in [1]. The consistency of the 
micromechanics based LA models and the difference of the new model with the 
existing ones are closely interrelated.

3.1.  The consistency of the micromechanics based statistical models

The reader is cautioned to clarify the differences between the following two aspects 
on the micromechanics based LA models:

(1) � The physical consistency or justification of the methodology or princi-
ples of micromechanics based LA concept for cleavage fracture of steels;

(2) � The adherence or consistency of a specific existing statistical model, e.g. 
in [7,10–12], to the methodology or principles of the micromechanics 
based LA concept.

The clarification of these two aspects is necessary. On one hand, if the micro-
mechanics based LA methodology for cleavage fracture of steels is physically 
inconsistent or unjustifiable, LA would be conceptually wrong; while on the other 
hand, if some existing LA models violate the LA methodology or principles, these 
specific models are not in the position to invalidate the generic LA concept.

At a high level, physically, it is a consensus that cleavage fracture of steels is 
partitioned to two phases namely, microcrack formation and unstable microcrack 

(22)LnLn
[
1∕(1 − P)

]
= mLn

(
�W

)
−mLn

(
�0

)
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propagation. Moreover, microcrack formation can only occur in a plastically 
deformed volume element, that is, it is impossible for cleavage microcrack for-
mation in an elastic volume element. The unstable microcrack propagation is 
commonly accepted to follow a stress based microscopic fracture criterion σeq ≥ S 
(σeq as the equivalent stress), with the maximum principal tensile stress criterion 
(σeq = σ1 ≥ S) being most commonly adopted. Mathematically, the weakest-link 
theory has been most widely adopted to describe the cleavage fracture event. 
Besides, one natural constraint, which is often neglected, is that the formulated 
statistical models must obey the basic mathematical rules. For example, any prob-
ability model has to conform to the normative axiom so that P = 0 corresponds 
to the nonoccurrence of fracture and P  =  1 to the occurrence of fracture. As 
interpreted in detail in [2,17], one of the critical defects in the Beremin model 
is that it concludes that the probability for nonoccurrence of cleavage fracture is 
P > 0 due to the adoption of σth = 0, which violates the basic physical assumption 
of the precedence of plastic yielding over microcrack formation.

In a more detailed way, as stated in [1], for the sake of keeping its physical 
and mathematical consistency as well as the easiness of practical operation, the 
micromechanics based LA should at least fulfil the following principles:

(1) � The weakest link theory applies;
(2) � The random distribution of microcracks needs to be characterised in 

terms of the four attributes, namely, the spatial location, the orientation, 
the size and the shape of microcracks.

(3) � The effect of spatial distribution of microcracks in ferritic steels on the 
cumulative failure probability needs to be addressed;

(4) � The probability models are adaptable to any size/strength distribution of 
microcracks, instead of the power-law distribution only;

(5) � Microcracks are mutually independent, so that the Griffith law is appli-
cable to any individual microcrack;

(6) � The occurrence of cleavage fracture is preceded by plastic deformation;
(7) � The probability models conform to the normative axiom;
(8) � Weibull statistics can be derived from the basic formulation of the 

cumulative failure probability;
(9) � Model parameters can be calibrated/determined in different ways, 

including metallurgical, mechanistic and the hybrid methods.

Among these nine requirements, items (1), (5), (6), and (7) are self-evident; item 
(2) concerns how to explicitly formulate the fracture probability due to an indi-
vidual microcrack; item (3) is a prerequisite to the mathematical formulation of 
the cumulative failure probability; item (4) determines the breadth of a LA model; 
item (8) is a testament to a LA model in that Weibull statistics itself is a weakest 
link model; item (9) ensures the practical feasibility of a LA model, which also 
implies that a LA model should be applicable to specimens with different geom-
etries including pre-cracked ones and notched ones.
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Conceptually, a LA model based on these principles will formulate the cumu-
lative probability of failure (P) as a function of the volume (Vpl) of plastic yield-
ing zone (as the fracture process zone) and the fracture probability (p

(
a,V0

)
) of 

an elemental volume V0 induced by an embedded microcrack under arbitrary 
loading as below,

 

Aside from these principles, the way to represent or formulate the fracture prob-
ability p

(
a,V0

)
 of an elemental volume V0 induced by an embedded microcrack 

calls for some practical treatment. Conceptually, p
(
a,V0

)
 is the product of the 

probability pi
(
a,V0

)
 to form a microcrack in an elemental volume V0 and the 

probability pp
(
a,V0

)
 for an existing microcrack of size a in the elemental volume 

V0 to propagate unstably,
 

Moreover, by definition, pp
(
a,V0

)
 is expressed as

 

Substitution of Equation (25) in Equation (24) yields
 

where σeq,max is the upper bound value of the equivalent stress σeq, F(σeq ≥ S) is 
the fracture probability of an existing microcrack, g(S) is the PDF with respect 
to the fracture strength (S) of elemental volume V0, g(S) ⋅ dS is the probability of 
the existence of a microcrack with its strength between S and S + dS, the product 
F(σeq ≥ S) ⋅ g(S) ⋅ dS defines the probability that a microcrack with its strength in 
this range will cause fracture.

3.2.  Further treatment of pi
(
a,V0

)
 and pp

(
a,V0

)

At this point, further treatment of pi
(
a,V0

)
 and pp

(
a,V0

)
 is needed to build an 

executable statistical model. This necessitates an in-depth discussion of the phys-
ical interpretation of cleavage process. This work is based on the following most 
widely acknowledged consensus that the complete microscopic cleavage fracture 
process in a ferritic steel consists of three consecutive steps [1,13,21–28]:

(23)P = F(p
(
a,V0

)
, Vpl)

(24)p
(
a,V0

)
= pi

(
a,V0

)
⋅ pp

(
a,V0

)

(25)pp
(
a,V0

)
= �

�eq,max

�th

F(�eq ≥ S) ⋅ g(S) ⋅ dS

(26)p
(
a,V0
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= pi
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• � Step I. Nucleation of a microcrack at a defect, e.g. a second-phase brittle 
article, to form a particle-sized microcrack (Figure 3(a));

• � Step II. Propagation of a microcrack across the boundary between the par-
ticle and the first matrix (ferrite) grain to form a ferrite grain-sized microc-
rack (Figure 3(b) and (c));

• � Step III. Further propagation of the ferrite grain-sized microcrack across 
the grain boundary into contiguous grains (Figure 3(d)).

The essence is that cleavage fracture involves nucleation and propagation of a 
microcrack. This three-step process has been described in different ways with 
different terms. For example, Bordet et al. [25] stated that ‘there are two distinct 
and necessary steps in order for cleavage fracture to take place: initiation and 
propagation’. In the propagation phase (steps II and III), an interface or grain 
boundary is a barrier for the microcrack to propagate. So the ‘multiple barrier 
model’ is alternatively used in the literature [13,26]. The terms ‘nucleation’, ‘initia-
tion’, and ‘formation’ of a microcrack have been alternatively used in the literature 
to denote the formation of a particle-sized microcrack in step I. Now the following 
three aspects are critical to understand a statistical model:

Figure 3.  (Colour online) Schematic illustration of the three sequential phases in a cleavage 
fracture process: (a) Nucleation of a microcrack via breakage of a second-phase particle due to 
stress concentration ahead of a dislocation pileup; (b) Propagation of the second-phase particle-
sized crack into the matrix ferrite grain; (c) Arrest of the ferrite grain-sized crack at ferrite/ferrite 
grain boundary; (d) Propagation of the ferrite grain-sized crack into neighbouring ferrite grains.
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• � Nucleation mechanisms of particle-sized microcracks;
• � The critical event or controlling step in a cleavage fracture process;
• � State of the art in mathematical treatment of the statistical contributions of 

microcrack nucleation and propagation.

3.2.1.  Nucleation mechanisms of particle-sized microcracks
Numerous researches have been reported on the nucleation or initiation micro-
mechanisms of microcracks in steels relating to cleavage fracture, such as in 
[22,24,29–39]. Echeverría-Zubiría et al. [32] summarised the rich variety of 
microcrack initiation mechanisms into three types as listed in Table 2. Two points 
were emphasised: (1). Microcrack initiation is strain controlled rather than stress 
controlled; (2). It is difficult to claim only one mechanism in effect for microc-
rack initiation and exclude other mechanisms. Both aspects need to be properly 
addressed in formulating pi

(
a,V0

)
 as the probability for microcrack formation. 

For example, Wang et al. [40] observed that in notched specimens of a C–Mn steel 
with the coexistence of (either fine or coarse) carbides and non-metallic inclusions 
MnS or complex oxides with Al, Mn, Fe, Ca and Ti, crack nucleation is induced 
by debonding or breakage of inclusions instead of carbides, but the controlling 
step for cleavage fracture is the propagation of a ferrite grain-sized crack into 
adjacent ferrite grains rather than the propagation of the inclusion particle-sized 
crack across the inclusion/ferrite interface, independent of the size and number of 
carbide particles. At 77 K, microcracks are nucleated at spherical inclusions ahead 
of notch root; while at 143 K, microcracks are nucleated at spherical inclusions 
ahead of the elongated larger string inclusions. He et al. [41] reported that at 77 K, 
microcracks initiate in the cementite lamellae rather than the MnS inclusions in 
a ferritic-pearlitic steel.

3.2.2.  The critical event or controlling step in a cleavage fracture process
It is logically reasonable to assume that any of the three steps in a cleavage fracture 
process can be the controlling step or the critical event. As summarised by Chen 

Table 2. Three types of microcrack initiation mechanisms [32].

Microcrack nucleation mecha-
nism

Related microstructural features

Microstructural attributes Examples
Breakage/cracking of a brittle phase Brittle particle Carbides; non-metallic inclusions, 

e.g. MnS, TiC, (Ti, N)(Ti,N,Ca, Al, 
Mg, Mn, O)

Hard second phase Martensite–Austenite (M–A) 
constituent; Pearlite colony 

Debonding of a brittle phase from 
matrix

Brittle particle MnS
Hard second phase M–A constituent

Voids Close to or at notch root, without 
presence of carbides or inclusions

Microvoids

A brittle phase in between ductile 
voids

MnS inclusion or M–A constituent 
between ductile voids
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et al. [24], each of the three steps has once been proposed as the critical event: In 
the early 1950s, the nucleation of a particle-sized microcrack (step I in the three-
step cleavage fracture process) was believed to be the most difficult step, with the 
role of dislocation pileup being emphasised; in the early 1960s, the propagation 
of a ferrite grain-sized microcrack was accepted as the critical event (step III in 
the three-step cleavage fracture process), with the matrix grain size being recog-
nised as the dominant microstructural dimension; from the late 1960s to 1980s, 
the propagation of a carbide or other second-phase particle-sized microcrack 
across the brittle particle-to-ferrite grain interface into the matrix was identified 
as the controlling step (step II in the three-step cleavage fracture process), with 
the particle size being identified as critical microstructural dimension. During 
this time, Oates and Griffiths [42] found that for a 3% silicon iron, the critical 
event changed from the propagation of a ferrite grain-sized microcrack (step 
III in the three-step cleavage fracture process) in a smooth tensile specimen to 
the propagation of a carbide particle-sized microcrack (step II in the three-step 
cleavage fracture process) in a notched specimen.

The changeability of controlling steps for cleavage fracture has been more 
broadly verified since the late 1980s. Such a change can result from the variation of 
temperature, stress state, and microstructures. Lin et al. [43] suggested the changes 
of controlling step from microcrack nucleation (step I in the three-step cleavage 
fracture process) to carbide particle-sized crack propagation (step II in the three-
step cleavage fracture process) and then to ferrite grain-sized crack propagation 
(step III in the three-step cleavage fracture process) as temperature increases. Li 
and Yao [22,23] observed that in smooth tension of a low-carbon steel, below the 
ductile-to-brittle transition temperature (DBTT), at which the cleavage fracture 
stress reaches minimum, the critical event or controlling step is microcrack nucle-
ation; while above the DBTT, cleavage fracture is controlled by the propagation of 
a ferrite grain-sized microcrack instead of a cracked carbide. He et al. [41] used 
smooth cylindrical tensile specimens, notched cylindrical tensile specimens, and 
side edge notched bending specimens to study the effect of stress state on the 
critical event of cleavage fracture in a ferrite-pearlitic steel. It was concluded that 
crack propagation is the critical event that controls cleavage fracture at low stress 
triaxiality and high Lode angle parameter; while crack initiation/nucleation is the 
controlling step at higher stress triaxiality and lower Lode angle parameter. Chen 
and colleagues [24,44] reported change of critical events of cleavage fracture of 
low-alloy steels from crack propagation to crack nucleation due to variations of 
grain size, carbon and impurity element contents, test temperature, loading rate, 
pre-strain, and stress triaxiality. Bose Filho et al. [36,37] compared cleavage frac-
ture of ferritic welds in notched and fatigue pre-cracked specimens. In both types 
of specimens, the unstable propagation of microcracks initiated from breakage 
or debonding of inclusions is the controlling step for cleavage fracture. However, 
the sizes of inclusions to initiate cleavage fracture in pre-cracked specimens are 
much smaller than those in notched specimens. From statistical point of view, 
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this difference may imply different statistical distributions of microcracks in both 
types of specimens. These results together raised the attentions that the critical 
event observed in a notched specimen can be different from that observed in a 
cracked specimen, which is critical in establishing or evaluating a statistical model 
of cleavage fracture, particularly in the aspects of the treatment of pi

(
a,V0

)
 and 

pp
(
a,V0

)
 and the statistical distribution of microcracks.

Based on the work of [43,44], the change of controlling steps in a cleavage frac-
ture process under different conditions can be interpreted as follows with both the 
driving force and the resistance to unstable cleavage fracture being synchronised. 
Take the idealised situation that the surface of an arbitrary microcrack is always 
normal to the local maximum tensile principal stress σ1. Under the maximum 
tensile principal stress fracture criterion, one gets

 

for a particle-sized penny-shaped microcrack of diameter dp and strength Sp to 
propagate the particle-to-matrix (ferrite) grain (p/g) interface, and
 

for a matrix (ferrite) grain-sized penny-shaped microcrack of diameter dg and 
strength Sg to propagate the first matrix (ferrite) grain-to-matrix (ferrite) grain 
(g/g) boundary.

Here γp/g is effective surface energy or the critical strain energy release rate [43] 
for dynamic propagation through the particle-to-matrix (ferrite) grain (p/g) inter-
face into the matrix (ferrite) grain; γg/g is effective surface energy or the dynamic 
critical strain energy release rate for propagation through the first matrix (fer-
rite) grain-to-matrix (ferrite) grain (g/g) interface. γg/g can be further rewritten as 
γg/g = γs + wp, where γs is the surface energy of ferrite, wp is the plastic work done 
per unit area in propagating the microcrack [45]. Crack propagation into the 
ferrite (step III) is undoubtedly accompanied by plastic deformation, while the 
propagation of a particle-sized microcrack through the particle-to-matrix (ferrite) 
grain interface (step II) is expected to incur less severe plastic deformation at 
the interface. As a result, a more pronounced temperature dependence on γg/g is 
expected than on γp/g [43]. San Martin and Rodriguez-Ibabe [46] estimated that 
for a Ti-V microalloyed ferrite-pearlite steel, γp/g = 7 J/m2 with no or slight change 
with temperature, while γg/g are much higher with much stronger temperature 
dependence. Despite the same conclusion in [46] on the temperature depend-
ence of γg/g with the analysis in [43], the estimated values of γg/g are very rough. 
Specifically, at 253 K, 14 estimated values of γg/g were obtained, with the average 
value being 81.1 J/m2, the minimum and the maximum being 23.7 and 188.5 J/m2, 

(27)�1 = Q
(
�ys + Δ�ys

) ≥ Sp =

√√√√ �E�p∕g

2(1 − �2)dp

(28)�1 = Q
(
�ys + Δ�ys

) ≥ Sg =

√√√√ �E�g∕g

2(1 − �2)dg
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respectively; at 223 K, 12 estimated values of γg/g were obtained, with the average 
value being 200.6 J/m2, the minimum and the maximum being 29 and 481 J/m2, 
respectively; at 203 K, only two values (58.1 and 44.9 J/m2) were estimated to give 
an average of 51.5 J/m2. While the average value of γg/g at 223 K (200.6 J/m2), is 
higher than at 203 K (58.1 J/m2) by almost 150 J/m2, it is unfavourably significantly 
higher than that at 253 K (81.1 J/m2) by almost 120 J/m2. The difference of γg/g at 
203 K and 253 K is only ~30 J/m2.

According to Equations (27) and (28), there is
 

Given that dp ≪ dg and the premise that γg/g has a stronger temperature depend-
ence than γp/g. At certain low temperature, Sp > Sg is expected, so that the critical 
event is the propagation of a particle-sized microcrack across the particle/fer-
rite grain boundary (step II); while at higher temperatures, the anticipated rapid 
increase of γg/g will lead to Sp < Sg, so that the critical event is the propagation of a 
ferrite grain-sized microcrack across the first ferrite/ferrite grain boundary (step 
III). Evidently, the temperature dependence of effective surface energy supports 
microcrack propagation as the controlling step for cleavage fracture, whether it 
is via step II or step III.

The above discussion is based on the existence of a nucleated microcrack, which 
is influenced by plastic strain. Adding the driving force �1 = Q(�ys + Δ�ys) into 
consideration, the change of critical event, which may be either from nucleation 
controlled (step I) to propagation controlled mechanism (step II or III), or from 
propagation of a particle-sized microcrack (step II) to propagation of a ferrite 
grain-sized microcrack (step III), with stress state, loading rate, pre-strain and 
other conditions can be interpreted [44].

3.2.3.  Mathematical treatments of the contributions of microcrack nucleation 
and propagation
Physically, it is well accepted that both the nucleation and propagation of a micro-
crack are stochastic processes. The contributions of microcrack nucleation and 
propagation are treated in three different ways in various statistical models for 
cleavage fracture:

• � Approach I: Microcrack nucleation as the controlling step. pp
(
a,V0

)
= 1, 

p
(
a,V0

)
= pi

(
a,V0

)
. For example, one of the Prometry models [47] 

describes the strength or resistance of microcrack nucleation with the 
three-parameter Weibull statistics, while microcrack propagation is certain.

• � Approach II: Microcrack propagation as the controlling step. pi
(
a,V0

)
= 1, 

p
(
a,V0

)
= pp

(
a,V0

)
. A majority of existing statistical models fall into this 

category, including the Beremin model [7,13] and the model used in this 

(29)Sg = Sp
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dp
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study [1,2]. As stated by Bordet et al. [25], no distinction is made whether 
the critical event is the propagation of particle-sized microcracks into the 
matrix phase (step II of cleavage fracture process) or that of ferrite grain-
sized microcracks into neighbouring grains (step III of cleavage fracture 
process). If there is a change of the controlling step from step II to step III 
or vice versa at different temperatures, it will be reflected in the change of 
calibrated model parameters.

• � Approach III: Microcrack propagation as the controlling step but with a quan-
tified contribution of microcrack nucleation. pi

(
a,V0

) ≠ 1, pp
(
a,V0

) ≠ 1. 
A second Prometry model [47] expresses the strength of microcrack nucle-
ation in a three-parameter Weibull format and that of microcrack propa-
gation in a two-parameter Weibull format. Besides, Bordet et al. [25] and 
Shibanuma et al. [48] also proposed their expressions for the probability 
of microcrack formation pi

(
a,V0

)
, while the term pp

(
a,V0

)
 is addressed 

in different ways. The accuracy of this approach largely depends on how 
pertinently to quantify the coexisting multiple mechanisms of microcrack 
nucleation as shown in Table 2.

For either approach II or III, certain approximate treatment on formulating the 
probability pp

(
a,V0

)
 for unstable propagation of an existing microcrack is also 

needed. By definition, pp
(
a,V0

)
 is affected by not only the statistical distribution of 

microcracks in terms of their size, shape and orientation, but also the stress based 
microscopic fracture criterion to be adopted. In reality, a circular, penny shaped 
microcrack is only an idealised geometrical model of microcracks. Depending 
on the specific phase of material constituent to be broken to form a microcrack, 
the exact geometry of a microcrack can be far from a penny shaped model. Then 
a shape factor η should be introduced to the Griffith law S =

√
�E�∕

(
1 − �2

)
a 

to represent the microscopic cleavage fracture resistance S as a function of the 
characteristic size a and the shape factor η, and the effective surface energy γ. 
However, the statistical distribution of the shape factor η remains unknown. So 
the practical treatment is either to directly assume g(S) as the PDF with respect 
to the fracture strength (S) of elemental volume V0 regardless of specific shapes of 
microcracks, or to assume all microcracks to be penny shaped with a size distri-
bution f(a), as Equation (4) in the Beremin model. Furthermore, the formulation 
of F(σeq ≥ S) in Equation (25) depends heavily on the microcrack orientation and 
exact stress state in consideration. The surface of an arbitrary microcrack in a 
volume element V0 does not necessarily always take the orientation perpendicular 
to the maximum principal tensile stress σ1 so as to satisfy the maximum tensile 
principal stress σ1 based microscopic fracture criterion σ1 ≥ S. The normal ten-
sile stress component σn based microscopic fracture criterion σeq = σn ≥ S seems 
more appropriate than σ1 ≥ S to reflect the effect of microcrack orientation. In 
[49], the analytical solution to the fracture probability F(σeq = σn ≥ S) induced by 
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a randomly oriented microcrack under multi-axial loading for the normal tensile 
stress criterion σeq = σn ≥ S is formulated as follows:

 

with
 

 

where σ1, σ2, and σ3 are the principal stresses acting on the volume element V0 embed-
ded with a microcrack, �n = �3 +

(
�1 − �3

)
⋅ cos2� +

(
�2 − �3

)
⋅ cos2� ⋅ sin2�, α 

and β are the angles to the normal vector of the microcrack surface from σ1 and 
from σ2 in the plane perpendicular to the direction of σ1, respectively.

One would argue that some other multi-axial stress based microscopic frac-
ture criterion σeq ≥ S, such as those listed in the Appendix A of [2], might be 
more appropriate than σeq = σn ≥ S or σeq = σ1 ≥ S. But the analytical solution to 
F
(
�eq ≥ S

)
 for such a fracture criterion might be more complicated than that to 

F
(
�n ≥ S

)
 in Equations (30a,b,c,d) or even unavailable. Again, for simplicity, in 

most cases, the maximum tensile principal stress criterion σeq = σ1 ≥ S is adopted, 
which lead to

 

In turn, Equation (25) reduces to the simplest format:
 

According to the theorem of PDF of a function with a continuous random variable, 
f(a) and g(S) are transferrable to each other:
 

(30a,b,c,d)
F
�
𝜎n ≥ S

�
=

⎧
⎪⎪⎨⎪⎪⎩

0 (S > 𝜎1 ≥ 𝜎2 ≥ 𝜎3)

1 −
2

𝜋
� 𝜋

2

0

√
Φ1(S)d𝛽 (𝜎1 ≥ S > 𝜎2 ≥ 𝜎3)

1 −
2

𝜋
� 𝜋

2

arccos
√
Ψ1(S)

√
Φ1(S)d𝛽 (𝜎1 ≥ 𝜎2 ≥ S > 𝜎3)

1 (𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ S)

(31)Φ1(S) =

(
S − �3

)
− (�2 − �3)cos

2�(
�1 − �3

)
− (�2 − �3)cos

2�

(32)Ψ1(S) =
S − �3

�2 − �3

(33)F
(
𝜎1 ≥ S

)
=

{
1

(
𝜎1 > 0

)
0

(
𝜎1 ≤ 0

)

(34)pp
(
a,V0

)
= �

�1

�th

g(S) ⋅ dS ≡ �
a(�th)

a(�1)

f (a)da

(35)g(S) =
||||
�a

�S

||||f (a) =
2k2

S3
f

(
k2

S2

)



PHILOSOPHICAL MAGAZINE﻿    23

 

where k =
√

�E�∕
(
1 − �2

)
 according to the Griffith law.

The adoption of the simplest maximum tensile principal stress criterion σeq = σ1 ≥ S 
allows to rewrite Equation (26) as follows:
 

The discussions above in this section interpret the complexity in strictly formu-
lating the fracture probability (p(a,V0)) of an elemental volume V0 induced by 
an embedded microcrack as given in Equation (26) and the exemplified nec-
essary approximate treatments as given in Equations (37) and (38). Whether 
Equation (37) is more accurate than Equation (38) or not will largely depend on 
how accurately to formulate pi(a,V0). For either of these two equations, there 
has been already adopted a series of approximations from the shape and ori-
entation of microcracks to the microscopic fracture criterion σeq ≥ S. However, 
compared to the nine principles for the micromechanics based LA, these approx-
imate treatments are secondary factors and do not hurt the physical consistency 
of LA methodology.

Adding to the complexity of the microscopic cleavage fracture process, the 
common acceptance of microcrack nucleation as a plastic strain controlled event 
inevitably suggests a non-uniform spatial (volumetric) distribution of microc-
racks within a volume of non-uniform plastic deformation such as in a notched 
or cracked specimen, even if the second-phase particles take a uniform spatial 
distribution. The number of microcracks nucleated in a plastic volume element 
close to a notch/crack tip is expected to be larger than that in an equal-sized 
plastic volume element far away from the notch/crack tip. So far, all the existing 
models including the one being considered in this study either adopt a Poisson 
or uniform law for the spatial distribution of microcracks to set up the basic for-
mulation for the cumulative fracture probability P, e.g. Equations (3) and (15). 
Theoretically, the basic formulation for the cumulative fracture probability P in 
accordance with a non-Poisson, non-uniform spatial distribution of microcracks 
is clearly a missing point. This is a rather more difficult topic than how to properly 
quantify pi

(
a,V0

)
 and pp

(
a,V0

)
for more delicate representation of the fracture 

probability of an element volume (V0), p
(
a,V0

)
, since it demands more detailed 

understanding and characterisation of the mechanisms and spatial distribution 

(36)f (a) =
����
�S

�a

����g(S) =
k

2a
√
a
g

�
k√
a

�

(37)p
(
a,V0

)
= pi

(
a,V0

)
⋅ �

�1

�th

g(S) ⋅ dS ≡ pi
(
a,V0

)
⋅ �

a(�th)

a(�1)

f (a)da

(38)and pi
(
a,V0

)
= 1, p

(
a,V0

)
= �

�1

�th

g(S) ⋅ dS ≡ �
a(�th)

a(�1)

f (a)da
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of microcrack nucleation. Similar to the existing practice of adopting the maxi-
mum tensile principal stress fracture criterion σ1 ≥ S instead of the more complex 
multi-axial equivalent stress fracture criterion σeq ≥ S, the uniform spatial distri-
bution assumption is employed while we are exploring a proper representation 
of the cumulative fracture probability P for a bulk volume V for a non-Poisson, 
non-uniform spatial distribution of microcracks. As an initial effort, recently, a 
generalised weakest-link statistical model for the strength of quasi-brittle materials 
was proposed to account for a uniform, or a non-Poisson, non-uniform spatial 
distribution of microcracks [50].

To sum up, so long as the afore cited nine principles are observed, the physi-
cal consistency of micromechanics based LA methodology is assured. However, 
the existing LA models more or less violate some of these nine principles. This 
motivated the proposal of a new LA model in [1,2]. For example, the Beremin 
model conceptually abides by the weakest link theory, but the basic formulation 
Equation (3) for cumulative probability is mathematically incorrect. As a conse-
quence, Weibull statistics cannot be derived from the basic formulation Equation 
(3). The Beremin model claims to accept the physical assumption that plastic 
yielding precedes microcrack formation, but the resultant formulation for the 
fracture probability (p

(
a,V0

)
) of an elemental volume V0 induced by an embedded 

microcrack in Equation (5) refutes this physical assumption, which also causes the 
nonconformity of the probability model in Equation (1) to the normative axiom. 
Besides, the model is only limited to the power-law distribution of microcrack size. 
In comparison, the new LA introduced in Section 2 fulfils all the nine principles. 
Since the new LA is applicable to any size/strength distribution of microcracks, 
including but not limited to the power-law distribution of microcrack size, we now 
compare the major differences of the Beremin model and the new LA model in 
Table 3 under the five exactly same physical assumptions set by Beremin model.

As shown in Table 3, the five basic assumptions in the Beremin model are all 
reasonable and pertinent to the physical understanding of cleavage fracture. The 
fundamental defects lie in the false mathematical formulations of the cumulative 
probability P(V) and the fracture probability of a volume element p(σ, V0). In 
other words, the resultant mathematical formulations are not consistent to the 
physically sound assumptions. This tells two things: First, the contribution of the 
Beremin model in pioneering the original concept of the LA methodology should 
be highly acknowledged; second, correct mathematical formulations must be in 
place to substantiate the LA methodology.

In comparison, many of the other LA models are far inferior to the Beremin 
model in terms of the adherence to the basic physical assumptions. Some of them 
might be more properly categorised as empirical models. For example, one can-
not tell what the basic formulation of the cumulative probability (to the level of 
Equation (3) or (15)) and the exact assumption for microcrack distribution f(a) or 
g(S) are for the two statistical models represented by Equations (8b) and (9). The 
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Beremin model has been used for notched and cracked specimens, but Equations 
(8b) and (9) are confined to cracked specimens.

3.3.  The differences between the new model and other models

Based on the discussions in Sections 1, 2, 3.1, and 3.2, and more detailed expla-
nations in [1,2], the differences between the new LA model in Section 2 and the 
previous models can be highlighted as follows:

(1) � The new model is consistent to the nine principles for the LA method-
ology, while the existing models violate some critical principles. Among 
the existing models, the Beremin model is more superior to others in 
terms of the physical assumptions, despite its defective mathematical 
formulations.

(2) � One major merit of the new LA model is that it establishes the basic 
formulation for the weakest-link statistics in Equation (15) to replace 
the defective expression Equation (3) used by the Beremin model. Thus, 
it ensures the model to conform to the normality axiom of probability, 
which is a starting point for any probability model.

(3) � The second merit of the new LA model is that it proposes to adopt 
the initial yielding stress state of a volume element to depict the 
threshold stress state for a volume element to incur cleavage fracture. 
Although at the initial yielding state, the von Mises equivalent stress 

�VM =

√[(
�1 − �2

)2
+
(
�2 − �3

)2
+
(
�3 − �1

)2]
∕2 always equals 

to the yield stress σys, the corresponding effective stress σeq for cleav-
age fracture (σeq ≥ S) at initial yielding is a function of yield stress σys 
and stress state or constraint. For example, in the case of the maximum 
tensile principal stress criterion σeq = σ1 ≥ S,   the corresponding value 
of σ1 is denoted as σ1,0 and �1,0 = ��ys(� ≥ 1), which satisfies Equation 
(13) for the von Mises yield criterion. This ensures that physically, every 
volume element in an arbitrary specimen, either with or without a 
notch or a crack, always satisfies the basic assumption of cleavage frac-
ture preceded by plastic yielding; while mathematically, the probabil-
ity model is self-consistent. In contrast, a fixed-value threshold such as 
in Equation (8a) will violate the basic assumption of cleavage fracture 
preceded by plastic yielding; the σW,min based models would be not appli-
cable to specimens without a pre-crack, in addition to other demerits 
discussed above.

(4) � The new LA model reasonably derives three-parameter Weibull statis-
tics while other models cannot.
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4.  Experimental fracture data-set

For the purpose to study the effect of temperature on m and σ0, it is advanta-
geous to use experimental fracture data-sets already generated and published 
by a third-party, particularly if they have been used to calibrate other statistical 
models. This allows us to make cross comparisons between different statistical 
models. Moreover, based on the previous studies [40,44,51–53], cleavage fracture 
in a notched specimen is microcrack propagation controlled (either step II or 
step III) unless at very low temperatures, this work chose to use fracture data of 
notched specimens to check on the model. Should there be a change in the critical 
event within the temperature range of concern, a corresponding change in the 
calibrated model parameters is expected. For the case of cracked specimens to 
be evaluated in the next phase of work, the critical event can be much different 
between a notched specimen and a cracked specimen.

In [51–53],researchers at India’s Bhabha Atomic Research Center published 
cleavage fracture stress data of a ferritic low alloy steel 20MnMoNi55 commonly 
used for RPV construction obtained from testing circumferentially notched round 
tensile specimens at four subzero temperatures (123, 173, 203, and 223 K). In [53], 
cleavage fracture stress data of another nuclear grade carbon steel SA333 (Grade 
6) were also reported on circumferentially notched round tensile specimens at two 
subzero temperatures (123, 173 K). The material properties of both steels relevant 
to the current study are summarised in Table 4. The chemical composition of 
20MnMoNi55 is (in weight-%): C-0.21, Si-0.21, Mn-1.3, P-0.009, S-0.001, Ni-0.68, 
Cr-0.05, Mo-0.494, V-0.01, Al-0.029, Fe-balance. The chemical composition of 
SA333 (Grade 6) is (in weight-%): C-0.14, Si-0.25, Mn-0.90, P-0.016, S-0.018, 
Ni-0.25, Cr-0.05, Fe-balance. The microstructure of 20MnMoNi55 consists of 
ferrite-carbide aggregate, with carbide particles distributed within ferrite and also 
at prior austenite grain boundaries, while SA333 steel has banded ferrite-pearlite 
structure. The true stress-plastic strain curves of 20MnMoNi55 at the four tem-
peratures reported in [23,24] are used as input to FE analysis, which are given 
in Figure 4.

Refer to the geometric sketch of specimen embed-
ded in Figure 2, the specimen dimensions in millimetre are 
L1 = 76,Ma × b = M20 × 1.5, L2 = 20, �1 = 14, �2 = 7.7,R1 = 4,R2 = 1.25.

Table 4. Material properties of low alloy ferritic steels 20MnMoNi55 and SA333 (Grade 6).

Steel 20MnMoNi55 SA333 (Grade 6)
Young’s modulus of elasticity E (GPa) 210 [51], 200 [52] /
Poisson’s ratio ν 0.3 [51,52] /
Temperature (K) Yield strength σys (MPa)
223 537[52]; 542 [53] /
203 558 [51]; 576 [53]; /
173 609 [51]; 600[52]; 597 [53] 518 [53]
123 685 [52]; 674 [53] 559 [53]
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At each of the four temperatures, thirty specimens were tested. Hence, a total 
number of 120 tests were done. The nominal fracture strength σN is converted from 
the measured fracture load F and the net section area at the notch according to 
�N = 4F∕(��22). The measured σN data-set is summarised in the Weibull distribu-
tion plot in Figure 5. The cumulative probability of failure P in the axis of ordinates 
for each strength datum is calculated according to P

(
�N ,i

)
= (i − 0.3)∕(N + 0.4), 

where N = 30, i = 1, 2, … N, P
(
�N ,i

)
 is the rank probability for the ith strength 

value σN,i when all the thirty strength data points at each temperature are arranged 
in an ascending order. Ten out of thirty data points are circled at 123 and 223 K, 
respectively, which are used in FE calculation for model calibration. In [52], the 
Beremin model was calibrated according to Equations (1) and (22) by perform-
ing FE analysis for all 30 fracture strength data at each of the three temperatures 
namely, 123, 173, and 223 K, respectively. The calibration results are summarised 
in Table 5. In [53], the two-parameter Weibull distribution was directly applied 
to the nominal fracture strength σN as below:

 

Linear regression (LR) method was adopted to determine the two Weibull 
parameters (m and σ0), as also summarised in Table 5.

(39)P = 1 − exp

[
−

(
�N

�0

)m]

Figure 4.  (Colour online) True stress-plastic strain curves of 20MnMoNi55 for finite element 
analysis [51,52].
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5.  FE analysis and calibration procedure

5.1.  General description

In this work, FE simulations are conducted by ABAQUS 6.14for the 3D notched 
specimens tested in [52,53]. Due to symmetry considerations, only one-eighth of 
the specimen is modelled, as embedded in Figure 2 and also shown as Figure 6. 
The 20-node brick elements (quadratic elements, C3D20R) are used. The number 
of elements and nodes are about 145,807 and 607,860, respectively. The nomi-
nal fracture strength σN which is based on the net section area at the notch (in 
the symmetrical plane normal to the loading axis) is equivalently transformed 
into the remote loading stress σ∞ via the relationship �∞ = �N

(
�2∕�1

)2
, with 

�1 = 14mm, �2 = 7.7mm (Figure 2), as depicted by the red stress vectors also 
in Figure 6. The back-calculated remote loading stresses are in the range of 

Figure 5. (Colour online) Weibull distribution plots of experimental fracture strength data σN of 
20MnMoNi55 steel [53]. Note that the 10 circled points each at 123 and 223 K are used for FE 
simulations.

Table 5. Summary of Weibull calibration results by this study and in Refs. [52,53].

T (K)

This study Ref. [52] Ref. [53]

New model Equation (20) Beremin model Equation (1)
Empirical Weibull model 

Equation (39)

m σ0 (MPa) m σ0 (MPa) m σ0 (MPa)
223 10.25 1663.5 37.2 2201 15.1 2014
203 / / / / 22.1 1455
173 / / 37.1 2460 31.5 1504
123 9.82 1879.2 15.7 3509 17.2 1670
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380.9–498.6 MPa for specimens tested at 223 K and 386.5–556.5 MPa at 123 K, 
respectively. FE modelling is performed at 223 and 123 K. Although 30 speci-
mens were tested at each temperature, due to the large amount of computation 
effort involved at each load, instead of performing FE calculation at each loading 
point, we chose to uniformly pick only ten loads out of the 30 fracture loads for 
FE simulations at each temperature, as shown by the circled dots in Figure 5. 
The demanded material constitutive properties for FE simulations including the 
Young’s modulus E, the Poisson’s ratio ν, and the temperature-dependent plastic 
flow curves are collectively given in Table 4 and Figure 4.

5.2.  Calibration procedure

This work will evaluate the new statistical model in Equation (20), with σW defined 
in Equation (21). Once σW is calculated according to Equation (21), Equation 
(22) is called in to estimate the two parameters (m and σ0). Methods to calibrate 
Equation (22) are well developed [7–14], with either the maximum likelihood 
method or the linear regression method being used. Therefore, the novelty and 
the key point to estimate m and σ0 for Equation (20) is to properly and efficiently 
evaluate the threshold stress σ1,0 for the initial yielding of a finite volume element 
ΔV to enable the calculation of the newly defined Weibull stress σW in Equation 
(21). Due to the non-uniform stress distributions in a notched specimen, each 
volume element can start plastic yielding at a different moment. Moreover, accord-
ing to the von Mises yield criterion in Equation (13), the amplitude of the stress 
σ1,0 for the initial yielding in each volume element can be different. We propose to 

Figure 6. (Colour online) FE modelling for one-eighth of the notched specimens.
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determine the value of σ1,0 for each volume element using FE analysis by assuming 
the steel as an elastic-perfectly plastic material, which is defined by the Young’s 
modulus E, Poisson’s ratio ν, and yield stress σys. The resultant value of stress σ1 in 
a plastically deformed volume element is taken as σ1,0 for that particular volume 
element. A subroutine is written to extract the stress and strain distributions for 
different elements. It should be noted that due to the converging difficulty with 
an elastic-perfectly plastic material, the loading stresses of 280 MPa at 223 K and 
380 MPa at 123 K are applied on the specimen to calculate σ1,0 at the corresponding 
temperatures. These loading stresses are sufficient to induce yielding in nearly all 
the actual region in the specimen for volume integration to calculate the Weibull 
stress σW in Equation (21). Next, the routine FE analysis is conducted using the 
true stress–strain curve of the real material with plastic hardening behaviour in 
Figure 4, to calculate the stress σ1 in each volume element at a given load. As the 
third step, the newly defined Weibull stress σW is calculated by substituting the 
values of the instant stress σ1 at a given load and the threshold stress σ1,0 for exactly 
the same volume element one by one into Equation (21). In consistence with the 
common practice for the similar materials, the reference volume V0 is taken as 
0.001 mm3 in this calculation. This process is repeated at each load to obtain the 
corresponding values of σW as input to Equation (22). Then the same conventional 
calibration procedure as used in [7–14] is applied to obtain the values of m and 
σ0. The flow chart for the described calibration procedure is presented in Figure 
7. This proposed calibration procedure is validated in [54, 55].

6.  Results and analysis

6.1.  Stress distributions in the specimen

Figure 8 shows the von-Mises stress (σVM) distributions in the specimen subjected 
to different loadings tested at 123 K, for both the realistic plastic hardening behav-
iour and the elastic-perfectly-plastic behaviour of the steel. Corresponding results 
of FE analysis at 223 K are provided in Figure 9. The von-Mises stress distributions 
are used to determine the plastic volume Vpl involved in Weibull stress calcula-
tion according to Equation (21). By definition, the volume Vpl encompasses all 
plastic deformation region with σ1 ≥ σ1,0. For this specific round notched tensile 
bar specimen, σ1,0 ≥ σys. The extreme condition of σ1,0 = σys can be achieved in the 
wider section far away from the notch section, e.g. Point A in Figure 2. However, 
to reduce FE computation time for the realistic material constitutive behaviour, in 
this study, the integral volume Vpl is defined as the volume with Von-Mises stress 
(σVM) higher than 1.5 σys, i.e. σVM ≥ 1.5σys, with the expectation to only induce 
a very minor error. Figure 10 presents the distributions of σ1,0 on the modelled 
specimen at 223 K (a) and 123 K (b), respectively.
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6.2.  Results of calibration

The calibrated values of two model parameters (m and σ0) at 223 and 123 K are 
summarised in Table 5. As expected, both parameters show very weak tempera-
ture dependence for a change of temperature by 100 K. Specifically, m = 10.25 at 
223 K and m = 9.82 at 123 K, with an average value m = 10.03; �0 = 1663.5MPa 
at 223 K and �0 = 1879.2MPa at 123 K, with an average value �0 = 1771.3MPa. 
In other words, within the temperature range from 223 K to 123 K, for every 
10 K change in temperature, there is only 0.2% change in the value of m and 0.6% 
change in σ0. Even the overall difference in the absolute values of σ0 from 223 to 
123 K is only 108 MPa, which is quite small. Nevertheless, we believe it is beneficial 
to understand the possible root causes for this minor variation in σ0 for future 
studies. First, at each temperature, we only adopted 10 out of 30 external loads for 
model calibration. Obviously, more stable calibration results are expected when 

Figure 7. Flowchart for the calibration procedure of the new statistical model in Equation (20) at 
each temperature.
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using more data points. Second, the approximate evaluation of plastic volume Vpl 
is also responsible. As mentioned in Section 5, in order to reduce some computa-
tion time in the FE analysis, we adopted the criterion σVM ≥ 1.5σys instead of the 
more accurate one σVM ≥ σysto calculate the volume of plastic zone Vpl, as input 
for calculating the Weibull stress σW using Equation (21). This will only result in a 
slight underestimate of the plastic volume Vpl, and in turn, lead to a smaller value 
of the Weibull stress σW than its true value. As an example, Figure 11 compares 
the volume of plastic zone Vpl calculated by the two approaches at 123 K, in which 
Vpl(σVM ≥ σys) refers to the volume of plastic zone determined by strictly adhering 
to the von Mises yielding criterion σVM ≥ σys, while Vpl(σVM ≥ 1.5σys), which is 
adopted in this study, denotes the volume of plastic zone determined according 
to σVM ≥ 1.5σys. The difference in the values of the two volumes seems to be pretty 
significant. However, the reader is reminded that in the calculation of Weibull 
stress σW using Equation (21), it is the product term for each volume element ΔVi, 
(σ1 − σ1,0)

mΔVi, instead of the volume element ΔVi itself, plays the key role. If the 
amount of the product terms (σ1 − σ1,0)

mΔVi within the ignored portion of the 

Figure 8. (Colour online) Examples of von-Mises stress distributions for the notched specimens 
at 123  K. (a) �∞ = 386MPa (Corresponding to �N = 1277MPa), true elastic-plastic hardening 
constitutive law for the steel; (b) �∞ = 556MPa (corresponding to �N = 1839MPa), true 
elastic-plastic hardening constitutive law for the steel; (c) �∞ = 380MPa (corresponding to 
�N = 1256MPa), elastic-perfectly plastic constitutive model.
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plastic volume, here denoted as Vpl(σys ≤ σVM ≤ 1.5σys), is insignificant compared 
to the total summation 

∑
(�1 − �1,0)

mΔVi, the final impact on the calibration 
result should not be a concern. To better elaborate this point, we compared the 

Figure 9.  (Colour online) Examples of von-Mises stress distributions in the notched specimens 
at 223  K: (a) �∞ = 380MPa (corresponding to �N = 1259MPa), true elastic-plastic hardening 
constitutive law for the steel; (b) �∞ = 498MPa (corresponding to �N = 1648MPa), true elastic-
plastic hardening constitutive law for the steel; (c) �∞ = 280MPa (corresponding to �N = 926MPa), 
elastic-perfectly plastic constitutive model.

Figure 10.  (Colour online) The distributions of σ1,0 in the specimen at 223 K (a) and 123 K (b), 
respectively, based on the elastic-perfectly plastic constitutive model.
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plastic volume, the corresponding Weibull stress, and subsequently the cumulative 
failure probability P at two much lower nominal strength values (�N = 383MPa, 
638 MPa), which correspond to 30 and 50% of the minimum value (1382 MPa) of 
the 30 reported nominal fracture strength data at 123 K (see Figure 5). The stress 
distributions at both strength values are embedded in Figure 11, with the grey 
areas being the plastic deformation zone. See Figure 12 for more detailed results. 
The results are summarised in Table 6. On one hand, at both nominal strengths 
(�N = 383MPa, 638 MPa), the criterion σVM ≥ 1.5σys resulted in zero valued plas-
tic volume and hence the Weibull stress, translating into zero cumulative failure 
probability (P = 0). On the other hand, at the nominal strength �N = 383MPa, 
the strict execution of von Mises yielding criterion (σVM ≥ σys) leads to Weibull 
stress �W = 20.1MPa, or (σW/σ0)

m = 1.42 × 10−27, which gives the cumulative 
failure probability P = 0, while �N = 638MPa results in the cumulative failure 
probability P = 5.38 × 10−6.

6.3.  Analysis: validation of temperature independence of two model 
parameters

6.3.1.  20MnMoNi55 steel
In principle, with the two model parameters being calibrated above, the new 
model in Equation (20) is now fully transparent and can be used for simulating 
and predicting cleavage fracture induced failures in real applications in aid of FE 

Figure 11. (Colour online) Variation of the volume of plastic zone Vpl with nominal stress σN at 
123 K. Note that Vpl(σVM ≥ σys) refers to the volume of plastic zone determined by strictly adhering 
to the von Mises yielding criterion σVM ≥ σys, while Vpl(σVM ≥ 1.5σys), which is adopted in this study, 
denotes the volume of plastic zone determined according to σVM ≥ 1.5σys. The tiny grey area in the 
embedded charts for von-Mises stress distributions is the plastic deformation zone.
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analysis. However, since the major interest of this work is to justify the temperature 
independence of the two parameters m and σ0 in the new model (Equation (20)), 
here below we will pursue a different path based on current FE results instead 
of resorting to further FE analysis to analyse the experimental data in Figure 5.

Figure 12. (Colour online) von-Mises stress distributions for the notched specimens at 123 K. (a) 
�N = 383MPa and (b) �N = 638MPa, true elastic-plastic hardening constitutive law for the steel. 
The tiny grey area is the plastic deformation zone.
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By definition in Equation (21), the new Weibull stress σW is affected by mate-
rial constitutive properties including elastic properties (E, ν), yield stress σys and 
plastic hardening parameters, specimen geometry which dictates constraint effect, 
Weibull modulus m, and external load represented by the nominal stress at notch 
section σN. For a given specimen geometry such as the round notched tensile bar 
in this study, at a fixed temperature (T), the new Weibull stress σW should only 
vary with m and σN, that is,

 

Within the relatively narrow temperature range susceptible for cleavage fracture, 
out of all the material constitutive properties, only the yield stress σys has pro-
nounced temperature dependence. Now if we assume that the Weibull modulus m 
is also temperature independent, Equation (40) can be converted to a normalised 
format that allows considering temperature effect:
 

Equation (41) suggests that there exists a ‘master curve’ that correlates the two 
normalised variables �W

�ys

 and �N

�ys

 at different temperatures. However, further work is 
demanded to understand the exact expression of function y = f(x). For conserva-
tion, we expect f(x) is a non-linear function, but it is possible to be approximated 
by a linear one within certain loading regime.

Specific to current study, Figure 13 summarises the correlation between the 
nominal fracture strength σN and the corresponding new Weibull stress σW 
(Equation (21)) at 223 and 123 K. Both σN and σW are normalised by the yielding 
stress σys at the corresponding temperature. As shown in Figure 13, these 20 data 
points show a strong linear correlation between the normalised new Weibull stress 
�W∕�ys and the normalised nominal strength �N∕�ys. However, we take this result 
as a strong justification on the ‘master curve’ behaviour more than on emphasising 
the linearity of correlation.

Now, substitution of Equation (41) in the new model Equation (20) leads to
 

(40)�W (T) = f (m, �N )

(41)
�W

�ys

=
�W (T)

�ys(T)
= f

(
�N (T)

�ys(T)

)

(42)P = 1 − exp

[
−

(
�ys

�0

)m

f m

(
�N

�ys

)]

Table 6.  Results of plastic volume (Vpl) and Weibull stress σW determined by σVM  ≥  σys and 
σVM ≥ 1.5σys.

Criterion

Nominal fracture strength �
N
= 383MPa Nominal fracture strength �

N
= 638MPa

Vpl, mm−3 �
W
, MPa

P, Equation 
(20) Vpl, mm−3 �

W
, MPa

P, Equation 
(20) 

σVM ≥ σys 0.24 20.1 0 3.66 526.4 5.38 × 10−6

σVM ≥ 1.5σys 0 0 0 0 0 0
Assume m = 10, �0 = 1771MPa for calculating cumulative failure probability P
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or in equivalence,
 

(43)Y =
1

�ys

⋅

{
ln

[
1

(1 − P)

]} 1

m

=
1

�0

⋅ f

(
�N

�ys

)

Figure 13. (Colour online) Correlation between the normalised nominal strength �N∕�ys and the 
normalised new Weibull stress �W∕�ys.

Figure 14. (Colour online) Correlation between the compound parameters Y =
1

�ys

⋅

{
ln
[

1

(1−P)

]} 1

m

 
and X =

�N

�ys

 at four different temperatures.
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If the function y = f(x) is a linear function as shown in Figure 13, according to 

Equation (43), there will be a linear correlation between Y =
1

�ys

⋅

{
ln
[

1

(1−P)

]} 1

m 
and X =

�N

�ys

.
Equation (43) permits us to transfer the experimental data in Figure 5 

into Figure 14 for the expected correlation between the compound param-

eters Y =
1

�ys

⋅

{
ln
[

1

(1−P)

]} 1

m and X =
�N

�ys

 with the calibrated value m = 10 and 

Figure 15. (Colour online) Correlation between the compound parameters Y =
1

�ys

⋅

{
ln
[

1

(1−P)

]} 1

m

 
and X =

�N

�ys

 at four different temperatures: (a) m = 5; (b) m = 15.
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temperature dependence of yield stress in Table 5. Three observations can be 
made on Figure 14: First, the ‘master curve’ behaviour of the 120 data points is 
revealed, providing convincing validation to the temperature independence of 
Weibull parameters m and σ0. Second, with 120 data points as input, the correlation 
between the two compound parameters Y and X takes a S-shaped transition curve 
instead of a straight line. This reminds us to be very careful about the linear fitting 

Figure 16. (Colour online) Analysis of strength data of SA 333 steel: (a) Weibull distribution plots of 
experimental fracture strength data σN [53]; (b) Correlation between the compound parameters 

Y =
1

�ys

⋅

{
ln
[

1

(1−P)

]} 1

m

 and X =
�N

�ys

.
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of much less data in Figure 14. Third, the tight distribution of experimental data 
also tells that the calibrated value m = 10 is pretty accurate. To further highlight 
this point, the scenarios of m = 5 and m = 15 are plotted in Figure 15(a) and (b) 
for comparison.

To further elaborate the temperature independence of Weibull parameters 
m and σ0 underpinning the ‘master curve’ behaviour between  the compound 

parameters Y =
1

�ys

⋅

{
ln
[

1

(1−P)

]} 1

m and X =
�N

�ys

 at four different temperatures, let’s 

examine two additional examples.

Figure 17.  (Colour online) Analysis of strength data of BS 4360 (Grade 50D) steel: (a) Weibull 
distribution plots of experimental fracture strength data σN [8]; (b) Correlation between the 

compound parameters Y =
1

�ys

⋅

{
ln
[

1

(1−P)

]} 1

m

 and X =
�N

�ys

.
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6.3.2.  SA333 (Grade 6) steel
In [53], the nominal fracture strength σN data for SA333 steel were also measured 
at 123 K and 173 K as presented in the form of the Weibull distribution plot in 
Figure 16(a).The yield stress values at these two temperatures are given in Table 
1. Similar to the case of 20MnMoNi55 steel, we can also transform the data in 
Figure 16(a) into the correlation between the two compound parameters in Figure 
16(b). Since we have not performed FE analysis to calibrate Weibull parameters 
m and σ0 for this steel, the value of m adopted in Figure 16(b) is obtained by trials 
and errors. Although eventually we’ll need to take stricter FE analysis to calibrate 
the two model parameters, the approach we take here is sufficient to be used for 
justifying the existence of the ‘master curve’ behaviour in this steel.

6.3.3.  BS 4360 (Grade 50D) steel
Figure 17(a) shows the nominal fracture strengthσN data of BS 4360 (Grade 50D) 
steel measured on circumferentially notched round tensile specimens by Wiesner 
an Goldthorpe [8]. In the absence of FE analysis to calibrate Weibull parameters 
m and σ0 for this steel, m = 16 is adopted to transform the data in Figure 17(a) 
into the correlation between the compound parameters in Figure 17(b). Evidently, 
there seems also to be a ‘master curve’ synchronising all the experimental data 
in this steel.

7.  Summary and conclusions

Since early 1980s when the Beremin model was proposed, the dependence of 
temperature and specimen geometry on the parameters m and σ0 for the Beremin 
model and other LA models for cleavage fracture has been a continuous subject 
of debate. In this work, a new LA model to cleavage fracture, which is formulated 
strictly to abide by both probability theory and physical understanding of cleavage 
mechanisms, is adopted to investigate the effect of temperature on the parameters 
m and σ0. The consistency of the new LA model to the generic LA methodology 
and its differences with some typical existing models are interpreted. Specifically, 
the work relies on a set of published experimental data obtained from notched 
tension specimens, a recently developed calibration procedure for this new LA 
model by the authors [54, 55], and a series of FE calculations of stress distributions. 
Based on this study, the following conclusions are drawn:

(1) � A method to calculate the maximum principal tensile stress σ1,0 on a vol-
ume element at the occurrence of its initial plastic yielding is validated 
based on FE method. The value of σ1,0 varies with volume element and 
temperature.

(2) � Calibration results show that the two parameters m and σ0 in the new LA 
model are temperature independent from 123 to 223 K.
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(3) � The one-to-one correlation between the normalised new Weibull stress 
and the normalised nominal strength leads to the finding of a master 
curve characteristic that synchronises the variation of cleavage frac-
ture probability with external loading at different temperatures. This 
provides a new avenue to calculate cleavage fracture probability with 
reduced FE efforts.

Our next effort is to adopt this new LA model to investigate the effect of specimen 
geometry on the two model parameters which includes fracture toughness speci-
mens. Due to the dependence of critical event for cleavage fracture on stress state, 
certain changes of critical event from a notched specimen to a cracked specimen 
are expected. The corresponding impact on model parameters will be explored.
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