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Abstract—Symbolic regression is an important but challenging
research topic in data mining. It can detect the underlying
mathematical models. Genetic programming (GP) is one of the
most popular methods for symbolic regression. However, its
convergence speed might be too slow for large scale problems
with a large number of variables. This drawback has become a
bottleneck in practical applications. In this paper, a new non-
evolutionary real-time algorithm for symbolic regression, Elite
Bases Regression (EBR), is proposed. EBR generates a set of
candidate basis functions coded with parse-matrix in specific
mapping rules. Meanwhile, a certain number of elite bases are
preserved and updated iteratively according to the correlation
coefficients with respect to the target model. The regression
model is then spanned by the elite bases. A comparative study
between EBR and a recent proposed machine learning method
for symbolic regression, Fast Function eXtraction (FFX), are con-
ducted. Numerical results indicate that EBR can solve symbolic
regression problems more effectively.

I. INTRODUCTION

Symbolic regression aims to find a mathematical model that

can describe and predict a given system based on observed

input-response data. It plays an increasingly important role

in many engineering applications including signal processing

[23], system identification [20], industrial data analysis [13],

etc. Unlike conventional linear/nonlinear regression methods

that assume a linear/nonlinear trend, or require you to provide

a mathematical model of a given form, symbolic regression

searches an appropriate model from a space of all possible

expressions S defined by a set of given arithmetic operations

(e.g., +, −, ×, ÷, etc.) and mathematical functions (e.g., sin,

cos, exp, ln, etc.). Mathematically, symbolic regression finds

the best combination of these operations and functions, and

optimizes the model structure and coefficients simultaneously,

which can be described as follows:

f∗ = argmin
f∈S

∑

i

∥

∥

∥f(x(i))− yi

∥

∥

∥ , (1)

where x(i) ∈ R
d, yi ∈ R are numeric input-response data,

and f is the model function. However, given that symbolic

regression is a kind of global optimization problem in data

mining, there are still several difficulties in dealing with both

structure optimization and coefficient optimization at the same

time [2]. Hence, how to use a appropriate method to solve a

symbolic regression problem is considered as a kaleidoscope

in this research field [5].

Genetic programming (GP) [12], as a evolutionary comput-

ing (EC) technique, is one of the most popular methods for

symbolic regression in recent years. Corresponding different

improved versions of basic GP have also been proposed

continually, for instance, linear genetic programming (LGP)

[9], gene expression programming (GEP) [6], parse-matrix

evolution (PME) [14], etc. The core idea of GP is to apply

Darwin’s theory of natural evolution to the artificial world of

computers and modeling. Theoretically, GP can get accurate

results provided that the computation time is long enough.

However, due to its stochasticity, GP is difficult to realize

the real-time calculation and hard to give repeated results. In

addition, the convergence speed of GP might be too slow for

large scale problems with a large number of variables. Hence,

GP’s practical applications are limited.

To overcome these difficulties, more recently, a number of

researchers have focused mainly on using non-evolutionary

optimization methods to solve symbolic regression problems.

McConaghy [16] presented the first non-evolutionary algo-

rithm based on machine learning for symbolic regression,

which confined its search space to generalized linear space.

Icke & Bongard [10] proposed a hybrid algorithm which

combined deterministic machine learning method and con-

ventional GP. Worm [22] introduced a deterministic machine

learning algorithm, Prioritized Grammar Enumeration (PGE),

in his thesis, which made a large reduction to the search

space. Deklel et al. [3] presented a new approach based on

artificial neural networks, which could solve problems with

large number of inputs and even more complex examples and

applications.

Among these non-evolutionary methods, FFX is the first

deterministic symbolic regression implementation. Based on

generalized linear model (GLM), FFX applies a kind of ma-

chine learning method, namely pathwise regularized learning,

to identify the best coefficients and bases in GLM, which is

given by

β∗ = min ‖y −B(x) · β‖2 + λ2‖β‖
2 + λ1‖β‖1, (2)

where B(x) = (φ1(x), φ2(x), ..., φN (x)) represents the vector

of N univariate and bivariate generated bases and β is the

regression parameter of GLM. λ1 and λ2 are set to λ1 = λ

and λ2 = (1− ρ)λ respectively, where λ is the regularization

weight. It is reported that FFX can be an order of magnitude
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faster than GP, and has been successfully applied to analog

circuit design and modeling [7], the reliability analysis for

analog circuit [15], etc.

However, note that pathwise regularized learning (2) needs

to solve a quadratic optimization problem, which is equal

to solve a large linear system. With the increase of basis

number N , the computation cost will increase quadratically.

This restricts the speed of FFX in further promote for large

scale problems.

In this paper, we propose a new non-evolutionary algorithm,

Elite Bases Regression (EBR), to solve symbolic regression

problems. Different from FFX, most of the generated bases are

discarded, and simultaneously, only elite bases are preserved

and updated iteratively according to the correlation coefficients

with respect to the target model. The regression model is then

spanned by the elite bases. This makes EBR do not need

to solve a large-scale system of linear equations. Hence, it

can save computation time with little memory overhead. The

performance of EBR is compared with FFX. Numerical results

indicate that EBR has lower normalized mean square error

(NMSE) and concise regression models than FFX’s.

The presentation of this paper is organized as follows:

related concepts used in EBR algorithm is introduced in

Section II, EBR algorithm is described in Section III, and

experiments and results are presented and discussed in Section

IV. The paper is concluded in Section V with remarking the

future work.

II. RELATED CONCEPTS USED IN EBR ALGORITHM

A. Generalized linear model

Generalized linear model (GLM) [18] is a generalization of

classical linear regression model. GLM aims to find f∗ in a

finite dimensional space of functions spanned by a set of given

basis functions. In other words, GLM specifies a set of bases

φ0, φ1, ..., φN from R
N to R and finds f∗ in the form of a

linear combination of N basis functions φi, i = 1, 2, ..., N :

f∗ = β0 +

N
∑

i=1

βiφi(x), (3)

where βi is the regression parameter. In Elite Basis Regression

(EBR) algorithm, the regression model is spanned by a set of

elite bases. The number of elite bases is denoted by npresv .

EBR algorithm is inspired from the expansion method in

mathematics. In theoretical analysis, two main methods of

linear expansion, namely Taylor series and Fourier series, are

very powerful tools that are widely applied to many research

fields [17], [4]. However, Taylor series can only be used in

local expansion (the neighborhood of a certain point) with

special functions, while Fourier series is utilized in periodic

functions exclusively. We hope to find a global and universal

expansion strategy in practical applications. This motivates

us to design such a kind of global and universal linear

approximation method for symbolic regression.

B. Correlation coefficient

Correlation coefficient aims to measure linear relationship

between two vectors, and has a wide application scope in

statistical analysis. Suppose a function with n continuous

variables

f(x) = f (x1, x2, ..., xn) , xi ∈ [ai, bi], i = 1, 2, ..., n. (4)

For each variable xi, a column vector xi is defined after a

set of random sample points in [ai, bi] are generated. That is

Xi = xi =
(

x
(1)
i , x

(2)
i , ..., x

(m)
i

)T

, where m is the number

of sample points. Thus, we can get a column vector with m

components respect to the initial function (4)

F (X) = F
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(5)

From the above discussion, for an n-dimensional problem

in EBR, the target model f (x1, x2, ..., xn) and a certain

generated basis φ (x1, x2, ..., xn) can be regarded as two

column vectors of m components after sampling, namely

Y = F (X) =
(

f (1), f (2), · · · , f (m)
)T

and ξΦ = Φ(X) =
(

φ(1), φ(2), · · · , φ(m)
)T

. The correlation coefficient of these

two vectors, Y and ξΦ, can be expressed as

ρξΦ,Y =
Cov (ξΦ, Y )

√

D(ξΦ)
√

D(Y )
, (6)

where the operator D represents variance.

Note that the basis functions might be nonlinear, but the

ensemble process of the GLM is still linear. Therefore, corre-

lation test is effective in EBR. That is, if |ρξΦ,Y | is close to 1,

Y and ξΦ are closely related. Particularly, when |ρξΦ,Y | = 1,

Y and ξΦ are linearly correlated in probability one.

In fact, once we regard two nonlinear functions as two

column vectors after sampling, it still makes sense that cor-

relation coefficient can be used for correlation analysis of

nonlinear function. To give an illustrative example, consider a

two-dimensional test function

f(x1, x2) = x1x2 + sin ((x1 − 1) (x2 − 1)) , (7)

and a certain basis function

φ(x1, x2) = x1x2, (8)

where x ∈ [−3, 3]2. To enhance the stability of the test, the

distribution of sample points in [−3, 3]2 should be as uniform

as possible by using controlled sampling method of Latin

hypercube design [1]. Then, a correlation coefficient of the



(a) The test function.

(b) The basis function.

Fig. 1. An example of correlation analysis applied to 2D nonlinear function.

two vector functions Y and ξΦ could be obtained, which is

|ρξΦ,Y | = 0.9838. This means Y and ξΦ are closely related.

Note that, as is shown in Fig. 1, the simple basis function (8)

successfully ‘sketch out’ the landscape of test function (7).

C. Parse-matrix encoding scheme

The generation of basis functions is a crucial step in EBR.

However, multiple nested-loop used to enumerate the possible

bases in FFX is not easy to extend. On the other hand, the

complexity of bases is implemented with the if-else statement,

which makes FFX difficult to control the complexity and limits

its ability of modeling highly nonlinear target function. Hence,

parse-matrix encoding scheme becomes a good candidate for

bases generation engine of EBR.

Parse-matrix encoding scheme was initially provided for

parse-matrix evolution (PME) [14], a special version of GP.

PME use a two-dimensional matrix with integer entries to

express a chromosome (individual), which can carry more in-

formation than conventional chromosome representations [8],

[19]. The matrix representation makes PME easy to control

the complexity and simple to program.

In EBR, basis functions are coded with parse-matrix encod-

ing scheme. This process could be sketched in Fig. 2. Suppose

an example mapping table defined as Table I. Then, a given

basis function φ = sin(x + y) can be produced in the steps

listed in Table II. According to the mapping table (see Table

I) and the encoding steps (see Table II), the basis function

φ = sin(x + y) can be described by a parse-matrix of order

3× 3 as follows:

A =





1 1 2
3 3 2
12 3 1



 (9)

Fig. 2. An example of parse-matrix encoding process of EBR.

We can see that the encoding of parse-matrix is a natural

and easy process. Note that the second and the third columns

a.2, a.3 are used to control the dimension of a given problem.

The parse-matrix encoding scheme ensures the generated can-

didate basis functions can cover all possible bases, according

to the mapping rules in Table I. In the following section, we

will use this table to do our numerical experiments (see Section

IV).

III. ELITE BASIS REGRESSION ALGORITHM

The new algorithm is a kind of deterministic linear approx-

imation method. It does not rely on other GP method. To

illustrate our proposed algorithm more clearly, in this section,

EBR is introduced by two main parts, which are generation

and preservation of the bases in Section III-A and ensemble

and evaluation of the model in Section III-B. Then, we discuss

the method of complexity control in EBR in Section III-C.

Finally, the whole procedure of EBR is introduced in Section

III-D.

A. Generation and preservation of bases

In EBR, the basis function is coded with parse-matrix

encoding scheme in specific mapping rules (refer to Table

I), which has been discussed in Section II-C. Enumeration

method is used to generate a set of candidate basis functions.

This process ensures the generated bases can cover all pos-

sibilities in given arithmetic operations (e.g., +, −, ×, ÷,

etc.) and mathematical functions (e.g., sin, cos, exp, ln, etc.).

Simultaneously, npresv elite bases are preserved and updated

iteratively according to the correlation coefficients with respect

to the given target model.

Remark 1. The number of preserved elite bases npresv deter-

mines the most computation costs of EBR and the complexity

of the regression model. A more detailed discussion of this

control parameter will be conducted in Section IV-C.

Remark 2. If the the correlation coefficients of two generated

bases with respect to the target model, namely ρξΦ,Y and

ρ∗ξΦ,Y , are very close to zero (e.g.,

∣

∣

∣|ρξΦ,Y | − |ρ∗ξΦ,Y |
∣

∣

∣ <

10−7), one basis function of them will be discarded.

B. Ensemble and evaluation of the model

The regression model is established by GLM. Note that the

number of bases participated in computation is npresv, not

all generated candidate bases. This makes EBR can realize

real-time computation. We take normalized mean square error

(NMSE) as test error in the numerical study, which is used to



TABLE I
AN EXAMPLE MAPPING TABLE FOR A BASIS FUNCTION.

a.1 1 2 3 4 5 6 7 8 9 10 11 12 13

T s1 s2 + − ∗ / √ s21 1/s1 log exp sin cos
a.2, a.3 1 2 3

expr x1 x2 f

TABLE II
ENCODING STEPS OF THE BASIS FUNCTION sin(x+ y).

Step T s1 s2 Update

1 x1 x1 x2 f = x1

2 + f x2 f = x1 + x2

3 sin f x1 f = sin(x1 + x2)

Fig. 3. Complexity control of EBR algorithm.

evaluate the regression model. The NMSE is defined by Eq.

(10):

NMSE (f, f∗) =
‖f − f∗‖22

‖f‖22
, (10)

where the f and f∗ are the target model and regression model,

respectively.

C. Complexity control

In EBR, complexity control mainly includes two parts,

namely the inner control and outer control.

Recall from the parse-matrix encoding scheme in Section

II-C that, the inner control aims to determine the complexity of

a basis function and the dimension of a given symbolic regres-

sion problem, by controlling the rows of the parse-matrix (9)

and the the second and the third columns a.2, a.3, respectively.

More precisely, for a muti-dimensional problem, the entries aij
are bounded integers according to the mapping rules in Table

I, namely the parse-matrix entries a.1 ∈ {1, 2, 3, ..., 13} and

a.j ∈ {1, 2, 3, ..., d+ 1} (j = 2, 3), where d is the dimension

of the target model. The outer control in EBR focuses on the

overall complexity of the regression model, and is controlled

by the prespecified npresv . A detailed discussion of this control

parameter is in Section IV-C. The complexity control makes

EBR algorithm have a good flexibility. The relations between

the inner control and outer control are shown in Fig. 3.

D. Procedure

Up to this point in our discussion, we have a general

understanding of EBR algorithm. The main steps of EBR is

also given in the flow-chart of EBR algorithm in Fig. 4. The

procedure of EBR could be described as follows.

Procedure of EBR:

Step 1. Initialize: Input the number of basis functions

needed to be preserved npresv , the sampling range

[a, b] and the test function f .

Step 2. Generate candidate basis: An enumeration

method is used to generate a candidate basis function

φi coded with parse-matrix encoding schemes.

Step 3. Evaluate and preserve:

(3.1) Evaluate: Evaluate each generated candidate

basis by its correlation with respect to target model.

(3.2) Preserve: Preserve the basis with higher corre-

lation with respect to target model and update the

elite bases.

Step 4. Repeat step 2 and 3 until all possible bases

are evaluated. The preserved npresv functions form

a set of elite bases for GLM.

Step 5. Model: Solving the GLM (3) to get regression

model based on the set of elite bases. Output the

decoded model and its test error (NMSE).

IV. NUMERICAL RESULTS AND DISCUSSION

In order to test the performance of our proposed algorithm,

several numerical experiments of classical symbolic regression

problems are conducted. These problems, given in Table III, V

and VI, are mostly taken from references [14], [11]. The results

are compared with machine learning algorithm Fast Function

eXtraction (FFX) [16]. NMSE is used as the test error, which

is governed by Eq. (10).

The test problems are partitioned into two groups: exact

fitting problems (Section IV-A) and linear approximation

fitting problems (Section IV-B), to test EBR’s capabilities

of structure optimization and coefficient optimization, respec-

tively. Additionally, we give a discussion on control parameter

(npresv) of EBR in section IV-C. To enhance the stability of

the EBR, the distribution of sample points in should be as

uniform as possible. Therefore, controlled sampling method,

Latin hypercube sampling [1] and orthogonal sampling [21]

are preferred to generate training points (sample points).

A. Exact fitting problems

In this test group (Case 1-16, see Table III), all of cases

have exact fitting models, which recover the target models.

In other words, these cases are chosen to test the ability of

function structure optimization for EBR, which is one of the

most concerned issues in symbolic regression.

The full names of the notations in Table III are the di-

mension of modeled system (Dim), the target model (Target

model), the domain of the target model (Domain), the number

of training points (No. samples), total bases generated by EBR

(Total bases of EBR), the number of bases of EBR in final
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Fig. 4. The flow chart of EBR algorithm.

regression model (No. bases of EBR), the number of bases

of FFX in final regression model (No. bases of FFX), the test

error of FFX in final regression model (Test error(%) of FFX).

1) Control parameter setting: Here, we set npresv = 35 for

1D and 2D cases, npresv = 200 for 3D cases, where npresv

is the prespecified parameter in step 1 of EBR (see Section

III-D). The region is chosen as [−3, 3],[−3, 3]2 and [−3, 3]3

for one-dimensional (1D), 2D and 3D problems, respectively.

If there is a square-root function or logarithmic function in

our target model, the left endpoint of the interval is replaced

to 1. The number of training point is set up to 30, 302 and

303 for 1D, 2D and 3D problems, respectively. The order of

the parse-matrix is fixed to 3.

2) Numerical results: Table III shows the test models

and performance of EBR and corresponding results of FFX.

Numerical results (regression models) are listed in Table IV.

3) Discussion: The computation results from Table III

show that EBR can recover the target models for all these test

problems (Case 1-16). In Case 5, 6, 9 and 13-16, although

EBR does not find the bases involved in the corresponding

target models, EBR might give the regression models in

form of identities. Particularly, in Case 6 and 16, namely

f = sinx2
1 cosx1 − 1 and f = 6 sinx1 cosx2, note that

EBR can reduce a product term to summation of trigonometric

function.

Moreover, almost all of the number of the bases in final

results of EBR is far less than FFX, while the results are

much better than FFX. This is because that FFX does not

cover a larger operation and function space. Some cases of test

errors of FFX are extremely large (namely Case 6, 11, 13 and

14), which shows that FFX is poor at providing a symbolic

regression model in highly nonlinear function. From all of

the results above, we can draw a conclusion that the EBR

has a good capability of structure optimization in symbolic

regression problems.

B. Linear approximation fitting problems

As we know, practical engineering applications of symbolic

regression are generally complex, so whether an algorithm can

give an approximation fitting model becomes very important.

The purpose of this test group is to show EBR’s capability of

providing an linear approximation regression model. This can

be regraded as the ability of coefficient optimization.

1) Control parameter setting: Similar to the first test group,

we set npresv = 35 to all cases. The number of training point

is set up to 30 and 302 for 1D and 2D problems, respectively.

The order of the parse-matrix is fixed to 3.

2) Numerical results: An overview numerical results are

listed in Table V.

3) Discussion: In this test group, 8 cases show the per-

formance of EBR for its linear approximation fitting, which

could be regarded as a capability of coefficient optimization.

To recap briefly for Section II-A, EBR is deemed to a linear

approximation method based on GLM. We hope to find a

global and universal expansion strategy, different from Taylor

series and Fourier series.

Note that the regression models of EBR are closer to the

target model. For most cases, EBR performs better than FFX

for its succinct regression models (less number of bases),

especially for highly nonlinear target models (Case 17, 21

and 24). Meanwhile, the comparison of NMSEs in Table

IV indicates that EBR has much lower NMSE at all cases.

EBR exhibits reasonable accuracy, which indicate that the

proposed algorithm EBR can fit the target functions in forms of

polynomial functions, trigonometric, logarithmic and bivariate

functions. Good performances for modeling target functions

show the potential of EBR to be applied in practical applica-

tions.

C. Study on control parameters

The paramount control parameter in EBR is the npresv. In

this part, the value of npresv to be set is different from the

previous test groups, in order to study its influence on the

regression model. The results of this part (Case 25-28) is given

in Table VI. Note that the target models given in Table VI are

all highly nonlinear functions in 1D and 2D.



TABLE III
TEST MODELS AND PERFORMANCE OF EBR AND FFX (CASE 1-16).

No. Dim Target model Domain
No.

samples

Total

bases

of EBR

No.

bases

of EBR

No.

bases

of FFX

Test

error(%)

of FFX

1 1
√
x [1, 3] 30 7488 1 5 0.869

2 1 x2 − sin x [1, 3] 30 7493 2 5 0.988

3 1 cosx2 − x [−3, 3] 30 5510 1 8 6.19

4 1 sin x + 2x [−3, 3] 30 5481 1 4 0.672

5 1 x4 + x3 + x2 + x [−3, 3] 30 5512 4 8 2.08

6 1 sin x2
1 ∗ cos x1 − 1 [−3, 3] 30 5511 2 9 16.9

7 2 x
x2
1

[1, 3]2 302 7499 1 8 0.991

8 2 ln(x1 + x2) [1, 3]2 302 7489 1 8 0.851

9 2 x2
1 + x1 − x2 [−3, 3]2 302 5507 4 8 0.986

10 2 x1 + 2x2 [−3, 3]2 302 5505 2 2 0.968

11 2 sin(x2
1 − x2) [−3, 3]2 302 5509 1 9 28.0

12 2 x1 − ex1+x2 [−3, 3]2 302 5489 1 10 1.00

13 2 (x1 + x2)/x2 [−3, 3]2 302 5493 2 2 7.42

14 2 6 sin x1 cosx2 [−3, 3]2 302 5515 2 9 25.6

15 3 x1 + x2 + x3 [−3, 3]3 103 17163 3 11 0.987

16 3 x1x2 + x2x3 [−3, 3]3 103 17139 4 2 0.99

TABLE IV
EXACT FITTING RESULTS OF EBR.

No. Regression model

1 f∗ = 0.7071 ∗
√
x+ x

2 f∗ = (−1) ∗ (sin x − x) + (x2 − x)
3 f∗ = cosx2 − x
4 f∗ = sin x+ x+ x
5 f∗ = −0.5 ∗ (xex − x) + 0.5 ∗ (x4 + x) + 0.5 ∗ (x2 + xex) + 0.5 ∗ (x2 + x)2

6 f∗ = (−1) + 0.5 ∗ sin(x2
1 + x1) + 0.5 ∗ sin(x2

1 − x1)

7 f∗ = ex2∗ln x1

8 f∗ = 0.5 ∗ ln(x1 + x2)
2

9 f∗ = 0.5 ∗ (x2
1 − x2) + 0.5 ∗ (x2

1 + x1) + 0.5 ∗ (ex1 − 2x2) − 0.5 ∗ (ex1 − x2 − x1)
10 f∗ = x1 + x2 + x2

11 f∗ = sin(x2
1 − x2)

12 f∗ = (−1) ∗ (ex1+x2 − x1)
13 f∗ = 0.2 ∗ (2x1 − x2)/x2 + 0.6 ∗ (2x2 + x1)/x2

14 f∗ = 3 ∗ sin(x1 + x2) + 3 ∗ sin(x1 − x2)
15 f∗ = 0.5 ∗ (x1 + x2) + 0.25 ∗ (2x2 + 2x3) + 0.25 ∗ (2x1 + 2x3)
16 f∗ = (−0.25) ∗ (x2

1 − 2x1x2) + 0.25 ∗ (x2
1 + 2x1x2) + 0.25 ∗ (x2

2) + 0.25 ∗ (x2
3 + 2x2x3)

TABLE V
TEST MODELS AND PERFORMANCE OF EBR AND FFX (CASE 17-24).

No. Dim Target model Domain

No.

bases

of EBR

Test

error(%)

of EBR

No.

bases

of FFX

Test

error(%)

of FFX

17 1 0.3x sin(2πx) [−3, 3] 7 4.37 10 21.09

18 1 ln(x + 1) + ln(x2 + 1) [1, 3] 4 6.58e-10 5 0.967

19 1 x5 + x4 + x3 + x2 + x [−3, 3] 7 1.45e-7 6 1.91

20 1 x6 + x5 + x4 + x3 + x2 + x [−3, 3] 11 4.97e-4 7 2.08

21 2 ln(x1 + x2) + sin(x1 + x2) [1, 3]2 10 1.19e-2 8 16.25

22 2 x4
1 − x3

1 + x2
2/2 − x2 [−3, 3]2 5 5.87e-2 16 3.47

23 2 x3
1/5 + x3

2/2 − x2 − x1 [−3, 3]2 7 0.26 12 0.991

24 2 x1x2 + sin ((x1 − 1)(x2 − 1)) [−3, 3]2 4 3.69 14 4.18

Using the given control parameter npresv = 35, EBR failed

to get the exact fitting models or the approximate models with

NMSE ≤ 5% in this test group (expect the case 25). However,

once we increase the npresv towards a large value, for instance,

npresv = 200, EBR might provide a approximate models in

a complex form. That is, the basis number of all regression

models is larger than 20.

In this test group, the performance of EBR is also compared

with the FFX’s. Although the bases number of regression

models of EBR is more than FFX’s, its NMSEs is still much

lower than FFX’s, as shown in Table VI. The increasing of

npresv will cause the increasing computation cost of EBR.

So, in practical applications, we do not set npresv to a large

value. npresv < 40 is acceptable.

V. CONCLUSION

A new deterministic algorithm, Elite Bases Regression

(EBR), for symbolic regression has been proposed in this

paper. It is a linear approximation method based on the gen-

eralized linear model (GLM). In EBR, all generated candidate

bases are coded with parse-matrices in specific mapping rules.

The correlation coefficients with respect to the target model are

used to evaluate the candidate bases, and only a certain number

of elite bases are preserved to form the regression model. This



TABLE VI
STUDY ON CONTROL PARAMETER.

No. Dim Target model Domain

No.

bases

of EBR

Test

error(%)

of EBR

No.

bases

of FFX

Test

error(%)

of FFX

25 1 0.3x sin (2πx) [−3, 3] 21 1.70e-2 8 19.74

26 1 sin
(

x3 + x
)

[−3, 3] 22 2.93e-5 10 29.61

27 1 sin x sin
(

x + x2
)

[−3, 3] 28 2.23e-20 9 13.29

28 2 sin x1 + sin x2
2 [−3, 3]2 21 4.68e-8 16 7.771

makes EBR easy to realize real-time computation.

A comparative study between EBR and a recent proposed

deterministic machine learning method for symbolic regres-

sion, Fast Function eXtraction (FFX), have been conducted.

Numerical results indicate that EBR performs better for its

more concise linear approximation regression models and

lower normalized mean square error than FFX. Moreover,

EBR can provide exact fitting models with regard to the target

models, which shows the ability of structure optimization.

As a future work, it is planned to study on improving the

performance of EBR by introducing new modifications. For

example, nonlinear correlation detection is desired, so that

EBR can be applied to complicated real-world applications

more effectively.
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