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A B S T R A C T

The heterogeneous pore space of porous media strongly affects the storage and migration of oil and gas in the
reservoir. To accurately reproduce complex pore structure validated with experiment data, a hybrid method
which combines the CCSIM-TSS method (the cross correlation based simulation-three step sampling method)
with the optimization method is proposed to reconstruct stochastically 3D models of the heterogeneous porous
media based on 2D images and some constrain conditions. Moreover, the new system in the hybrid method is
generated by exchanging the objective points and boundary points of pore and matrix based on two algorithms.
Then the hybrid method are tested on the two typical samples (carbonate rock, tight sandstone samples with
micro-nanopores). Quantitative comparison is made by computing various statistical and petrophysical prop-
erties for the reconstructed models, as well as the original samples. It was found that the hybrid method gen-
erates an ensemble of stochastic realization that honor the constrain conditions (permeability data, pore-size
distributions and the connectivity). Generating realization of tight sandstones that match the experimental data
based on 2D SEM image shows that this method may be then used for more accurate characterization of tight
sandstones oil reservoir and analysis of their pore network.

1. Introduction

Complex pore structures have considerable influence on the storage
and migration of oil and gas in the reservoir, thus constructing digital
core and characterization of pore structures play a vital role in the
exploration of reservoirs (Weger et al., 2009; Payne et al., 2010). The
heterogeneous porous media, such as tight sandstones and carbonate
rocks, are highly heterogeneous and many of them contain a complex
pore structure with a wide range of length scales. Many methods for
modeling of porous media cannot be used for these heterogeneous
porous media. Moreover, most of the current modeling methods may
not be able to fully reproduce the experimental data for the perme-
ability and pore size distribution. Hence, it is of great significance to
develop methods to accurately describe the pore structure and perme-
ability of heterogeneous porous media.

Digital core construction methods are in general divided the fol-
lowing two classes: (1) the physical construction method, focused ion
beam scanning electron microscopy (FIB-SEM) or X-ray Computed
Tomography (CT), can directly construct real 3D digital cores (Bai
et al., 2013; Chen and Zhou, 2017; Curtis et al., 2012; Kelly et al., 2016;
Liu et al., 2017; Zhou et al., 2016). Micro-CT can only resolve meso

pores and part of micro pores and can’t identify extra small (nm) pores
in tight sandstones. Although nano-CT and FIB-SEM can identify the
nano-scale pores, the field of view of them is too small to reflect bulk
properties. Also, the high cost, computational difficulty, and the time-
intensive effort required, providing 3D datasets for different samples
has become a challenging problem. On the other hand, 2D images can
be obtained with ease at a larger scale (hundreds of μm) and at a lower
cost and much higher efficiency. (2) Computer technology and math-
ematical modeling methods can reconstruct 3D structures from a single
high-resolution two-dimensional (2D) image. Such models may be di-
vided into three groups: process-based methods, object-based techni-
ques and pixel-based methodologies. Process-based methods (Bryant
and Blunt, 1992; Biswal et al., 1999, 2007; Coelho et al., 1997; Øren
and Bakke 2002) try to develop 3D models by mimicking the physical
processes that form the porous medium. Though realistic, such methods
are, however, computationally expensive and require considerable ca-
librations. Moreover, they are not general enough, because each of
them is developed for a specific type of rock, as each type is the out-
come of some specific physical processes. In the object-based techni-
ques, the pore and grain structures are treated as a set of objects that are
defined based on the prior knowledge of the pore space (Pyrcz and
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Deutsch, 2014). Simulated annealing, hierarchical simulated annealing
(HSA), and Gaussian random field, are the most typical algorithms of
this classification. Stability is the most significant advantage of this kind
of algorithms, which ensures that the reconstructed results will have the
characteristics specified by the objective function when they converge
to it. However, the object-based techniques fail to reproduce the long-
range connectivity of the pore space, especially for low porosity ma-
terials and particulate media with special shapes, because only the low-
order information is used. Pixel-based methodologies are based on de-
fining an array of points or pixels in a regular grid, with the pixels
representing various properties of a reservoir. Unlike the object-based
techniques, they can be used effectively to produce the shapes that are
hard to fit to a specific regular object. However, these techniques are
unable to produce very realistic pore structures. Single normal equation
simulation method (SNESIM), the Markov stochastic reconstruction
method (MCMC) (Wu et al., 2004), the cross correlation based simu-
lation (CCSIM) and their derivative algorithms belong to this group.
The single normal equation simulation (SNESIM) proposed by Strebelle
(Strebelle, 2002; Strebelle and Cavelius, 2014) uses a search tree
structure, an efficient method of accessing high-dimensional data that
can overcome the problems associated with the original MPS method.
The method is computationally demanding and unable to control the
continuity and variability among adjacent layers (Hajizadeh et al.,
2011; Hajizadeh and Farhadpour, 2012). Further, they have never been
tested for reconstructing models of shale reservoirs. The cross-correla-
tion–based simulation (CCSIM) method, proposed by Tahmasebi et al.
(2012, 2015, 2016), was used to reconstruct stochastically equiprob-
able 3D models of shale rocks. This method produces an ensemble of 3D
realizations that provide acceptable approximation of the same prop-
erties in the 2D image(s). However, the reconstructed vertical mor-
phological features are unsatisfactory (Gao et al., 2015; Tahmasebi and
Sahimi, 2016), and also the method is unable to reproduce accurately
the experimental data for the permeability and electrical conductivity.
The CCSIM-TSS method (the cross correlation based simulation-three
step sampling method) is derived from the cross correlation based si-
mulation (CCSIM) to improve the long-range (global) connectivity of
the pore space in the vertical direction (Ji et al., 2018). However, as
other pixel-based methodologies, it is not capable of reproducing ac-
curately the experimental data for the permeability and pore size dis-
tribution. Thus in this paper, to reproduce more realistic morphology
for porous media, we develop a hybrid method which combines the
CCSIM-TSS method with the multiple objective simulated annealing
algorithm to generate 3D digital cores based on 2D images. In other
words, the strength of pixel-based method for producing complex pore
space and object-based methods for realistic models are integrated.

The rest of this paper is organized as follows. In the next section we

describe the hybrid method that we propose in this paper, including an
algorithm (CCSIM-TSS method) that was recently suggested and uti-
lized in the present paper, and how it is integrated with the optimiza-
tion method based on multiple objective simulated annealing algorithm
(MOSA). Then the accuracy of the new algorithms is tested using car-
bonate rocks and tight sandstones. Finally the paper concludes with a
summary and discussion of the results.

2. Methodology

In this paper the CCSIM-TSS algorithm (the cross correlation based
simulation-three step sampling method) is integrated with an optimi-
zation method scheme based on the multiple objective simulated an-
nealing method to generate an ensemble of 3D realizations that re-
produce the experimental results. The hybrid method starts with the
CCSIM-TSS algorithm to build a 3D digital core which is the initial
configuration for the optimization method based on the MOSA method.
The 3D digital core is adjusted by the optimization method to minimize
the difference between the reconstructed and realistic models. In par-
ticular, the two-point connectivity probability functions, the pore-size
distribution functions and the permeability are used as the constraint
conditions in the optimization method.

2.1. Ccsim-TSS

In the beginning of the hybrid method proposed in this paper, the
CCSIM-TSS algorithm is used to generate an ensemble 3D realization.
The CCSIM-TSS algorithm is a newly developed algorithm which
combines the cross correlation based simulation (CCSIM) with the three
step sampling method together to reconstruct stochastically 3D models
of the heterogeneous porous media (Ji et al., 2018). It can provide
acceptable approximation of the same properties in the 2D image(s) and
preserve the long-range (global) connectivity of the pore space in the
vertical direction. However, it produces a range of realizations instead
of one single value and is unable to produce very realistic pore struc-
tures.

The specific process of CCSIM-TSS is arranged as follows (as show in
Fig. 1):

(1) At first, typical 2D digital images (DIs), which include most of the
expected variations and heterogeneity of the porous medium, are
selected.

(2) The original DI is set as the first layer at the bottom of 3D model.
Then, the other four frames (i.e., front, left, back, and right) are
generated using the cross correlation based simulation (CCSIM), as
shown in Fig. 1.

Fig. 1. The schematic illustration of the CCDIM-TSS algorithm.
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(3) Now we reconstruct each layer of the digital core in the vertical
direction. It should be pointed out that the two-point connectivity
probability function (ACF (r)) is calculated based on the typical
digital images (DIs). Let i+ 1 be the number of layers to be re-
constructed currently. We select the condition data as follows: (a)
The ith layer is scanned using a 5×5 sampling template, and the
central node of the template, which is entirely pore (grain), is
marked as a sampling point. The number of sampling points is re-
corded, and this sampled area is labeled. (b) The remaining portion
of the image is scanned using a 3×3 sampling template, and the
sampling points are selected. (c) The unavailable sampling area is
labeled, and the number of pixels is recorded. (d) The edge area is
marked and the sampling points in the edge area are selected based
on the two-point connectivity probability function. The procedure
continues until all the (2D) layers in the vertical have been re-
constructed.

(4) Eventually, all the generated layers are stacked together to create
the reconstructed 3D model.

2.2. The optimization method

The optimization method based on multiple objective simulated
annealing algorithm (MOSA) can be seen as an optimization problem to
minimize the difference between the properties of the reconstructed 3D
digital core and the realistic one. We design the subsequent search
scheme, defines the criterion to select the boundary point of pore and
the matrix, and proposes the generation solutions of the new system by
exchanging the isolated pore points and boundary points of pore and
matrix based on two algorithms. The objective functions used in this
paper is the two-point connectivity probability functions, pore-size
distribution functions and the permeability obtained through experi-
ments.

The flow chart of the optimization method is shown in Fig. 2. In the
following, we describe its’ components in a detailed manner:

(1) The digital core reconstructed by CCSIM-TSS is used as the initial
configuration for the optimization method and the initial tem-
perature T0 are assumed. Then the three objective functions of the
initial system is calculated, and the objective functions of the
system is defined as follows:
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and the models, and η η η, ,x y z are the weight for the permeability in
three directions.

The AB (axis & ball) algorithm (Yi et al., 2017), a newly developed
pore network extraction algorithm, is used to extract the pore networks
from the digital cores. Then the pore-size distribution is calculated.

(2) The three objective functions of the current system are evaluated
and the maximum objective function are chosen: =f f f fmax( , , )1 2 3 .

(3) The iteration number for the current temperature are given, n T( )k
(4) New configurations are generated by exchanging the objective

points and boundary points of pore and matrix based on two al-
gorithms.

The efficient generation of new configurations requires the location
of two voxels at the two-phase interface, and their subsequent

exchange. We further refined this method of voxel location by the im-
plementation of two algorithms:

Algorithm I. if =f f or f1 3, then the connectivity of the current
configuration should be improved based on Algorithm I. In this
algorithm, the D3Q19 model is used to select the object point. As
shown in Fig. 3a, the voxel in the center of the D3Q19 lattices structure
model is denoted as 0. If there are n voxels of the 19 voxels in the
neighborhood of the voxel 0 in the different phase with the voxel 0, the
voxel 0 is selected as the object point. It should be pointed out that the
value of n is determined according to the specific circumstances of the
case. If n is too large, the object voxel will become difficult to be found,
and it will take much time to find the object voxel. However, if n is too
small, the connectivity of the current configuration will be destroyed. In
this paper, n is 5 as the voxel 0 is pore, while n is 11 as the voxel 0 is
matrix. In particular, the voxel 0 is defined as complete pore when the
voxel 0 and the 19 voxels in its neighborhood are all pores. Let the
coordinate of the complete pore 0 is (i, j, k). Next we select the
boundary point and exchange it with the object voxel to generate the
new configuration. As shown in Fig. 3b, A and B denote the positive and
negative direction of X-axis, while C (E) and D (F) denote the positive
and negative direction of Y-axis (Z-axis). One of the above six directions
is chosen randomly. Then we start from the complete pore 0 (i, j, k) and
search the boundary voxel along the above chose direction. It should be
pointed out that if the boundary voxel is not found along this direction,
and then we should choose another direction to find the boundary
voxel. A new trial state is obtained by interchanging the object voxel
and the boundary voxel. At last, it should be emphasized that if the
difference of the two-point connectivity probability function in one
direction, such as in y direction, is bigger than the other two directions,
we should choose boundary voxels along y directions.

Algorithm II. if =f f2, then the pore network of the current
configuration should be improved based on Algorithm II. Firstly, the
AB algorithm is used to extract the pore networks from the current
configuration, and the pore-size distribution p’(r) is calculated. Next,
p′(r) is compared with the pore-size distribution p(r) of experiments.
Based on the results, the pores are classified into three types: U1(r1, r2,
…, rn), U2(r01, r02,…, r0n) and U3(r11, r12,…, r1n). Any point ri in the set U1

denotes the points that the number of points with the radius ri in the
current configuration is smaller than that in the real rock sample. Any
point r0i in the set U2 denotes the points that the number of points with
the radius ri in the current configuration is bigger than that in the real
rock sample. Any point r1i in the set U3 denotes the points that the
number of points with the radius ri in the current configuration is equal
to that in the real rock sample. Two pores are chosen from U1 and U2 at
random, respectively. The centers of the two pores are denoted by 01
and 02, and obviously, 01 and 02 are complete pores. Beginning at the
starting point 01, the boundary voxels of 01 are sought in six different
directions, as shown in Fig. 3b. In the same way, the boundary voxels of
02 are sought and then exchanged with the six boundary voxels of 01.
Finally, we obtain the new trial state.

(5) The objective functions of the trial configuration is recalculated.

For =f f or f1 2, if > +f X f X( ) ( )n n 1 the trial configuration is un-
conditionally accepted and becomes the current configuration. On the
other hand, if < +f X f X( ) ( )n n 1 , then the trial configuration is accepted
with a probability given by

⎜ ⎟= ⎛
⎝

− ⎞
⎠

+p f
f X f X

T
(Δ ) exp

( ) ( )n n

k

1

(3)

where = − +f X f XΔf ( ) ( )n n 1 .
For case =f f3, it is important to point out that in this step (the

iteration for the current temperature) the objective function is not the
permeability. The multi-point connectivity functions (Krishnan and
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Journel, 2003) are used here to evaluate the quality of the trial con-
figuration. This is because that the trial configuration is obtained by
exchange only two voxels and its permeability can’t change obviously
compared to the old configuration. However, the multi-point con-
nectivity functions of the trial configuration have obvious difference
with that of the old configuration. Moreover, the multi-point con-
nectivity functions allows one to account for the curvilinearity of the

system by considering a tolerance core around a target direction, and it
can reflect the permeability of the digital core. Thus here we use the
difference between the curve of the multiple-point connectivity prob-
ability function curve and the straight line between the beginning and
the end of this curve (defined as the reference line) as the objective
function. For example, let the multiple-point connectivity probability
function in three directions is shown in Fig. 4, and then dx , dy anddz are

Fig. 2. The flow chart of the optimization method.
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calculated as follows:

∑= − =
=

d p r p r η x y z| ( ) ( )| ( , , )η
i

n

η i r i
1 (4)

where =d η x y z( , , )η is the absolute value of the difference between
the curve of the multiple-point connectivity probability function along
X, Y, Z direction and the reference line. p r( )η i is the multiple-point
connectivity probability function along X, Y, Z direction. p r( )r i is the
reference line which is defined as the straight line between the begin-
ning and the end of the multiple-point connectivity probability function
curve (Fig. 4), and n is the number of pixels in the figure.

As dη =η x y z( , , ) decreases, the connectivity of pore structure in
corresponding direction is becoming better and the corresponding
permeability increases. Therefore, we can adjust the value of dη

=η x y z( , , ) to minimize the difference of permeability between the
reconstructed model and the real rock sample.

(6) Repeat Steps 2–5 until a predefined number of iterations n T( )k is
carried out.

(7) The three objective functions f f f, ,1 2 3 (the permeability) are re-
evaluated. If < +f X f X( ) ( )n n 1 , then reduce the temperature using a
problem dependent annealing schedule, and go to Step 2. On the
other hand, if > +f X f X( ) ( )n n 1 , go to Step 2 directly.

(8) This process (2)-(7) is repeated until Tkbecomes lower than a spe-
cified value.

It’s should be noted that in order to avoid destroying the con-
nectivity of the digital core, we only randomly select pairs of voxels on
the pore-matrix interface, one pore voxel and one matrix voxel, to in-
terchange their phases. As the number of voxels that have changed their
phases successfully increases, the auto-correlation function, the pore-
size distribution and the permeability of the 3-D digital core converges
gradually to that of the actual samples.

In the following we will use three different rock samples (carbonate
rock, tight sandstone sample and sandstones) to test the described
methodology.

3. Case study and parameter analysis

3.1. Carbonate rock

To investigate the reconstruction of heterogeneous porous media,
we select a carbonate sample, referred to as C, for reconstruction. The
carbonate rock 3D Micro-CT-scan data consist of 200 2D slices with
200× 200 elements and a voxel size of 10.69 μm. The porosity of the
carbonate sample is 16.8%. The absolute permeability of the carbonate
rock calculated through AB (axis & ball) algorithm (Yi et al., 2017)
based on the Micro-CT image are 198mD, 323mD and 248mD in three
directions.

Three layers in the three directions among the Micro-CT image as
representative images of the carbonate sample, referred to as DIx, DIy
and DIz, is selected to reconstruct the 3D model of sample C (Ji et al.,
2018). Then DIx is used as the bottom of the 3D model, as shown in
Fig. 5a. Also, based on the three representative images, the two-point
connectivity probability function (ACF (r)) are extracted (Fig. 5b), and

Fig. 3. The D3Q19 lattices structure model (a) and the diagram of six directions (b).

Fig. 4. Curves of the multiple-point connectivity probability functions and the
reference line of the rock sample. Fig. 5a. The extracted 2D representative image in the x direction.
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it will be used as vertical constraint conditions in CCSIM-TSS.
Fig. 5c plots the realization generated by CCSIM-TSS, and then the

connectivity and the pore-size distribution of the produced realization
are estimated. First, the difference of the two-point connectivity prob-
ability functions between the realization and the Micro-CT image, was
compared, as shown in Fig. 6. The plots indicate that there is a differ-
ence of connectivity in three directions. Further, the pore-size dis-
tribution of the realizations for carbonate sample are calculated, and
then they are compared with the pore-size distribution of the Micro-CT
image. It can be seen from Fig. 7 that the pore-size distribution of
Micro-CT image and the realization is relatively big. Finally, the

absolute permeability of the realizations for carbonate sample are
evaluated, and they are 140mD, 201mD and 117mD. Therefore, it can
be obtained that the realizations generated by the CCSIM-TSS method is
not capable of reproducing accurately the connectivity and the pore-
size distribution of the actual sample. Thus in the following we will use
the optimization method to adjust the realization to minimize the dif-
ference between the realization and the actual sample.

To minimize the difference of the reconstructed model and the real
rock sample, the second step of the hybrid method, the optimization
method, is used to optimize the reconstructed model. Inspecting Fig. 6,
we can find that when ⩾r 20 the difference of the two-point con-
nectivity probability is relatively big. Thus α β γ, , for ⩾r 20 is assumed
to be twice as big as that for r < 20. Similarly, κ for ⩽ ⩽μ r μ10 m 30 m
is assumed to be twice as big as that for <r μ10 m and >r μ30 m. It
should be pointed out that the permeability in three direction of the
reconstructed model is smaller than that of the real rock sample. Thus
during iterative process, the =d η x y z( , , )η should be reduced to im-
prove the connectivity of the pore structure in three directions.

After 238 iterations, we obtain the final reconstructed result by the
optimization method. Then the connectivity in three directions and the
pore-size distribution of the produced realization are estimated. As
shown in Fig. 8 the two-point connectivity function in three directions
of the final realization is much closer to that of the Micro-CT image than
CCSIM-TSS result. Also, the pore-size distribution of the final re-
constructed result and the experiment for sample C is compared in
Fig. 9. The figure indicates that the final realization reproduces the
pore-throat size distribution of the original sample. Thus we can obtain
that the final result obtained by the optimization method can reflect the

Fig. 5b. The curve of the two-point connectivity probability function extracted
as the vertical constrain condition.

Fig. 5c. The reconstructed model by CCSIM-TSS method.

Fig. 6. Curves of the two-point connectivity probability functions of the reconstructed results (red) and the Micro-CT image (black) for carbonate sample C in X(a), Y
(b) and Z(c) direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Curves of the pore-size distribution of the reconstructed results (red) and
experiment (black) for carbonate sample C. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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properties of the real samples. Furthermore, the pore network before
and after optimization are both plotted together and compared with
each other, as shown in Fig. 10. It can be seen from the figure that the
optimization method based on MOSA cannot change the main con-
nective path of the pore structure, however, it can change the digital
core with the local micro-adjustment.

Finally, the absolute permeability of the final result obtained by the

optimization method are investigated. For sake of comparison, the ab-
solute permeability of the realizations obtained by different number of
iterations and the real rock sample are listed in Table 1. It can be seen
that as the number of iterations increases, the absolute permeability of
the realization is approaching to that of the real rock sample and the
realization becomes more accurate.

3.2. Tight sandstone samples

To further test the described methodology, a tight sandstone sample
in China, referred to as T, was selected. Compared to carbonate rock C,
this sample represents a more complex case with micro-nanopores. The
porosity of the tight sandstone sample is 4.2%. Pulse decay perme-
ability was performed at effective stress of 30.0MPa at the temperature
of 38 °C that yielded an absolute permeability of 1.25mD based on the
Klinkenberg expression (Bhandari et al., 2015). Thus, a 3D realization

Fig. 8. Curves of the two-point connectivity function and the pore size distribution of the final reconstructed result, the realization of CCSIM-TSS for carbonate
sample C in X(a), Y(b) and Z(c) direction.

Fig. 9. Curves of the pore size distribution of the final reconstructed result, the
realization of CCSIM-TSS and the experiment for carbonate sample C.

Fig. 10. The pore network model of the final reconstructed result (a) and the realization of CCSIM-TSS (b) for carbonate sample C.

Table 1
Comparison of the permeability obtained from the reconstructed models for
carbonate sample C and the experiment.

Permeability (mD) Experiment number of iterations

1 100 238

Kx 198 140 160 204
Ky 323 201 263 308
Kz 248 117 204 209
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was generated using the CCSIM-TSS algorithm; see Fig. 1. Then, the
optimization method was carried out to minimize the difference be-
tween the physical properties of the reconstructed 3D digital core and
the realistic one.

In this paper, an SEM image of the tight sandstones sample, shown
in Fig. 11, was used. The image consists of with 1000× 1000 elements

and a voxel size of 50 nm. The image indicates a spatially stationary
distribution of pores and the single DI was therefore used for different
directions.

Also, based on the 2D image in Fig. 11, the two-point connectivity
probability functions (ACF (r)) are extracted, as shown in Fig. 12. And it
will be used as vertical constraint conditions in CCSIM-TSS for re-
constructing 3d models for the tight sandstone sample.

Based on the CCSIM-TSS method and the 2d image, the realization
for the tight sandstone sample is reconstructed, as shown in Fig. 13.
Then the connectivity and the pore-size distribution of the produced
realizations ware estimated. First, the two-point connectivity prob-
ability functions in the three directions are computed and then com-
pared with that with the SEM image. Inspecting Fig. 14, one can find
that there is a difference of the two-point connectivity probability
functions between the reconstructed model and the SEM image when

<r 200 and ⩾r 900. Next, the error, the difference between the com-
puted pore size distribution and the experimental value (mercury in-
trusion porosimetry), was calculated. It can be seen from Fig. 15 that
the difference of the pore-size distribution for the experiment and the
realization is relatively big, especially for radius bigger than 200 μm.
Therefore, similar to carbonate rock, it can be also obtained that rea-
lizations generated by the CCSIM-TSS method is not capable of re-
producing accurately the connectivity and the pore-size distribution of
the actual tight sandstone sample. Thus in the following we will use the
optimization method to adjust the realization to minimize the differ-
ence between the realization and the actual sample.

The final digital core for the tight sandstone sample T is obtained
after 1365 iterations. For the sake of comparison, the two-point con-
nectivity function in three directions of the final model obtained by the
optimization method, the CCSIM-TSS method and the SEM image are
plotted in Fig. 16. It can be seen clearly that the connectivity of the final
digital core have been improved greatly and the difference of the two-
point connectivity function between the final digital core obtained by
the optimization method and the SEM image is very small. Also, the
pore size distribution of the final digital core are examined. The com-
parison is shown in Fig. 17. Inspecting the figure, we can obtain that the
final digital core reproduces the pore-throat size distribution of the
experiment. The porosity associated with each of the original sample
and generated realization was also computed to be 4.20% and 4.38%,
accordingly.

Finally, the permeability of the final result for tight sandstone
sample T obtained by the optimization method are examined. For sake
of comparison, the permeability of the realizations obtained by dif-
ferent number of iterations and the experiment are listed in Table 2.
The absolute permeability changes from 035mD to 0.92mD to 1.13mD
after 1, 600, and 1365 iterations, respectively. It should be noted that
the permeability for the 3D samples were calculated based on the AB

Fig. 11. The extracted 2D representative image for the tight sandstone sample.

Fig. 12. The curve of the two-point connectivity probability function for the
tight sandstone sample.

Fig. 13. 3D view of reconstructed model for the tight sandstones sample.
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algorithm, which result in a very fast evaluation. Also, it can be de-
duced that in the tight sandstones sample T, the pores with radius
around 100 nm have a large proportion and the connectivity of these
pores have a strong impact on the intrinsic permeability of the tight
sandstones.

3.3. Analysis and discussion

We have examined the hybrid method proposed in this paper for
carbonate rock (C) and tight sandstones sample (T), and in this section
we will further investigate the difference of performance of the hybrid
algorithm on different heterogeneous porous media. For the sake of
contrast, another carbonate rock (Cs), tight sandstones sample (Ts) and

the homogeneous sandstones (S and Ss) are also reconstructed by the
hybrid method here.

To examine the performance of the hybrid algorithm on different
heterogeneous porous media more carefully, we calculate the pore size
distribution and the relative errors of the models generated by CCSIM-
TSS method and the hybrid method for each sample in Fig. 18 and
Table 3. Moreover, to investigate the heterogeneity of pore spaces of

Fig. 14. Curves of the two-point connectivity functions of the reconstructed results (red) and the SEM image (black) for the tight sandstones in X(a), Y(b) and Z(c)
direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Curves of the pore size distribution of the reconstructed results (red)
and the experiment (black) for the tight sandstones. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 16. Comparison of the two-point connectivity functions of the final model obtained by the optimization method, the CCSIM-TSS method and the SEM image in X
(a), Y(b) and Z(c) direction.

Fig. 17. Comparison of the pore size distribution of the final result obtained by
the optimization method, the CCSIM-TSS method and the experiment.

Table 2
Comparison of the permeability obtained from the reconstructed models for the
tight sandstone Sample (T) and the experiment.

Permeability (mD) Experiment number of iterations
1 600 1365

K 1.25 0.54 0.82 1.03
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the six rock samples quantitatively, Table 3 also compares the mean,
variance and the ration between variance and mean (signed by V) of the
pore size distribution of the six rock samples. A striking feature of
Table 3 is that the tight sandstone sample Ts have the biggest value of
V, indicating that tight sandstone sample Ts have widest size range of
pores and its pore space is more heterogeneous than the other rock
samples. We can also deduce from Table 3 that the pore space of
sandstone Ss is the most homogeneous one and the pore space of the
two carbonate rocks are more homogeneous than the two tight sand-
stone samples.

Table 3 also illustrates the relative errors of the pore-size distribu-
tion and the permeability for the CCSIM-TSS and hybrid method for
each sample. Inspecting Fig. 18 and Table 3, it can be found that the
pore-size distribution and the permeability of the models generated by
the CCSIM-TSS method for the homogeneous sandstones S and Ss have

a relatively small difference with experiment, and have smaller relative
errors than the other four rock samples. Then using the optimization
method the relative errors for sample S and Ss decreases rapidly after
several iterations. However, for carbonate rocks and tight sandstones
samples, the relative errors of the pore-size distribution and the per-
meability of the models generated by the CCSIM-TSS method are much
bigger than that for sample S and Ss, while tight sandstones samples
have the largest relative errors. The relative errors of the pore-size
distribution (and the permeability) of the realizations for sample C, Cs,
T and Ts decrease to 3.23%, 6.09%, 10.64% and 7.34% (14.5%,
16.02%, 17.6% and 21.62%) after 238, 520, 1365 and 1687 iterations,
respectively. The numbers of iterations for tight sandstones samples are
much bigger than that of carbonate rocks. This is because that the tight
sandstone samples, whose pore structures have the widest range of
length scales, are more heterogeneous than carbonate rocks. Thus we

Fig. 18. Comparison of the pore size distribution of the final result obtained by the optimization method, the CCSIM-TSS method and the experiment for Carbonate
rock (C and Cs), tight sandstone Sample (T anns Ts) and the sandstones (S and Ss).
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can conclude that the hybrid method proposed in this paper is more
suitable for heterogeneous porous media and the properties of the
realizations reconstructed by this method have a very good agreement
with that of actual cores. As the heterogeneity of the pore space in-
creases, the number of iterations of the hybrid method becomes larger
in order to obtain the high quality realizations.

As is well known, stochastic methods must be conditioned further to
produce certain important properties. One can use more experimental
data (such as electrical conductivity) as the objective functions to re-
duce the uncertainty and produce more realistic realizations.

4. Summary

In this paper, a hybrid method based on CCSIM-TSS method and the
optimization method is proposed to reconstruct the digital core model
of heterogeneous pore structure of porous media. After analysis of di-
gital rocks, some important conclusions are obtained as follows:

(1) In the hybrid method, the two-point connectivity function, the
multiple-point connectivity function, the pore size distribution and
the permeability are used as the objective functions. Moreover, the
hybrid method proposes the generation solutions of the new system
by exchanging the objective points and boundary points of pore and
matrix based on the two algorithms.

(2) Quantitative comparison is made by computing the two-point
connectivity function, permeability and pore-size distributions for
the realizations generated by the hybrid method, as well as the
original samples. The hybrid algorithm was demonstrated to be able
to produce higher quality realizations than CCSIM-TSS method for
heterogeneous porous media.

(3) The method generates realization of tight sandstones that match the
measured permeability and the pore size distribution based on 2D
SEM image without using full 3D imaging. Clearly, the re-
constructed digital core improves our knowledge of the pore-net-
work connectivity of tight sandstones. The method may also be used
with various types of experimental data, such as the permeability,
electrical conductivity. Clearly, more experimental data reduce the
more realistic realizations.
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