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ARTICLE INFO ABSTRACT
Keywords: This work involves systematical study of high-speed vibration cutting process of Ti6Al4V on numerical and theo-
Metal vibration cutting retical aspects for the first time. In numerical simulations, the one-tool and double-tool cutting models are estab-
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lished based on the coupling Eulerian-Lagrangian (CEL) finite element (FE) method, to simulate forced vibration
(FV) and self-excited vibration (SEV) cutting phenomena respectively. In theoretical analysis, linear perturbation
method is used to analyze the critical condition of shear localized instability of chip material in the FV cutting
process, and stability limits analysis is performed to study the tool vibration stability in the SEV cutting process,
which consider coupled effects of wavy cutting thickness and periodic instability of shear bands. Different from
vibration assisted machining in low-speed cutting, it is found FV with attainable frequency in industry promotes
the evolution of shear bands, increase the cutting force and reduce the machined quality, whereas high-frequency
FV can help improve the cutting process. On the other hand, SEV with smooth cutting thickness is found an ef-
fective strategy to weaken the evolution of shear bands and decrease cutting force in the high-speed cutting.
The stability limit of SEV is related to the friction damping coefficient at the rack face, the penetration damping
resistance, the ratio of the oscillation frequency of top wavy surface and the instability frequency of shear bands.
These findings would help deepen the understanding towards the vibration effects in metal cutting and provide
practical guidance to retrain and utilize vibration in the vibration assisted machining.

1. Introduction a function of cutting speed. Usually, three types of mechanical vibra-
tions can be generated due to the insufficient dynamic rigidity of the

The machining of metals is inevitably accompanied by the vibration machining tool-workpiece system [6].
of machine tool-workpiece system. At the beginning of the 20th cen-
tury, F.W. Taylor [1], a famous American mechanical engineer, pointed i) Free vibration occurs when the static equilibrium state of mechanical
out that vibration is the “most obscure and delicate of all problems fac- system gets disturbed. The causes may be the collision between tool
ing the machinist”. From that time, both scientists and engineers have and workpiece in cutting, poor anti-vibration measures of lathe and
been considering the vibration in cutting as one of the most important so on. Presently, the mechanisms of the free vibration have been
machining challenges, and until now, it is still a popular research topic sufficiently understood and can be effectively alleviated and even
in academic and engineering fields. eliminated.

Vibration in cutting results in a lot of detrimental effects, such as ii) Forced vibration (FV) occurs when external harmonic excitations ex-
poor machining quality, tool wear and damage increasing, high pro- ist. The inducing causes may be the artificially applied excitation
duction costs and so on, and thus it should be eliminated as much as and poor matching between parts in machine tool assemblies. Sim-
possible. For this purpose, many studies on cutting vibration have been ilarly, the disadvantageous effects of FV on cutting process can be
performed in the last century [2-4]. The early pioneering work on the effectively alleviated. Moreover, engineers have made use of FV to
vibration cutting process should owe to Taylor [1]. He performed exten- develop innovative processing, such as vibration assisted machining,
sive studies on metal machining and proposed the cutting force model to improve the machining quality [2].

with 3/4 power law. In addition, he observed the ductile work-material
cracking ahead of the tool edge in the metal cutting. The other early
groundbreaking work belong to Arnold [5] who studied the causes in-
fluencing the performance of machine tool and the mechanism of tool
vibration in the cutting of steel, and found that the cutting forces are

Different from the conventional cutting processing, vibration as-
sisted cutting deliberately sets the machine tool to vibrate with pre-
scribed frequency, which has been extensively applied in the manufac-
turing industry [6]. Linear vibration cutting [7] and elliptical vibration
cutting technologies [8], for example, have been exhibiting the superior
machining performances over the convectional cutting. Applications of
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vibration assisted machining show that the advantageous vibration can
availably reduce cutting forces [9], increase tool life [10], enhance cut-
ting stability [11], and improve surface finishing [12]. Especially, vibra-
tion assisted machining have been successfully applied to the precision
machining of various difficult-to-cut materials, such as Ti6Al4V [13],
Inconel 718 [14], tungsten carbide [15], ceramics [16] and so on. In
the transverse vibration-assisted cutting [17] and the ultrasonic vibra-
tion cutting [18], the cutting forces and feed forces can be evidently
reduced and the surface finish is effectively improved.

In the linear vibration cutting process, the tool edge unavoidably hits
the clearance face which results in the generation of tensile stress at the
flank face and the spalling of tool material. In the elliptical vibration
cutting process, the vibration trajectory of tool tip is along an elliptical
locus [19]. Thus, the lubrication condition between the tool and work-
piece can be improved and the friction phenomenon on the rake face
is reduced effectively. Moreover, the shear deformation of material in
the primary shear zone (PSZ) is easier to occur to improve the mate-
rial removal rate. Presently, this technology has been applied to ultra-
precision machining of various difficult-to-cut materials [20-23]. Based
on this technology, Suzuki et al. [24] proposed a unique micro/nano
sculpturing method and further explored the possibilities of functional
surface machining. Zhang et al. [25] predicted the transient cutting force
theoretically and studied the influence of transient cut thickness and
shear angle as well as transition friction behavior at the rake face. In
low-frequency vibration cutting tests, they measured the transient cut-
ting forces and demonstrated the validation of analytical results.

An important progress in the elliptical vibration cutting technology
is the application of non-resonant elliptical vibrator. Since the trajectory
of tool tip can be precisely controlled by a piezoelectric actuator, fab-
ricating the micro/nano structures becomes possible [26,27]. Shamoto
and Moriwaki [20] further developed this technology by using the verti-
cal stacked vibrator. In the elliptical vibration cutting process in micro-
scopic scale, it can evidently decrease the cutting forces, suppress the
burr development and improve the machined surface integrity. Kim and
Loh [28,29] and Brehl and Dow [30] developed parallel stacked piezo-
electric vibrator for the micro/nano machining. Brehl et al. [31] and
Brocato et al. [32] applied this technology to fabricate micro/nano struc-
tures with hard copper and stainless steel.

iii) Self-excited vibration (SEV) results from internal harmonic excitations
of the tool-workpiece system, which generally include the friction
between tool-workpiece, thermo-mechanical effects or cyclic shear
banding instability and wavy cut thickness in metal cutting [3,4].
The SEV in the cutting force direction induced by the friction be-
tween tool-workpiece on the clearance face is called as frictional chat-
ter [33]. In the high-speed cutting, the material in PSZ undergoes
severe shear deformation with sharply rising temperature and high
strain rate. Thus, the adiabatic shear banding instability takes place
in PSZ, which is named as thermo-mechanical chatter [34]. When the
mechanical vibrations in the directions of cutting force and plough-
ing force simultaneously exists and mutually correlates, mode cou-
pling chatter [35,36] emerge as a more intractable problem.

Regenerative vibration, as a common form of SEV, can be caused
by the friction on the rake face and the clearance surface, wavy chip
thickness, shear angle oscillations and so on [37]. Particularly in the
turning of metals, the machined wavy surface results in the changing
chip thickness and cutting forces due to the phase difference of wavy
surfaces between two consecutive turning revolutions. The regenerative
vibration brings destructive effects to the machine tool and has become
the dominant vibration mechanism influencing the metal cutting pro-
cess [38-40]. Therefore, some pressing issues like how to effectively
control and avoid the regenerative vibration occurrence, and how to fur-
ther eliminate its effects on the metal cutting process, have been studied
widely.

The regenerative vibration can induce unstable cutting process of
metals, obvious deterioration of machining quality and serious dam-
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age of tool material. Tobias and Fishwick [41] and Tlusty and Polacek
[42] studied the stability of tool system in vibration cutting. The wavy
cut thickness induces new fluctuations in cutting forces and in turn gives
rise to the regenerative vibration in cutting. The stability limit analysis
shows that, once the cut depth is larger than the stability limit, the am-
plitude of dynamic cutting forces increases rapidly and the cutting pro-
cess becomes unstable. Meritt [43] presented stability conditions to pre-
dict cutting vibration stability in terms of the depth of cut and the chip
width. Tlusty [44] showed that the chip width governs the cutting pro-
cess stability and the regenerative chatter in turning process. The critical
chip width depends on the dynamics of tool-workpiece system, cutting
conditions and tool geometry. Mahnama and Movahhedy [45] investi-
gated the effects of cutting conditions on the vibration cutting and rev-
eled the variation of shear angle and stability limit with cutting speed.
The thermomechanical model proposed by Moufki et al. [46] predicted
the dynamic cutting forces and the stability limits of vibration cutting
process. Furthermore, the vibration signals, surface roughness and chip
morphology measured in turning experiments verified the validity of
theoretical prediction. Turkes et al. [47] performed the linear stability
analysis of vibration cutting with a single degree of freedom model by
using oriented transfer function and tau decomposition form to Nyquist
criteria. Kim and Lee [48] performed the stability analysis of tool sys-
tem chatter with two degrees of freedom model and obtained the good
agreement between the predicted stability limits in theory and results in
experiments. The stability lobe curve obtained by Gao et al. [49] shows
that the vibration effect on cutting stability presents in high-speed cut-
ting process and that the ultrasonic vibration of tool increases the sta-
bility of vibration cutting process. The analysis of Vela-Martinez et al.
[50] showed that the structural stiffness cubic term gives a better de-
scription of the nonlinear behavior of vibration cutting process, which is
useful in restoring stability and further understanding the nonlinearity
of regenerative chatter.

From the above reviews, we can see that the current studies focused
on the effect of vibration phenomenon on the continuous chip formation
in low-speed cutting process and rarely involved the serrated chip for-
mation in high-speed cutting process. It is well known that the periodic
shear banding instability not only results in poor machining quality but
also in severe wear of machine tool. Moreover, the shear banding insta-
bility acting as an extra source inducing the tool system vibration, makes
the vibration cutting problem more complicated. Recently, a lot of re-
searches have shown that the vibration assisted machining technology
can effectively improve the machining quality [2,8,13,14]. However,
the existing studies rarely take into consideration the stability of chip
flow in vibration cutting process. For example, how does the tool vibra-
tion influence the chip formation mechanism in the FV cutting process?
How do the periodic shear banding instability and machined wavy sur-
face oscillation affect the SEV cutting process and the stability limit of
tool system? The solutions to these questions will be conductive to the
further improvement of machining processing. Therefore, it is necessary
to carry out in-depth study on the vibration cutting process.

From the viewpoint of numerical simulation, cutting process has
been a classical difficult problem for a long time. In the cutting process
of metals, work material first separates at the tool edge, and then the
chip and machined workpiece move along the tool rake face and the
cutting direction respectively. The separation trajectory between chip
and workpiece can be preset, which make it convenient to simulate the
cutting process. Various numerical methods have been established to
model the metal cutting process, e.g. the arbitrary Lagrangian-Eulerian
method, remeshing FE method, meshless FE method and material point
method and so on. Although these methods are very successful in sim-
ulating conventional metal cutting process, some inextricable problems
arise in the vibration cutting due to unknown separation trajectory be-
tween chip and workpiece and the severe mesh distortion with the large
plastic deformation of work-material. To overcome these problems, Cou-
pling Eulerian-Lagrangian (CEL) FE model was proposed by Shuang
et al. [51], and show more natural advantages than conventional FE
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Fig. 1. The chip shape of Ti6Al4V alloy obtained in orthogonal cutting process.

methods in the simulation of vibration cutting process, which constitutes
the foundation for the numerical analysis of vibration cutting mecha-
nism in this paper.

The high-speed cutting mechanism of Ti6Al4V alloy has been stud-
ied in the orthogonal cutting experiments with a wide range of cut-
ting speeds by Ma et al. [52] and Ye et al [53]. The experimental re-
sults (Fig. 1) demonstrate that the chip shape varies with the increasing
cutting speed from the continuous to serrated and then to debris with
gradually decreasing thickness. Recent simulations showed that the ser-
rated chip turns back to the continuous chip once the cutting speed ap-
proaches 300 m/s [54,55], which means that suppressing the occurrence
of periodic shear banding instability is possible in the high-speed cut-
ting processing to improve the machining quality. However, the cutting
speed 300m/s is unpractically high for tuning processing. The studies
on the vibration cutting process [2,9] showed that the tool vibration in
a specific frequency range can evidently improve the machining quality,
whereas the mechanism is not understood completely for now. The in-
terplay between periodic shear banding instability and different types of
vibration, therefore, is our interest in this paper. Specifically, the numer-
ical simulations of high-speed cutting of Ti6Al4V alloy with FV and SEV
are carried out for the first time. Then, the theoretical analysis on the
chip flow stability and the stability limit of tool vibration are performed.
The influence of FV on the transition of chip shape and the influence of
the shear banding instability on the stability limit of SEV in high-speed
cutting process are investigated.

The intention of this work is threefold: (i) to provide an effective
simulation method for studying the vibration cutting process of metals,
(i) to reveal the interplay between the periodic shear banding instability
and the vibration cutting process, and (iii) to provide practical guidance
to retrain and utilize vibration in the high-speed cutting process.
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2. Numerical model
2.1. Coupling Eulerian-Lagrangian finite element model

Fig. 2a shows the CEL model for the numerical simulation of metal
orthogonal cutting process. In this model, Lagrangian mesh is attached
to the tool and Eulerian mesh is fixed in spatial. The latter is used to
describe the motions and deformations of workpiece and chip mate-
rials. Moreover, the air mesh provides a sufficient large room for the
growth of chips. In the simulation of metal cutting, the tool is fixed and
the workpiece is constrained to move in negative x-axial direction. The
boundary conditions with a constant horizontal cutting speed and zero
vertical speed are imposed on the outer surfaces of workpiece. The un-
cut work-material flows into the Eulerian mesh region from the right
boundary and the cut workpiece base flows out from the left boundary.
The generated chips enter into the air mesh area. The unconstrained
flow of chip on the free boundary is controlled by the volume approach
of solid [56], which ensures chips to evolve as various shapes. Since
the CEL model has, to a large extent, eliminated the influence of the
mesh distortion and the limitation of the preset separation line method
in Lagrangian FE method, it is convenient in the numerical simulation
of vibration cutting process of metals with the unknown separation tra-
jectory. In this model, the tool is idealized as rigid body with ideal sharp
edge and infinite elastic modulus. The cutting conditions are prescribed
by the cutting speed, cut thickness and the rake angle or the shear angle.

The Eulerian-Lagrangian contact algorithm is used [57] to describe
the interaction between the tool and chips, which has been implanted
into ABAQUS package. In order to focus on the vibration effect on
cutting process, the friction contact at tool-chip interface is simplified
to follow the Coulomb law with a constant friction coefficient even
though the friction coefficient is related to the temperature and/or cut-
ting speed [58]. The dynamic coupled thermo-mechanical analysis is
performed in the simulation of metal cutting. For each time step, the
heat and mass convection, heat conduction and stress are analyzed si-
multaneously. The workpiece and air mesh areas use the 8-node cou-
pling thermo-mechanical linear Eulerian brick element EC3D8RT with
reduced integration and hourglass control. The tool is described by the
Lagrangian element C3D8RT. The simulation is carried out with com-
mercial ABAQUS/Explicit package. For the detained description of the
CEL model, readers can refer to the article [51].

2.2. Material model

The work-material of Ti6Al4V alloy is assumed to be isotropic and
thermo-viscoplastic. The Johnson-Cook (J-C) law was used to describe
the plastic flow of Ti6Al4V alloy in cutting [18], which has the form

i (22

where o7, is the equivalent stress, £/, the equivalent plastic strain, £/, the
plastic strain rate, £ythe reference strain rate. T is the current tempera-
ture, T, the room temperature, T, the melting temperature. A, By, Cy,
m and n are J-C constitution parameters. This constitutive model consid-
ers the effects of strain hardening, rate sensitivity and thermal softening
on plastic flow of work-material. Material failure due to internal dam-
age always has been incorporated in the simulations of chip formation
in terms of the J-C fracture mode. The plastic flow of work-material is
governed by J, flow-law. The material properties and constitutive pa-
rameters of Ti6Al4V alloy is given in Table 1 [59].
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3. Forced-vibration cutting process
3.1. Shear bands frequency in orthogonal cutting

In the high-speed cutting of metals, the periodic shear banding in-
stability of chip materials not only reduces the lifetime of tool, but also
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Fig. 3. Changes of chip morphology in convention cutting process with increasing cutting speeds.

Table 1
Material properties and constitutive parameter of Ti6Al4V and tool [59].

Properties symbol (Unit) Ti6Al4V alloy workpiece ~ Tool
Density p (kg/m?) 4430 11,900
Elastic modulus E (GPa) 114 630
Poisson’s ratio v 0.342 0.26
Specific heat ¢ (J/kgK) 520 334
Thermal conductivity 1 (W/m'K) 6.7 100
Expansion coefficient a (K1) 9.2x107° 5.4x10°°
Melting temperature T,, (K) 1873 -
Fraction 0.9 -
Friction coefficient p 0.4

Material parameters symbol (Unit) Values

Ay (MPa) 725

B, (MPa) 683

n 0.47

Cy 0.035

m 1

£ 1072

deteriorates the machining quality of workpiece surface due to the tool
vibration. The simulation results on the conventional cutting process of
Ti6Al4V alloy (Fig. 3) shows that, when the cutting speed equals 3m/s,
the continuous chip turns into the serrated chip, which is close to the
predicted results of Miguélez et al. [13]. As the cutting speed exceeds
3m/s, the periodic shear banding instability occurs and leads to the for-
mation of serrated chip. The previous study of [60] showed that the
instability frequency of periodic shear bands fgp is the important influ-
ence factor on the cutting process and can be determined through the FE
simulation. Based on the total cutting time t, and the number of shear
bands Ngg (Fig. 3c and d), it can be defined as

Ssp= 2

c

In the vibration cutting process, the tool vibration changes the plastic
flow stability of serrated chip, and conversely, the periodic shear band-
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Fig. 4. The orthogonal cutting CEL FE model and the mesh arrangement.

ing instability affects the vibration motion of tool system. The former as
the FV cutting process will be considered in this section. The latter as
the SEV process of tool will be studied in the next section.

3.2. Forced-vibration cutting simulation

For studying the FV cutting process, a single-free degree model is pro-
posed to simulate the orthogonal cutting process of Ti6Al4V alloy. Fig. 4
demonstrates the model and the FE mesh arrangement in which the tool
is modeled by the Lagrangian elements with material mesh whereas the
plastic flow of the chip and workpiece material is described by the Eu-
lerian elements with spatial mesh. The size of Eulerian mesh is set as
3 pum and the inclination angle is 45° relative to the horizontal direc-
tion. The cutting conditions are given as the cut thickness 100 xm, rake
angle 0° and the cutting speeds 3m/s, 20 m/s and 100 m/s. The tool vi-
bration with a prescribed frequency is set in y-axial direction according
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Fig. 5. The contours of equivalent strains obtained in the FV cutting processes with different FV frequencies of tool system and different cutting speeds (V =3, 20,

100m/s).

to a definite sinusoidal function y(t) = Aysinfrt, where Ay =10 ym is the
amplitude and f; is the FV frequency of tool.

A wide range of frequencies are applied in simulations to study the
FV cutting process, and the contours of equivalent strains are shown in
Fig. 5. Compared with the simulation results of the conventional cutting
process in Fig. 3, in the cutting process of 3m/s, the low-frequency vi-
bration of tool promotes the evolution of the shear bands, which make
the continuous chip in the conventional cutting (Fig. 3b) transform into
the serrated chip (Fig. 5a). However, as the FV frequency increases, the
tool vibration tends to hinder the evolution of shear bands and results in
the formation of continuous chip (Fig. 5b and 5c¢). In the high-speed cut-
ting processes with 20 m/s and 100 m/s, the low-frequency FV promotes
the evolution of shear bands in the serrated chip. Especially, when the
FV frequency of tool equals the instability frequency of multiple shear
bands, resonance occurs, which consumedly promotes the evolution of
shear bands in the serrated chip (Fig. 5d and g). However, when the FV
frequency is sufficient high, FV can completely suppress the nucleation
and evolution of shear bands and makes the serrated chips (Fig. 3c and
d) turn back into the continuous chips (Fig. 5e, f, h and i). Therefore, in
the high-speed cutting process, there must exist a critical FV frequency
fr. denoting the transition from the serrated chip to the continuous chip.
Thus, as fr <fr., the periotic shear banding instability occurs in the ser-
rated chip and the chip plastic flow is unstable; otherwise, when fr > fr.,
the continuous chip develops and the plastic flow of chip material be-
comes stable.

A serial of simulations are performed to calculate the transition FV
frequencies under different cutting speeds and the results are illustrated
in Fig. 6. The relation of instability frequency of the periodic shear bands
with the cutting speed is also depicted in this figure. The two frequencies
increase with the cutting speed according to a linearly proportional re-
lationship. For the traditional cutting process, any point on the graphic
plane would correspond to a serrated chip formation as the cutting speed
exceeds the critical transition speed. However, in the FV cutting process,
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Fig. 6. The frequency of the shear banding instability fg; and the FV frequency
of tool at the transition of chip shape f; vary with the cutting speeds.

these points with the higher FV frequency than f;. correspond to the
continuous chip formation. Therefore, in the metal cutting process, ap-
plying a high-frequency FV to the tool system can obviously increase the
plastic flow stability of chip material and improve the machining quality
and processing efficiency. On the other hand, since the commonly used
frequency in vibration assisted machining is usually less than 40 kHz
[30], at which FV may promote the evolution of shear bands and causes
more damage on tool life and machining quality. If a sufficiently high
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Fig. 7. The dependence of the mean shear band spacing and the segmentation intensity on the tool FV frequency as the cutting speed V=20m/s. In the inset, the
definitions of the shear banding spaces and the maximum and minimum chip thicknesses are shown.

frequency in vibration assisted machining is out of reach, the formation
of shear bands should be avoided to assure that vibration takes positive
effects.

The morphology of serrated chip in the FV cutting process can be
represented by two geometrical parameters: the mean shear band spac-
ing L and the segmentation intensity I; [56]. They are defined as

Lt+ L~ -1
Ly= 2 = 3)

tt

where L+ and L~ are two shear band spacing in different positions, and
the maximum and minimum chip thicknesses, t* and t~ are introduced
(see the inset of Fig. 7).

In terms of (3), the dependence of the serration intensity and the
shear band spacing on FV frequency are plotted in Fig. 7. When FV
frequency is much less than the instability frequency of shear bands
240 kHz, the segmentation intensity is nearly constant. When resonance
occurs, i.e., the FV frequency equals 240 kHz, the segmentation inten-
sity reaches the peak value, implying that the evolution of shear bands
are promoted at the maximum degree. As the FV frequency exceeds
240 kHz, the segmentation intensity decreases rapidly, which represents
evident transition tendency of the chip shape from serrated to contin-
uous. The segmentation intensity approaching zero indicates complete
transition into the continuous chip. In the low-frequency cutting pro-
cess, the values of the segmentation intensity are always greater than
the mean segmentation intensity without vibration, implying that the
low-frequency FV promotes the evolution of shear bands. Moreover, the
low-frequency FV has no obvious influence on the shear band spacing.
The mean spacing in the FV cutting process, approximately a constant
58 um, is less than the mean spacing without vibration. As the tool FV
frequency increases, the shear band spacing decreases monotonously
until it approaches zero at the FV frequency of 7000 kHz, which means
that serrated chip has turned into continuous chip completely due to the
strong suppression of vibration on instability of shear banding.

Fig. 8 shows the simulation results of the cutting forces as the cut-
ting speed V=20m/s. It is well known that the oscillation frequency of
cutting force is identical with the instability frequency of shear bands
[54] (Fig. 8a). When the tool FV frequency is 120 kHz, the oscillation fre-
quency of cutting force increase evidently but the amplitude decreases
(Fig. 8b). At the resonance frequency 240 kHz, at which the oscillation
of cutting force in amplitude reaches the greatest degree, meaning that
the strongest impacting of FV on the cutting force presents (Fig. 8c).
When the tool vibration frequency is 480 kHz, the high frequency oscil-
lation of cutting force starts to appear over the low-frequency oscillation
component (Fig. 8d), which shows that the plastic flow behavior of ma-
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terial inside the shear bands stars to change in the sense of microscale.
As the tool frequency is about 6000 kHz, the low-frequency oscillation
of cutting force begins to disappear (Fig. 8e). When the tool frequency
equals 7000 kHz, it disappears completely (Fig. 8f). At this moment, the
serrated chip fully changes into the continuous chip.

Fig. 9 shows the Fourier transform results of cutting forces. The re-
sults in Fig. 9a demonstrtes that the periodic shear banding instability
has the ability to generate the oscillatory cutting force with high ampli-
tude and low frequency. When the FV frequency is less than 6000 kHz
(Fig. 9b and d), two high-amplitude integrant appear in the frequency
domain, which correspond to the tool vibration and the periodic shear
banding instability. Particularly, resonance leads to the greater ampli-
tude at f;r =240kHz (Fig. 9¢). In this case, the oscillation force com-
ponent from the periodic shear banding instability has the ability to
produce the larger amplitude vibration in cutting force due to the stor-
age of vibrational energy, and cause the damage on machining surface
integrity and tool life. As the tool vibration frequency equals 6000 kHz,
the critical value when the chip shape starts to transform from serrated
to continuous again, the high-amplitude integrant of cutting forces dis-
tributes in both low- and high-frequency domains. The oscillation of
cutting force is govern by the tool FV frequency and the multiple shear
banding frequency. As the frequency exceeds 7000kHz, only a high-
amplitude integrant caused by tool vibration presents in high frequency
domain, whereas the high-amplitude integrant in low frequency van-
ishes due to the formation of continuous chip.

FV with different frequencies can produce evident influence on the
mean cutting forces. The curve in Fig. 10 shows the evolution the mean
cutting force in FV with different frequencies based on the simulation
results in Fig. 8. The mean cutting force is about 189.5 N/mm without
vibration. For FV, the curve rises gradually in the low-frequency vibra-
tion domain and, after reaching the first peak value, decreases sharply to
the minimum at the resonance frequency. In the high-frequency domain,
it grows rapidly to the second peak value and then decreases gradually
and finally shows a tendency towards the mean cutting force without
vibration. It is worth noting that the resonance condition results in the
minimum value of the mean cutting force, which doesn’t mean that we
can obtain the satisfactory surface integrity since the amplitude oscilla-
tion of cutting force reaches the maximum intensity at the same time.
However, the evolution of the cutting force at the high-frequency vibra-
tion shows a good tendency, that is, the amplitude of the cutting force
decreases linearly as the tool vibration frequency increases until the con-
tinuous chip develops. In the continuous chip formation, the tool FV
makes the average cutting force decrease. However, in the high-speed
cutting process, the periodic shear banding instability lead the average
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cutting force to increase obviously. Only in the finite frequency domain
with resonance frequency can the average cutting force decreases.

3.3. Analysis of chip flow stability

3.3.1. Instability criterion

Usually, the serrated chip in high-speed cutting process is attributed
to the periodic shear banding formation as the thermos-plastic instabil-
ity phenomenon. In the FV cutting process, the tool vibration changes
the distributions of the shear stress in PSZ and the pressure on the tool-
chip interface, which results in a more complex thermos-plastic instabil-
ity behavior of cutting material. In order to get a clear insight into the
chip flow behavior in the FV cutting process, a linear stability analysis
on the plastic flow of chip material is performed in terms of the orthog-
onal cutting model [61,62]. In this model, the influence of the pressure
on the tool-chip face on the cutting force is considered similar to Burns
and Davies [63] (Fig. 11).

The basic equations governing the thermo-mechanical deformation
of PSZ material include: the momentum conservation equation:

Py _

e @
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speed V=20m/s and the FV frequency fr=240kHz.

the energy conservation equation:
(&)

where p, ¢ and 4 are the density, specific heat, thermal conductivity of
work-material. g is the Taylor-Quinney coefficient.

Fig. 12 shows that the evolution of shear stress at the resonance fre-
quency in the FV simulation. To consider the influence of tool vibration,
the shear stress component is assumed known based on Fig. 12 and has
the form of sinusoidal function:

to=t'+7" sin (27 fpt + ¢) (6)

where t is time, 7’ is the shear stress component without vibration, 77,
fr and ¢ is the amplitude, frequency and the phase angle of the shear
stress component in vibration. Similar to Burns and Davies [63], the
shear stress 7, pressure py and the cutting speed V;, have the relationship
as follows.
Elysin’e
2
hy

oty lysing dpy

= 7
ot hy, dr ™

(VO cos@ — j/hl)

where E is the elastic modulus, [, the contact length between tool and
chip on the rake face and h; the cut depth.

When carrying out the analysis of chip flow stability, the small per-
turbation method is used to governing Eqs. (4), (5) and the J-C law
(1) to seek an inhomogeneous deformation solution with respect to the
homogeneous solution. Assuming that

T 70 T* 70 T*
Y ¢=970 ¢+ 7" pexp (ot +iky), 379 ¢ K7 8)
| |1, |1 T, T*

where 7, y( and T, is a group of homogeneous solution of the governing
equation system. 7*, y* and T* are small constants characterizing the
initial magnitude of perturbation, w is the initial perturbation growth
rate and k is the wave number.

Inserting Eq. (8) into Egs. (1), (4) and (5), only considering the first
order terms of the perturbations, we obtain the characteristic equation
about the perturbation growth rate w as follows:

@& + (1 + AP +[(AK* + 1 — B)k? + C|@ + k*+Dk> = 0 ©)
In (9), the following dimensionless variables are used:
o=lo 2o XK 4 _ R p_ PR
cQq’ pc20q’ i’ pcQq’ 10
12708, BPyAELysin? (795, ~V, cos @) (10)
C=—7>7 D= 20212
pe Qg pe=Qphy
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where Qq is the strain hardening factor of the material, R, is strain-
rate hardening factor, and P is thermal softening factor. The stability
of chip flow depends on the value of dimensionless growth rate. If it
goes negative, the chip flow is stable; otherwise, the plastic flow insta-
bility is possible. The negative term in the first power of the growth
rate in (9) ensure that the characteristic Eq. (9) has at least one positive
real root. This means that the chip plastic flow may develop continu-
ously until the plastic instability occurs at a special set of wave numbers.
Therefore, based on the extreme conditiondcb/dl}i = 0, the criterion for
evaluating the plastic instability of chip flow in the vibration cutting
process can be found as follows:

1 I, —I1,)pP,
(Io+ 1, 2)ﬁ0>1 (an

st = pcQg
where
. peRylysinppy
I, = 75,1, = 7’ sin 2rfrt+ @), I, =24 ——m————,
0 011 (2zfr ). I PP,
2w frt'h
by = LT o (0 fp 4 ) (12)

lysing

In the instability criterion (11), the nominator of the instability func-
tion Fy,, represents the thermal softening effect of chip material and the
denominator demotes the strain hardening effect of material. Thus, if the
value of Fy,; is greater than one, it means that the plastic flow is possi-
bly unstable; otherwise, the plastic flow is stable. The first term in the
nominator denotes the thermal softening effect produced by the shear
stress 7 in the cutting process without the tool vibration. The second
and third terms represent respectively the effects of the shear stress os-
cillation in the PSZ and the pressure oscillation at the tool-chip interface
on the thermal softening in the vibration cutting process. In the accor-
dance with the modeling result in Fig. 3c and Fig. 8a, the expression of
the shear stress 7, can be found through the curve fit of sine function as

Ty =Tgp + Tapsin (27 fspt + dsp) 13)

where fop=240kHz and ¢sp=—r are the instability frequency and
initial phase angle of the cyclic shear bands. 7’gz=888MPa and
7”sp =323 MPa are the mean shear stress and the amplitude of the shear
stress oscillation, respectively.

3.3.2. Results and discussion

The expression of the instability function Fp,; indicates that FV can
induce evident change of the thermal softening effect of material, but
doesn’t affect the strain hardening effect. Since the shear-localized defor-
mation of material within PSZ is closely related to the thermal-softening
effect, we can say that, the influence of FV on the evolution of the shear
bands is by changing the thermal softening effect of material rather than
changing the strain hardening effect. To clearly reveal the influence of
FV on the shear banding instability, we can consider it in two steps.

Firstly, consider the influence of the shear stress oscillation on ther-
mal softening of material within shear bands. The parameters in the
shear stress oscillation factor I; in (12) are taken as 7’ =7"gp and ¢= ¢gp
in terms of the simulation results in Fig. 8. In the FV cutting process with
the cutting speed V=20m/s, the instability frequency of shear bands
is fgp =240kHz. For the different FV frequencies, the shear stress os-
cillation aggravates the thermal softening effect of material, however,
in the average sense, doesn’t change the total thermal softening effect
as shown in Fig. 13. The low-frequency oscillation of shear stress with
fr <fsp has a tendency to reduce the instability frequency of shear bands
(Fig. 13b). In the resonance case of fr =fgp, the oscillation of shear stress
generates the strongest thermal softening effect of material (Fig. 13c).
The high-frequency oscillation of shear stress with f; > fsp doesn’t affect
the frequency of periodic shear banding instability, but results in the
micro-mechanism variation of plastic flow of material. That is, the shear
banding evolution is accompanied with the high frequency oscillation
of material points (Fig. 13d-f). The energy required for this material
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softening mechanism is provided by the work done by the oscillating
shear stress. The oscillation of shear stress induces the increase on the
oscillatory amplitude softening factor even though it doesn’t change the
average degree of thermal softening of materials. In this sense, it is ben-
eficial to the evolution of shear bands.

Secondly, consider the combined effects of the shear stress and the
pressure on the thermal softening effect of material within shear bands.
In present analysis, same oscillation frequencies of the shear stress and
the pressure are used and the results are shown in Fig. 14. In the cases
of the low-frequency oscillation fr < fgp and the resonance f=fgg, the
combined effect still aggravates the softening effect of material relative
to the case without oscillation (Fig. 14a), implying that it promotes the
evolution of shear bands (Fig. 14b and c¢). However, comparing with
the cases without pressure in Fig. 13b and c, the softening effect is evi-
dently weakened due to the existence of pressure oscillation. An obvious
feature is that the average degree of material softening is significantly
reduced and the other is the oscillatory amplitude of softening factor is
also appropriately decreased. With the further increase of oscillation fre-
quency as fr > fgg, the combined effect completely changes the materials
softening mechanism. Not only the oscillation amplitude of the soften-
ing factor evidently decreases, but also the thermal softening degree has
become negative in the average sense. Particularly, the oscillation of pe-
riotic shear banding instability has disappeared completely (Fig. 14D-f).
This implies that the high-frequency pressure oscillation has dominated
the thermal softening mechanism of chip material, suppressed the evo-
lution of shear bands and made the continuous chip develop fully.

Consistent with simulation results, FV exhibits different influence on
the evolution of shear bands. In the high-speed cutting process with tool
FV, the shear stress oscillation promotes the development of the soften-
ing effect of material within shear bands. In the process, the work done
by the shearing force is transformed into the shear localized deformation
energy of PSZ material. Therefore, the shear stress oscillation makes the
occurrence of periotic shear banding instability of chip material easier.
Conversely, the pressure oscillation always weakens the material soft-
ening effect. In the low-frequency FV cutting, the promoting effect of
shear stress oscillation for the evolution of shear bands overcomes the
depression effect of pressure oscillation, so shear banding evolution is
promoted overall. However, in the high-frequency FV cutting, pressure
oscillation consumes most of the energy required by the shear banding
formation and evolution, which forcefully restrains the evolution of the
shear bands in the serrated chip, and results in the transition of serrated
chip into the continuous chips.

4. Self-excited vibration cutting process
4.1. Simulation of the self-excited vibration cutting process

4.1.1. The double-tool model

The nonlinear dynamics in the SEV cutting process is related to the
cutting conditions, tool geometry and the machined wavy surface. In
order to simulate the SEV cutting process, a double-tool cutting model
is designed as shown in Fig. 15. In this model, the tools are described by
the Lagrangian elements with material mesh, and the plastic flow of the
workpiece material is described by the Eulerian elements with spatial
mesh. The size of Eulerian mesh is set as 3 ym and the inclination angle
is 45° relative to the horizontal direction. The tool-1 carries out the FV
cutting with a prescribed vibration frequency in y-axial direction, which
represents the structural dynamics of machine tool system and can gen-
erate the wavy machined surface for the following SEV cutting. When
the parameters of the tool-1 FV motion are prescribed, corresponding
SEV cutting process of tool-2 are also determined. In high-speed cutting
process, the tool-2 SEV stems from two sources: the wavy cut thickness
and the formation of periodic shear bands. The top wavy surface pro-
duced by the tool-1 FV cutting is described as

y1 = Yot A sin(@,1140,,) (14)
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Fig. 16. The contours of equivalent plastic strain under different vibration frequency of tool-1 (V=20m/s).

where y; denotes the vertical oscillation displacement of the tool-1 at
time t, w,,; =2xfr; the angular velocity of the tool-1 vibration, f;; the
vibration frequency, 6,,; the initial phase angle and A,,; the vibration
amplitude. The average cut depth is y;q =100 ym, the cutting distance
is 500 ym and the cutting speed is V=20 m/s. Under these cutting con-
ditions, the plastic flow of Ti6Al4V alloy chip is unstable and leads to
the formation of serrated chip.

4.1.2. The simulation results and discussion

The resulting equivalent plastic strains of workpiece show that the
chip morphology in the SEV cutting depends on the FV frequency of
tool-1 (Fig. 16). The wavy machined surface produced in the tool-1 FV
cutting produces the wavy cut thickness for the following SEV cutting
process. For the FV frequency frq =120 kHz, the generated wavelength
of wavy machined surface is larger than the shear band spacing, so that
more than one shear bands can develop in one wavy period in the SEV
cutting. Specifically, the longer shear bands form in the large chip thick-
ness and the shorter shear bands form in small chip thickness. Since
the cutting work done by the tool-2 to workpiece is constant under un-
changed cutting speed condition, only one longer shear band forms but
more than one shorter shear bands might appear (Fig. 16a and b). Os-
cillation frequency of wavy machined surface rises with increasing FV
frequency of tool-1, which makes the chip thickness in the SEV cutting
process tend rapidly to be homogeneous. As a result, the multiple shear
banding instability tends to be steady and the serrated chip has uniform
thickness and serrated size as shown in Fig. 16c¢ to f. Compared with the
result without vibration in Fig. 3c, SEV can decrease serration intensity
of serrated chip to different degrees. Smoother upper surface generated
by higher FV frequency corresponds to the maximum suppression of ser-
rated chip. The simulation results also demonstrate that the frequency
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Fig. 17. The relationships among the frequency of the tool-1 FV, the wavy sur-
face oscillation and the frequency of shear banding instability of the chip pro-
duced in the SEV cutting process.

of the wavy machined surface fyyp is linearly proportional to the tool-
1 FV frequency fr;. The multiple shear banding instability fgp is more
sensitive to the low FV frequency than the high FV frequency as shown
in Fig. 17.

Fig. 18 illustrated the modeling results of the cutting forces and
ploughing forces of tool-2 SEV with different tool-1 FV frequencies. For
comparison, the modeling result of conventional cutting force is also
drawn in this figure. In the low-frequency cutting process, the tool-2 SEV
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Fig. 18. The cutting forces and ploughing forces of tool-2 SEV vary with the cutting time (V=20m/s).

cutting process gets into a non-uniform oscillatory state after the onset of
cutting. The average SEV cutting forces decrease obviously with increas-
ing tool-1 FV frequency. The low-frequency FV induces slight variation
of shear banding instability frequency (Fig. 18a). When the FV frequency
is above 240kHz, the frequency of shear banding instability evidently
rises with increasing FV frequency (Fig. 18b-d). This is because that the
variation of wavy chip thickness changes the oscillation period of cut-
ting forces. In the cutting process with constant speed, the variation chip
thickness generated by different frequency FV strongly affects the mate-
rial softening and strain rate sensitivity of work-material, which change
the shear banding instability behavior of chip-material and result in the
oscillation of cutting force with varying amplitude and period. For high
FV frequency, the fluctuation of the wavy chip thickness is significantly
reduced, which greatly weakens the influence of the variation of wavy
chip thickness on the cutting force, and thus, the oscillation frequency
of cutting force approaches to the instability frequency of shear bands
and the oscillation amplitude of cutting force tends to uniform again.
Fig. 19 presents the displacement evolution of tool-2 with time. In
the SEV cutting process, the wavy cutting thickness is determined by the
relative displacement between tool-1 and tool-2. If the relative phase dif-
ference between the two machining wavy surfaces is zero, the variation
of wavy chip thickness is also zero. If the relative phase difference is
x, the variation of the chip thickness is maximum. On the other hand,
the variation of cutting thickness in the SEV cutting determines the cut-
ting force oscillation. Comparing with the simulation results of cutting
force in Fig. 18, we can see that the SEV displacement has same rela-
tive phase angle as that of the ploughing force, but has opposite phase
angle of as that of the cutting force. Consequently, the wavy cutting
thickness affects the cutting force, and the oscillation of wavy surface
affects the ploughing force. In the high-speed cutting process, the influ-
ences of the changing cutting thickness and wavy surface become non-
evident and the multiple shear banding instability controls the cutting
force in the SEV cutting process. The oscillation frequency of the tool-
2 displacement approaches to the shear banding instability frequency.
Compared with conventional cutting without vibrations, SEV can de-
crease cutting force stably with higher FV frequency. Thus, it is SEV with
smooth cutting thickness, instead of FV with too high frequency, could
be an effective strategy to suppress the evolution of shear bands, im-

prove machined quality and alleviate tool wear in the high-speed cutting
process.

4.2. Theoretical analysis of tool-2 self-excited vibration process

In this subsection, we carry out the stability analysis of tool-2 in
SEV cutting process. The analytical model is shown in Fig. 20. The top
wavy surface of workpiece is produced in the tool-1 FV cutting. In SEV
cutting process, tool-2 is assumed as a spring-mass-damper system with
single degree of freedom. The motion of tool-2 is limited in the y-axis
direction. The average cut depth with the wavy surface, the rake an-
gle and the shear angle are denoted by y,, « and ¢, respectively. We
further assume that the tool system has the equivalent mass m,, con-
stant equivalent stiffness k, and damping coefficient y,. The forces of
the tool-2 acting on the chip and workpiece include the cutting force
F,, in the horizontal direction and the ploughing force f, in the vertical
direction. A stationary coordinate system xOy is attached to the sym-
metry plane of the tool-workpiece machine system, and y,(t) represents
the transient vertical position of the tool-2 tip at time t. If the assump-
tion of small amplitude vibration for the tool-2 system SEV is used, the
equation of motion can be written as:

mo3y + pody + koyy = (=F,) + (=1,
During the SEV cutting process, the tool-2 vibration stems from the
perturbations caused by the varying cut depth due to the top wavy sur-

face and the formation of multiple shear bands in the serrated chip. The
cutting force Fy is represented as [64]:

15)

(y1 = y)wrsin(f - a)
singcos(p+f —a)

where 7 is the shear stress on the shear plane, § =tan™!(y) is the friction
angle, y is the friction coefficient of the tool-chip interface, the rake an-
gle a is set to zero and w is the cut width. In terms of the small vibration
assumption, only the effect of the top wavy surface on the cut depth is
considered in the present analysis and the influence of the variation of
rake angle is ignored. Thus, the undulation of the top wavy surface with
the average cut depth y, can be written in the form (Fig. 20):

F,=-

(16)

Y1 = Yo+ Ayo sin (@t +6,,) (17)
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Fig. 20. The analytical model of the cutting process with tool-2 SEV motion.

where A, denotes the oscillation amplitude of wavy surface, »,, the
angular velocity of wavy surface oscillation, and 6,, the initial phase
angle. The Eq. (17) is identical to that of the tool-1 vibration in (14).
In the high-speed cutting process, the shear stress in PSZ varies with
the periodic formation of shear bands. Suppose that the shear stress is a
periodic function of time t:

T =154+ Ay sin (wst+95) (18)

where 7, is the mean shear stress, Ay the oscillation amplitude of shear
stress, o, the angular velocity of shear banding instability and 6, the
initial phase angle.

According to Wu and Liu [64] and Kudinov et al. [65], the role of the
ploughing force f, is evident in the SEV cutting process and it is assumed
to be linearly dependent on the time rate of tool-2 displacement:

w
=%
where y, is the cutting damping coefficient. By insetting Eqs. (16) to
(19) into Eq. (15) and only remain the linear terms, the equation of
motion governing the tool-2 SEV process can be written as:

V2 (19)

o+ 28Q, 9, + Qyy = Co[1 + Ay, sin (@t +0,)| [1 + A, sin (w7 +6,)]
(20
where the equivalent relative damping coefficient = and the equivalent

angular velocity €, of the tool-2 system are introduced and can be de-
fined as follows:

w C
2EQ, = 2%w, — fe ,Qi = a)ﬁ - —0,
myV Yo
sy = B0 gp 2 Ko oS A A
n m()’ n mO, mg sin(pCOS((P"‘ﬁ)’ v Yo o 70
21

In (21), ¢ and w, are relative damping coefficient and the inherent
angular velocity of the tool-2 SEV. In the derivation of the Eq. (20), the
influence of the shear stress oscillation on the equivalent angular veloc-
ity Q, has been neglected. From Fig. 20, we can see that the equivalent
relative damping coefficient = is sensitivity to the cut width as the cut-
ting speed is less than 10° m/s and its values are greater than one as the
cutting speed is less than 60 m/s for the cut width 1 ym.

To solve the Eq. (20), two cases are considered:

Case 1: When E2-1>0, the general homogeneous solution of the
Eq. (20) is:

Vi) = Ce" 4 Cye®! (22a)
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where

w* = —Q,,(E+ =2 1),w— =—Qn(E—

(22b)

Case 2: When E2-1 <0, the general homogeneous solution is:

vy = ¢ 541 (€ cos wt + C, sin ot

(23a)
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where
0=Q,V1-22

and C; and C, are the undetermined constants. The results in
Fig. 21 show that the condition =2 > 1 is true as the cutting speed equals
to 20 m/s. Thus, case 1 is meaningful and will be considered below. To
solve for the complete solution of the Eq. (20), it is necessary to seek
the particular solution of Eq. (20) y,**(t). The completed solution of
Eq. (6) is set with the form

(23b)

1) = Vi) + i) 4

where y,*(t) is given in (22) and y,™*(t) is found as:

G

2
0= +.2; [‘Pi sin (g, +Op, ) + (=1, cos (@p, 1+ O, )]
n =
(25)

The parameters in expression (25) are defined as:

_ GoAp, v, - CoAp, _ CoAn, Ap, v — CoAp, A,
YU, T, T o, T,
On, = b, — wni’®ni+z = 0Hi+2 - 9WHi+z
5 5 \2 _ 2 2EQ, o,
I, = \/ (Qn —a)ni) + (2:9,,(011’,) 6, = arctan Py
n i

o, = oy, — oy, o, = o, + o, 0, =0 — 0,6, =0 + 6y, (26)
where ITi (i=1,2,...4) stand for w, s, w-s and w + s, respectively, and sub-
scripts w and s denote respectively the wavy surface and the shear bands.
O =01 -0, is the equivalent phase difference. Using the boundary

conditions y,(0) = y,(0) = 0, the values of the constants C; and C, in
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Fig. 22. The tool-2 SEV displacement-time curves at different relevant damping coefficients (V=20m/s).
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Fig. 23. The effect of the additional damping in cutting on the tool SEV at
different cutting widths (a) y, =10° N/m, (b) y,=10*N/m.

(22) can be found.

@y (0) — 357(0)

o RO+O)
2EQ,

= .C, = 27
! 2EQ, 2 @7

The solution (25) shows that the SEV of tool-2 has four vibration
modes. The first, second and the last two oscillation terms in the solu-
tion (25) denote respectively the effects of the cyclic oscillation of top
wavy surface, the cyclic formation of shear bands and the coupled ef-
fects of the top wavy surface and the periodic shear bands on the tool-2
SEV. In terms of the results, the displacement-time curves of the tool-2
SEV motion can be obtained as shown in Fig. 22. The parameters used in
the analysis are listed in Table 1. For simplicity, the phase angle differ-
ences are taken to be zero, 6,, =0,=0. For comparison, the simulation
results are also given in this figure, which shows a good agreement be-
tween these analytical and simulation results for both the low damping
case and the high damping case. The influence generated by the relative
damping on the stability of tool-2 SEV is evident. When it is sufficient
large, the motion of tool-2 is stable. Otherwise, as the relative damp-
ing is small enough, the tool-2 SEV occurs and the resultant oscillation
frequency of displacement is closer to that of the formation of shear
bands. This implies that the tool-2 SEV process is governed by the shear
banding instability behavior whereas the influence of wavy surface is
not significant.

524

International Journal of Mechanical Sciences 148 (2018) 510-530

The additional cutting damping between the tool edge and adjacent
flank face generates obvious influences on the stability of the tool-2 SEV
cutting process. The displacement-time curves as shown in Fig. 23 illus-
trate that, when the additional cutting damping equals 10° N/m, the
tool-2 SEV is stable if w<10 ym. When w>50 um, the tool-2 SEV
starts to go into unstable state (Fig 23a). When the additional damp-
ing equals 10 N/m, the amplitude of tool-2 SEV increases sharply as
the cutting width increases. As w=50 um, the unstable tool-2 SEV takes
place (Fig. 23b). This SEV instability process is a typical phenomenon
observed in the vibration cutting tests [46].

4.3. Analysis of tool-2 self-excited vibration stability

4.3.1. Stability conditions

As has been analyzed, the motion of the tool SEV becomes unstable
once the relative damping is small enough or the cutting width is large
enough. The method to verify the stability of tool SEV quantitatively is
to analyze the stability boundary of vibration, which is also the critical
occurrence condition of unstable vibration. According to the works of
Wu and Liu [64], two types of stability boundary exist in the tool vibra-
tion cutting process. One is the lobed boundary which is the stability
borderline of the tool vibration ascribed to the undulation of successive
cut depth in turning. The other is tangent boundary which is the sta-
bility borderline tangential to the lobed instability regions. Generally,
there are a series of tangent points between the two borderline curves.
Evidently, at the concurrent tangent points, the tool SEV is in a criti-
cal equilibrium state. The energy dissipated in this state reaches a peak
value relative to the adjacent states. When the chip depth changes in
cutting, the maximum energy dissipation should be determined by the
prescribed phase difference of two consecutive cutting processes.

With application of the analytical method of Wu and Liu [64], the
stability limit of the tool-2 SEV can be determined. The cutting force in
(15) is now rewritten as

F, = =2wry(y; — o) [H) — HyV + H3(5, — 3y)] (28)
where the dynamic cutting force coefficients are defined as
o = sin p[cos2(p + a — f) + 1]
' sin’2(p + @ — Pleot Qo +a — f) + 1]
°. - £, Vsin?f cos (a — f) + 2 cos (a — B)cos Qo +a — f) + 1
: 2cosa sin22((p +a— p)lcos(a — pf)+cosLop +a — ﬂ)]2
Hy = - cosacos2(p+a—f)+cosa + zsmVsinzﬂH2 29)

cosasin2(p +a — f)

where a, # and ¢ are the rake angle, friction angle and the shear angle,
respectively. The small quality ¢, is related to the mean friction coeffi-
cient at the tool-chip interface and can be determined from steady-state
orthogonal cutting experiments.

From the simulation curves at small relevant damping in Fig. 22,
we can assume that the tool-2 SEV complies with the oscillation reg-
ulation of sinusoidal function with given amplitude and phase angle.
Assume the top wavy surface vibrates with the angular velocity w,, and
the amplitude of A,,,, i.e., according to the relation (14). During the tool-
2 SEV cutting, the oscillation amplitude of tool-2 SEV is assumed to have
the same order in two continuous cutting processes. The tool-2 SEV is
represented with the displacement-time relation y,(t) in (24). From the
expressions of (14) and (24), the instantaneous cut thickness and its
change rate of time can be written as

A A
o — (1= w0 ) Ak w0 n® e
Y=Y, Yo < —lpl cosO, |y, V0, sin®,,y,
A w,A
Wy = (1 - _\;Jlo cos ®w>y';* - 20 §in @,y (30)
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From the cutting force in expressions (28) and (19), the energy func-
tion in a cutting cycle [0, 2z] can be represented as:

2z 2z

E(en, ) = / E(On:t)do,t = Qz'ow/ [35% [H, - Hy + Hy (55" = )]
0 0
x (35 =) - 525 |dw,t @D

In (30) and (31), the contribution of the general homogeneous solu-
tion y,* in the complete solution (24) to the cutting energy is neglected
since it goes to zero in the stable vibration process. Since we have known
that the vibration sources of tool-2 SEV comes from the oscillation of the
top wavy surface and the cyclic formation of shear bands, the first two
terms with i=1 and 2 in (25) denote respectively the separating effect
of the wavy surface and cyclic formation of shear banding on the tool-2
SEV and the last two terms with i=3 and 4 denote the coupled effects.
When the tool-2 SEV motion reaches a critical state, the maximum en-
ergy will be dissipated by the system. Thus, the extreme condition

dE(@Hi )
00y,

i

=03i=1,.4 (32)
gives the phase difference corresponding to the critical stable state of
the Tool-2 SEV.

When the cutting speed is low enough and no multiple shear banding
instability occurs, the tool-2 SEV motion is only related to the oscillation
of the top wavy surface. At this time,

Y55 (1) = ¥ sin (@1 +0,) >

By insetting (33) and (30) into (31), and using the condition (32),
like Wu and Liu [64] did, the phase difference is found to satisfy the
following equation

H, + H,V

tan®,, =
Y oy H;

B4

It can be seen that the function tan®,, is related to the angular ve-
locity w ,,, the mean cut depth y, and the cutting speed V. From the
expressions of Hy, H, and Hj in (29), its value is calculated as a large
negative number. Thus, the phase difference is found as ©,, = 2nz+ 37/2
(n=1, 2...). In terms of this results and the relations (30), the motion
Eq. (15) is rewritten as

Ay H — H)V H W
Mo i + 2w w0 1 2 — v H + c -k
0¥ [ﬂo T°<_\I‘1 —ww Yo i3 % Y,
H, - HyV A,
+[k0 +2wroww<; +y0H3lP—“0>]y;* = 2wryyy(H, — HyV)
w 1

(35)

where only the linear terms of the cutting force in (28) are considered.
The stability of the tool-2 SEV depends on the total damping factor and
the total stiffness factor

Ay Hy — HyV TR%
A = pyy—2 Zwo PP gL )+ B
u=Ho '“"( ¥, o, Y N7
A, =k Awo
K = ko + 2w Hy = HyV + w00 Hy 5 (36)
1

If A,> 0, the tool-2 SEV is stable. Otherwise, it becomes unstable and
chatter occurs. This implies that the critical stability condition is given
by A,=0. Consequently, the critical width yields

Ho
Ao Hi+H)V

¥

w,

(37

1=
270( - yoH 3) - ﬂVC
This result is agreement with that of Wu and Liu [64] as A, =Y.
When the cutting speed is high enough, the multiple shear banding
instability occurs, which would generate influence on the tool-2 SEV.
For clarity, the solution in (25) is taken as

Dy

Y3 (=Y, sin (w1 + ) (38)
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Through the same analysis procedure above, we may obtain the
equivalent phase angular corresponding to the critical stable state of
the tool-2 SEV as O, =2nz+3z/2 (n=1, 2...). And the instantaneous
cut thickness and its rate of time are rewritten as

- Ay . 1—n?
kL 1=n _ _ -
Y=y = \/EA,,_,O 3 —r]4ww‘l’2 sin®; > cos O |y,
Auo 1
—— | (1 =7")sin®;, + —cos O, | — 1| yi*
113‘P2 <( ) s \/E s) :|y2
1- ’72 Ao > wAwo .
2t — 9 = wpA g—— + | 1 — cos®_ )y — L gin@_y**
Y Vi w w0 7 < Py, s | Vo " R Vo

(39)

where n=w,/w,, is the frequency ratio. By using this result, the motion
equation of tool-2 SEV (15) becomes
_ 1>

1— 2
mojiz* + {;40 - [2w1H3 <y0 - \/E ’1;’ Aw0><

2wt A,y

A0 cos Oy
P’

-1
<H1 + HV + o, Ay Hy —— ” )
r/

nww\PZ
1 -4 w
X %sin@s— 1 cos®, | - ”;/ s
g Vo
1- rlz
+ { ko —2wr || H, +H2V—a)wAw0H3—2
n

A
lPZ

of 1-n*
w3

@, A 0H3 sin O
n*¥,
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The motion equation of tool-2 SEV (15) is given as
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Thus, by neglecting the nonlinear terms in (44), we obtain the critical

(40 width as follows:
4
—M3Ho
wd = 2 3 ) ° n (45—1)
24, HV - Ao 177 A SO, e
w—}“ (Tz + —*AwOH;> <cos®n3 + T; 51n®n3>+21y0H3<1 - \/Ey—()"f) <1 + ‘° —€;> -
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4
My Ho
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2cAy,g [ H—HyV —1l; . 5 Auo '74 Ao MMy Mabe
e (5 S Aoty ) (cosen, + 7 s, J2ents (1= Va4 T ) (1 o ) -

Similarly, based on the condition of total damping coefficient to be
zero, the critical cutting width is given by

6
" Ho
Wy =

In (45), n3=1-n<1 and n4=1+#n>1 corresponds to two different
modes, w.3 and w4, which reflect respectively the coupling effects on
the tool-2 SEV cutting process in different frequency ratios.

Ao cosO;
¥y

uO

3
A H [w _
w03 Ao v,

Va1 (B - ) -2e g [R5 -
We can see that this result is identical with that in (37) as =1 and
O, =2nz+37n/2.
For studying the coupled effects of the top wavy surface and the
periodic formation of shear bands on the tool-2 SEV process, we need
to inspect the last two terms of solution (25). At this time, we have

y;*(1)=(_1)i+ll{li+2 cos (wl‘[,+2t + (911’+2 ), (i=1,2)

Setting #;,5 = wy;42/w,, (=1, 2), then the instantaneous cut thick-
ness and its rate of time is represented as

“42)

1-n? (=1YA
2 0
yl_yz*=<y0_\/§’4w0 3’+>+ -
) z+2wa
2
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X <cos Op,,, + —2'+2 cos Oy, )y;*
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4.3.2. Results and discussion

Fig. 24a and b show the predicted stability limits of the tool-2 SEV
from the result in (37). It shows that, only when the oscillation of wavy
surface presents, the critical cutting width increases proportionally to
the cutting speed in high-speed cutting process approximately. As cut-
ting speed approaches to zero, the stability limit increases sharply and
the minimum cutting width corresponding to a particular low cutting
speed presents. This indicates that the tool-2 SEV cutting process with
low cutting speed is a stability cutting process. Furthermore, the critical
width is sensitive to the exponential damping coefficient ¢,, of the mean
friction coefficient at the tool-chip face in a wide range of cutting speed
Fig. 24a). This parameter is related to the dynamic cutting force coef-
ficients in ((29) through the velocity-dependent friction property and
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a larger ¢, in value will result in smaller cutting force. Thus, this re-
sult also reveals the influences of cutting forces on the critical cutting
width. That is to say, diminishing of the cutting forces due to the rise
of ¢, increases the damping resistance at the tool-chip face and further
increases the stability of the tool-2 SEV (g, =2). The effect of the pen-
etration damping resistance . in the tool nose region on the stability
limit is illustrated in Fig. 24b. This effect is significant in low-speed cut-
ting process and there is no evident change in high-speed cutting. Since
the coefficient increases with the tool edge radius increasing, the larger
H. in value will produce a larger penetration damping resistance which
results in a more stable motion for the tool-2 SEV.

Fig. 24c illustrates the dependence of the critical width on the oscil-
lation angular frequency of wavy surface. For cutting speed 20 m/s, the
serrated chip forms. The critical width increases sharply with increasing
the angular frequency before 100 Hz and then remains constant there-
after. At this time, the tool-2 SEV motion goes into a stable state induced
by the multiple shear banding instability and is almost irrelevant to the
periodic changing chip thickness. In the low-speed cutting process with
the cutting speed 2m/s, the continuous chip forms. When the angular
frequency is less than 10 Hz, the stability curve rises sharply hyperboli-
cally with a decrease of the angular frequency, which indicates that the
tool-2 SEV motion is always stable. It’s worth noting that the total stiff-
ness factor reaches the maximum when the angular velocity equals zero
(see (36) Hy < 0). When the angular velocity is larger than 200 Hz, the
critical width remains constant, implying that the high-frequency oscil-
lation of machined wavy surface doesn’t affect the tool-2 SEV. Similarly,
the total stiffness factor reaches the minimum when the angular veloc-
ity reaches maximum. In the frequency range of 10-200 Hz, the wavy
surface oscillation yields a significant influence on the critical width.
These curves of critical width in Fig 24 is a typical stability boundary
observed in a large number of machining experiments [46].

It is clear that the ratio of angular velocity n = w,/w,, in (41) presents
in high power form and thus it may generate a significant influence on
the stability limit of the tool-2 SEV. The condition #=0 may be con-
sidered in two cases. 1) the condition w; =0 and w,, # 0 means no pe-
riodic shear banding instability occurs in chip, i.e. the continuous chip
with various chip thickness develops in low-speed cutting process. At
this point, the SEV of tool does not occur; 2) the condition w,#0 and
w,, - o denotes that the SEV cutting process has a high oscillation fre-
quency of wavy machined surface, which makes various chip thickness
become constant chip thickness, and thus the serrated chip with uni-
form morphology forms in the SEV cutting (see Fig. 16d-f). When 5> 0,
the periodic shear banding formation produces evident influence on the
stability limit of the tool-2 SEV, as illustrated by the curves in Fig. 25a.
These curves denote the variation of the critical width with the increas-
ing cutting speed is dependent on the frequency ratios 5. The condition
n=1, i.e. w;=w,, indicates that the influences on the tool-2 SEV gener-
ated by the periodic shear banding formation and by the wavy machined
surface oscillation are exactly the same. The condition # > 1, i.e. w; > @,
shows that both the frequency of shear banding formation and the fre-
quency of the wavy surface oscillation are certainly in the low-frequency
domain. Thus the serrated chip formation makes the stability of the tool-
2 SEV decrease obviously. The condition <1, i.e. w; < ®,, denotes, on
the one hand, that the frequency of the wavy surface oscillation is larger
than and close to the frequency of shear banding formation. The serrated
chip with ununiformed morphology forms and the tool-2 SEV is unsta-
ble. On the other hand, it denotes that the frequency of the wavy surface
oscillation is quite high and the serrated chip with ununiformed mor-
phology develops and the tool-2 SEV is unstable. But, the stability of the
SEV process increases sharply. For the case of low-speed cutting process
and the oscillation frequency of wavy surface with 120 kHz, no shear
banding formation occurs and continuous chip develops. The wavy sur-
face oscillation with long wave length induces extremely weak SEV for
the tool-2 so that the tool-2 SEV stability increases evidently. When the
serrated chip forms in the high-speed cutting process, the frequency of
shear banding instability increases proportionally to the cutting speed
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Fig. 25. The critical widths vary with the increasing cutting speed at different
frequency ratio (a) and with the frequency ratio (b).

Fig. 6). The stability of tool-2 SEV depends upon the shear banding insta-
bility frequency and the cutting speed. In terms of the extreme condition
of energy ((32) and the critical width in (41), the stability curve of tool-
2 SEV within the limited range of frequency ratio from O to 2 is obtained
as shown in Fig. 25b. Comparing with the frequency of periodic shear
banding formation that is in the order of 2x 102 kHz, the higher fre-
quency of wavy surface results in the stability decreasing of the tool-2
SEV cutting process, while the lower frequency of wavy surface in its
stability increasing.

The curves in Fig. 26 represent the evolution of the critical widths
w.3 and w4 with the increasing cutting speed. When the continuous
chip forms in the low-speed cutting process, the multiple shear banding
instability does not occur for the plastic flow of chip material. As well
known that, at this time, the effect of the wavy cut thickness on SEV
cutting is not significant. Therefore, the coupled effects on the cutting
process almost disappear which results in evident increase of the stabil-
ity of tool-2 SEV. When the cutting speed increases, the serrated chip
forms. The influence of coupled effects on SEV cutting becomes signifi-
cant due to the occurrence of the periodic shear banding instability. In
the high-speed cutting process, the influence of the multiple shear band-
ing instability in the serrated chip prevail over that of the changing cut
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Table 2

The parameters used in the present analysis [13].
Name(Unit) Symbol Value
Mass (Kg) my 0.36
Damping (N s/m) Ho 0.001, 0.25
Damping coefficient (N/m) He 104, 10°, 10°
Cutting speed (m/s) v 20
System stiffness (N/m) ko 4000
Width of cutting (y#m) w 1,10, 100
Friction angle (rad) B 0.12
Shear angle (rad) @ /4
Cutting thickness (ym) Yo 100
Amplitude (ym) A, 10
Wave surface frequency (kHz) ,, 100-3000
Shear stress (Pa) N 0.37 x 108
Amplitude of shear stress (Pa) A 0.37,
Shear band frequency (kHz) [oN 240

Wave surface phrase angle (rad) 0,
Shear band phrase angle (rad) 9 -

=

B

thickness and rises the stability of the tool-2, so that the critical widths
are almost unchanged as the cutting speed increases.

From the displacement expression (25), we can see that the last two
terms in (25) describe the coupled effects of the changing cut thick-
ness and periodic shear banding instability in the SEV cutting process
in two different modes. One mode is w3 with 73 =1-y=1-w,/0,, <1 in
(45-1) and the other is w4 with 74 =1 +7=1+ w,/w,, > 1 in (45-2). Ev-
idently, the two modes are symmetric about #=0 or 13 =n4=1. In this
case, w; =0 and the extreme condition (32) gives the O3 =04 =2nx.
From the critical widths in (45), it is easily to obtain w .3 + w4 =0, i.e.,
the coupled effects from the two modes on tool-2 SEV offset each other.
For 3 <1 and 54 > 1, the equivalent phase differences for the two modes
can be determined as n=2, O3 =-Opy ~ (2n+ 1)z, =1, O3 = Oy ~ N,
n=0.5, 1.5, O3 =-Op4 ~(2n+1/2)z in terms of the energy function
(31) and the extreme condition of energy (32). The symmetric nature
of the coupled effects on tool-2 SEV is represented by the ratio # of the
instability frequency of multiple shear bands to oscillation frequency
of the undulatory cut thickness. As <1, the vibration mode w_3 dom-
inates the coupled effect. Since the shear banding instability frequency
is independent of the oscillation frequency of the changing cut thick-
ness (see Fig. 16), #=0.5 means w,, = 2w,. The high-frequency oscilla-
tion generated by the changing cut thickness reduces the coupled effect
so that the stability of tool-2 SEV increases obviously as shown by the
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curve with #=0.5 in Fig. 26. In addition, n=1 or o, =@, corresponds
to the resonance between the periodic shear banding instability and the
oscillation of changing cut thickness. Thus, the stability of the tool-2
SEV decreases sharply (the curve with y=1 in Fig. 26). As #>1 the vi-
bration mode w,,4 governs the coupled effect. The condition #=1.5 or
w; =1.5w,, indicates that the SEV cutting process is certainly under a
low-frequency state in terms of the results in Fig. 15. Therefore, SEV is
in a more stable state when #=1.5 as shown in Fig. 26. As the oscillation
frequency of the changing cut thickness decreases continuously until
n=2 or o, =2w,, the contribution of the changing cut thickness to the
coupled effect almost disappears. The periodic shear banding instability
becomes the dominating factor in the coupled effect, which decreases
greatly the tool-2 SEV stability (the curve with #=2 in Fig. 26). It should
be noted that the curve with #=2 is close to the resonance curve with
n=1. This is because that the resonance frequency is the instability fre-
quency of the periodic shear bands as demonstrated by the simulation
and analytical results in Fig. 17 and Fig. 21.

5. Conclusions

In conclusion, metal cutting process with vibration is intrinsically
complex physical phenomena, in which the tool in vibration and the
chip material in plastic flow can be treated as a coupled thermodynamic
system. The study of this process proposes new challenges on the ana-
lyzing, modelling and experimental methods. In this work, the CEL FE
model with natural advantage is used to perform the numerical simula-
tions of the high-speed cutting process with two types of tool vibration.
The theoretical models are also established and show good agreement
with simulation results. Several key manufacturing issues are analyzed,
and major findings are summarized as below:

(i) The numerical simulations on the cutting process demonstrate
that the low-frequency FV promotes the formation of serration
chip, and the resonance yields the strongest impacting on the chip
shape and the cutting force. When the tool frequency increases,
the tool vibration may hinder the evolution of shear bands, which
results in the transition of the serrated chip into the continuous
chip. Since the critical FV frequency is unattainable in industrial
applications, vibration assisted machining may worsen the nega-
tive effect of shear banding in the high-speed cutting process. The
high-frequency vibration can be considered as a possible strategy
to suppress the occurrence of shear banding instability in the ser-
rated chip.

The linear stability analysis on the FV cutting process gives the in-
terpretation on the mechanisms of the formation of serrated chip
and the transition of chip shape. The high-frequency oscillation
of shear stress doesn’t change the formation mechanism of the
multiple shear bands and the shear banding instability frequency
in the high-speed cutting process, but makes the distribution of
shear deformation energy of material within shear bands tend
to be homogenous. The high-frequency oscillation of pressure on
the rake face is the key cause for the transition of chip shape.
The pressure oscillation dissipates the partial work done by tool
which is necessary for the shear localized deformation of chip
material in the PSZ. Thus, it reduces the thermal softening effect
of chip material deformation and results in the chip transition of
continuous from serrated.

A double-tool FE model is used for the simulation of the SEV cut-
ting process. The numerical results reveal that the wavy cutting
depth strongly affects the cutting process. The low-frequency os-
cillation of the cut depth causes evident variations of the cutting
force in amplitude which produce the serrated chip with non-
uniform serrations. The influence of the high-frequency oscilla-
tion of the cut depth on the cutting force is slight, therefore, the
multiple shear banding instability governs the serrated chip de-
velopment with uniform serrations.

(i)

(iii)
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(iv) The stability of SEV in cutting process depends on the friction

damping coefficient at the rack face, the penetration damping re-
sistance, the ratio of the oscillation frequency of top wavy surface
and the instability frequency of the multiple shear banding and
their coupling effects. In the high-speed cutting process with SEV,
increasing damping resistances and the frequency ratios result in
higher stability limit for the tool-2 motion. The coupling effects
of the top wavy surface and the multiple shear banding insta-
bility are limited in the low-speed cutting process. In this cases,
two oscillation modes determine the effects on the tool SEV mo-
tion respectively. Occurrence of shear bands sharping decrease
the stability of SEV.

Table 2.
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