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Abstract 

 

In-situ stress is an important basic parameter for well path optimization, hydraulic fracturing 

design, sand control and safe drilling mud window design. Tradition in-situ stress determination 

methods include lab and field tests. laboratory in-situ stress experiments became more and more 

sophisticated by incorporating methods known from disciplines like seismology, acoustic emission 

and non-destructive testing. However, most of lab in-situ stress experiments such as differential strain 

analysis, and acoustic emission et al., only can only judge in-situ stress magnitude or orientation. 

Moreover, it’s expensive and time-consuming for core samples preparation, processing and conduct 

in-situ stress experiments. Therefore, improve experimental accuracy and speed with low cost is 

highly desirable.  

In this paper, the combination of acoustic emission, anisotropy of acoustic velocity and 

palaeomagnetie technology to determine in-situ stress magnitude and orientation is proposed. 

Anisotropy of acoustic velocity method is applied to determine the direction of the maximum 

principle stress with respect to the master orientation line. The geographic orientation of cores is 

calibrated by using viscous remanent magnetization component. Then, the geographic orientations of 

the maximum and minor principal in-situ stresses are determined, which can guide the direction of 

drilled cores in following acoustic emission experiments. The in-situ stress measurement using Kaiser 

effect in maximum and minimum principal in-situ stress direction under confining pressures with the 

same depth was performed, which can simulate the original in-situ stress condition of rock samples 

and decrease the number of drilled cores. Eight in-situ stress test points at different depth in tight 

sands of Changqing oilfield, Ordos Basin, China are examined to validate the accuracy of this 

approach. The results demonstrate that the calculated results based on the experiments are in good 

accordance with mini-frac measurements, which provide a good tool for drilling and hydraulic 

fracturing stimulation design. 
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1. Introduction 

Knowledge of the in situ stress in rock mass is required in the design of wellbore stability, 

wellbore structure design and hydraulic fracturing in oil and gas production. Numerous techniques are 

proposed for in situ stress measurement including theoretical, laboratory and site items, and the 

methods commonly used include stress restoration, hydraulic fracturing, borehole breakout, logging 

data interpretation, geological analysis, and acoustic emission. Among all the measurements, 

mini-frac is widely accepted in-situ stress measurement method because it can calculate stress at 

shallow and deep depth. In addition, except for the magnitudes of the principal stress, fracture 

pressure and closure pressure can be obtained from pressure curve. But for low-permeability reservoir 

like tight sandstones or shales, it will consume much time. Breakouts and drilling induced fractures 

(DIFs) derived from televiewers and electrical imaging loggings are better in-situ stress indicators. 

But, these in-situ stress determination methods are limited because of expensive cost and complex 

operational process. Acoustic emission and differential strain are two typical lab stress measurements. 

The accuracy of these two techniques depend on core quality while it cannot determine the stress 

geological direction. To offset above limitations, the utilization of anisotropy of acoustic velocity and 

palaeomagnetie technology is presented to find principle stress directions, then followed by coring 
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