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Abstract
In an indentation test, the effective Young’s modulus of a film/substrate bilayer heterostructure varies with the indentation
depth, a phenomenon known as the substrate effect. In previous studies investigating this, only the Young’s modulus of the
filmwas unknown. Once the effective Young’s modulus of a film/substrate structure is determined at a given contact depth, the
Young’s modulus of the film can be uniquely determined, i.e., there is a one-to-one relation between the Young’s modulus of
the film and the film/substrate effective Young’s modulus. However, at times it is extremely challenging or even impossible to
measure the film thickness. Furthermore, the precise definition of the layer/film thickness for a two-dimensional material can
be problematic. In the current study, therefore, the thickness of the film and its Young’s modulus are treated as two unknowns
that must be determined. Unlike the case with one unknown, there are infinite combinations of film thickness and Young’s
modulus which can yield the same effective Young’s modulus for the film/substrate. An inverse problem is formulated and
solved to extract the Young’s modulus and thickness of the film from the indentation depth-load curve. The accuracy and
robustness of the inverse problem-solving method are also demonstrated.

Keywords Indentation test · Film · Substrate · Inverse problem

1 Introduction

Two-dimensional (2D) transitional metal dichalcogenides
(TMDs), such as molybdenum disulfide (MoS2) and tung-
sten disulfide (WS2), possess excellent optoelectronic and
photocatalytic properties. The 2D material graphene is flex-
ible and chemically stable, and exhibits excellent thermal
and electrical conductivity. The properties of TMDs and
graphene can be complementary to one another [1,2]. The
hybrid materials/structures created by stacking combina-
tions of 2D materials can provide new device architectures,
which hold promise for energy conversion and storage [2].
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In a 2D heterostructure, the positive properties of each indi-
vidual constituent material should be maintained or even
amplified, while the negative properties should be miti-
gated [3]. For example, the graphene/MoS2/graphene trilayer
heterostructure gives rise to the strong light-material inter-
actions of enhanced photon absorption and electron–hole
creation [1]; the heterostructure of the MoS2 monolayer,
as a cavity sandwiched between SiO2 layers, results in
strong light-material coupling and formation of cavity polari-
tons [4]; theMoS2/WS2 heterostructure enables construction
of novel 2D devices for optoelectronics and light harvesting
by facilitating ultrafast charge transfer [5]. The anisotropy
of 2D materials is responsible for their unique proper-
ties [6]. The in-plane elasticity of 2D materials is an intrinsic
property, while the out-of-plane elasticity is tunable [6]. Het-
erostructures created by stacking are also called van der
Waals coupled layers [5]. Various ions and molecules can
be accommodated between their layers [2,6], which, as a
result, can change the 2D material properties. Character-
izing the out-of-plane Young’s modulus (E⊥) is essential
for both fundamental understanding and practical applica-
tion, since it relates to the thermal, electronic, tribological
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and optical properties of 2D materials. A work by Come
et al. [6] showed that in an electrode composed of stacked
2D titanium carbide, the E⊥ difference between the fully
charged and discharged states can be as large as 15GPa,
and a strong correlation between E⊥ and the cation con-
tent is thus established. A study by Gao et al. [7] showed
that the E⊥ of 2D graphene oxide depends on the number
of water molecules intercalated between the layers. Vari-
ous tests, including the uniaxial tensile test [8], bending
test [9] and blister/bulge tests [10,11], are used to measure
the in-plane Young’s modulus. In contrast, indentation is
among the very few techniques that can be used to measure
E⊥, and little is known about the E⊥ of 2D materials [7].
Two-dimensional materials are films with a thickness of
a few atomic layers. One technical difficulty associated
with indentation is the requirement of an indentation depth
less than the film’s interlayer distance [7]. In comparison,
the above-referenced tests for the in-plane Young’s mod-
ulus involve substantial deformation/deflection [8–11]. In
a study by Gao et al. [7], the authors pioneered the use
of atomic force microscopy (AFM) as an indentation tool
to measure the E⊥ of 2D materials. Even though AFM
achieved a displacement resolution of 0.1 Å, they encoun-
tered difficulty when measuring the E⊥ of the graphene
monolayer on a silicon carbide (SiC) substrate with an inter-
layer distance of 3 Å and indentation depth of 1 Å . This
difficulty was referred to as a “complex convolution of
effects and properties” [7] that resulted from the substrate
effect.

In an indentation test of a film/substrate structure, the
elastic field is not confined to the film itself, which is a
long-ranged field that extends into the substrate. Therefore,
the substrate properties influence the test outcome, a phe-
nomenon known as the substrate effect. The presence of the
in-plane stress causes the substrate to behave as an elastic
foundation [12], which plays an important role in the trans-
fer of stress between the film and substrate. As a result, the
substrate effect, together with the in-plane pressure, has been
shown to be an effective method for making the molecular
crystal of carbon monoxide much harder on a Cu (001) sub-
strate [13]. In order to measure the “film-only” properties,
as a rule of thumb, the indentation depth should be lim-
ited to less than 10% of the film thickness [14]. However,
the influence of the substrate on the film/substrate compos-
ite stiffness can be apparent even at very small indentation
depths [15]. Therefore, this 10% rule is not always reli-
able [16]. When performing indentation tests on a stainless
steel-coated copper substrate, Reed et al. [17] found that the
substrate effect was already very significant at an indenta-
tion depth/coating thickness ratio of 2%, while Bull [18]
recommended a rule of 1%. For the above case with an inter-
layer distance of 3 Å and indentation depth of 1 Å [7],
the ratio is 33.33%, and the substrate effect is very signif-

icant or even dominant. Because shallow indentation results
in inaccurate experimental measurements [16], the substrate
effect must be considered in a film/substrate indentation test
in order to extract the Young’s modulus of the film [13–
17]. The variation in the effective Young’s modulus of a
film/substrate, which depends on the indentation depth, film
thickness and Young’s moduli of the film and substrate, has
been studied intensively [13–19]. Several indentation mod-
els have been proposed for considering substrate effects,
and these have been comprehensively reviewed by Bull [18]
and Menčik et al. [19]. In all of the previous models [13–
19], the Young’s modulus of the substrate was modeled as
an elastic half-space with infinite thickness, and the film
thickness was known. The only unknown in these mod-
els was the Young’s modulus of the film, which can be
obtained by a one-to-one function from data derived from
the indentation test. Measurement of film thickness is often
carried out separately in an indentation test. For example,
the film thickness is measured by a profilometer [14,15],
or by an AFM by performing a topographic scan of the
sample [20]. Alternatively, the thickness can be precisely
controlled during fabrication [16]. The accurate measure-
ment of film thickness is difficult [19], especially when a
film is thin. Furthermore, in some real applications such as
coatings and substrates [18], soft samples [20] and plant
cell walls (which are a three-dimensional (3D) nanocom-
posite consisting of several different layers) [21], measuring
the coating/film/layer thickness is extremely difficult, if not
impossible. For a 2D material, in addition to the measure-
ment difficulty, simply defining the layer thickness can be
tricky and controversial [22]. The interlayer distance can be
obtained by discrete atomistic simulation [7,22]. However,
for 2D materials, the layer thickness, as a concept of the
continuum model, may or may not match the interlayer dis-
tance [22]. Furthermore, defining the layer thickness can be
muchmore complicatedwhen there are intermolecular bonds
between the film and substrate layers [7,13,23]. This problem
also pertains to macroscopic heterostructures. The film/layer
(effective) thickness is not constant and varies as the indenta-
tion depth changes [15,16,19]. As will be discussed in more
detail below, there is still disagreement among contemporary
definitions of effective thickness [15,16,19].

In this study, film thickness and Young’s modulus are
treated as two unknowns which are solved as an inverse
problem. Three different contact models and two models of
the substrate effect are presented. Different contact mod-
els produce different load-indentation depth curves, from
which the effective Young’s modulus of the film/substrate
composite is extracted. The effective Young’s modulus of
the composite, which varies with the indentation depth,
is also determined by the substrate effect model. Once
the effective Young’s modulus is substituted into the sub-
strate effect model, an inverse problem can be formulated.
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Although different substrate effect models lead to different
inverse problem formulations, it is shown that the differ-
ence between these two models is negligible. The contact
model of continuum mechanics is shown to be effectively
applied in the E⊥ measurement of 2D materials [7]. In the
measurement of 10-layer graphene with a total interlayer
distance (or thickness) of 30 Å, the indentation depth is
2 Å and the SiC substrate is implicitly assumed to have
no impact [7]. The ratio of the indentation depth to thick-
ness is 2:30 ≈ 6.7%; the graphene E⊥ ≈ 35GPa and SiC
E⊥ ≈ 400GPa [7]. As will later be shown, the substrate
effect is more pronounced at the initial indentation stage.
When there is a large modulus difference between graphene
and SiC, the substrate effect is very significant, even with
a small depth-to-thickness ratio of 6.7%. Furthermore, the
interlayer distance was shown by atomistic simulation to
be dependent on the rate of water molecule intercalation
between layers [7], which varies over a large range and is
responsible for the E⊥ variation. With this inverse problem-
solving method, the E⊥ of a 2D material can be more
accurately obtained by considering the substrate effect, with-
out measuring/computing or defining its layer thickness. The
substrate effect is present in the indentation test of any sam-
ple of finite thickness on a substrate [20]. The film/substrate
bilayer structure is simply a special type of heterostructure.
Characterizing the mechanical properties of a layer on a
base has long been of technical importance [24]. The inverse
problem-solving method presented here essentially deter-
mines the Young’s modulus and thickness of a film with the
substrate effect. Therefore, in addition to the film/substrate
bilayer, the method can be applied to general scenarios,
such as the indentation of soft samples (gel, tissue, cell and
polymer, etc.) [20,25] and biomass [21]. Furthermore, for
experimentalists, approaches “solely relying on data from
one or two very shallow indents” are preferred when deter-
mining the Young’s modulus of a film/coating [17]. Here
the inverse problem is based on models of elastic contact
mechanics and is solved by obtaining two sets of indentation
data.

2 Model development

The Hertz contact model [26] is given as follows:

P = 4E∗a3

3R
, (1)

where P is the indentation load and a is the contact radius,
1/R = 1/Ri + 1/R f (Ri : indenter radius and R f : the film
radius of curvature). E∗ is the reduced modulus of the spec-
imen/indenter system, which is given as

hc
hEf ,ν f t

Ei, ν i,

Es ,νs

Ri

2a

P

Fig. 1 Schematic of the penetration of an indenter into a film/substrate
structure. The indenter has a radius of Ri , Young’s modulus of Ei and
Poisson ratio of νi . t is the film thickness; hc and a are the contact depth
and radius, respectively. P is the indentation load and h is the indenter
displacement. E f , ν f and Es , νs are the Young’s moduli and Poisson
ratios of the film and substrate, respectively

1

E∗ = 1

E ′ + 1

E ′
i
. (2)

Here, E ′ is the reduced modulus of the specimen. As shown
in Fig. 1, the specimen is a film/substrate structure, and the E ′
expression of the film/substrate structure will be discussed
later in detail. E ′

i = Ei/(1 − ν2i ) is the reduced modulus
of the indenter, which is also its plane–strain modulus [16].
Here, Ei and νi are the Young’s modulus and Poisson ratio
of the indenter, respectively. The reduced modulus concept
conveys the fact that the stress state in the contact zone is
triaxial, with a high degree of hydrostatic pressure due to
lateral constraints [19].

The Derjaguin–Muller–Toporov (DMT) contact model
[27] is expressed as follows:

P = 4E∗a3

3R
− 2πRγ, (3)

where γ is the work of adhesion between the indenter and
film surfaces. Compared with the Hertz model, the DMT
model is offset by a tensile force of−2πRγ , which is induced
by the attractive surface/adhesion force outside the contact
zone [28]. This tensile force of −2πRγ is also the pull-off
force of the DMT model as the contact radius a approaches
zero. One remarkable feature of this pull-off force is its inde-
pendence on the elastic moduli of contacting bodies, which
is effectively used to determine the work of adhesion (γ ) [7].

The Johnson–Kendall–Roberts (JKR) contact model [29]
is expressed as follows:
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P = 4E∗a3

3R
− 2a3/2

√
2πE∗γ . (4)

In both the Hertz and DMT models, compressive stress
occurs only inside the contact zone [28]. In contrast, both
compressive and tensile stresses exist inside the contact
zone of the JKR model [29]. The tensile stress of the JKR
model inside the contact zone is induced by the work of
adhesion [29], which is responsible for the −2a3/2

√
2πE∗γ

term [30]. The applicability range of the above three contact
models can be determined by the dimensionless Tabor num-
ber of μ = [Rγ 2/(E∗2z3o)]1/3 (zo: equilibrium separation of
atoms) [31]. Because the JKR model assumes that a “neck”
forms around the contact zone, the physical meaning of the
Tabor number is the ratio of (the order of) “neck” height to
zo [28]. If the neck height is large compared with zo (the
large Tabor number scenario, say, μ > 5 [32]), the surface
interaction force outside the contact area is small enough to
be ignored, and this feature defines the JKRmodel [28]. Sim-
ilarly, if the neck height is small compared with zo (the small
Tabor number scenario, say, μ < 0.1 [32]), the surface inter-
action force outside the contact area is significant, and this
scenario corresponds to the DMT model. By examining the
definition of μ, we can conclude that the JKR model applies
when the work of adhesion and radii of contacting bodies are
large and their Young’s moduli are small. The DMT model
follows the opposite trend; it is applicable when the work of
adhesion and radii of contacting bodies are small and their
Young’s moduli are large. One requisite for application of
both the JKR and DMT is that the external load P is rela-
tively small compared with the adhesion force. If P is large
(say, P/(πRγ ) > 100 [32]), the effect of the adhesion force
is too small and the Hertz model applies.

Equations (1), (3) and (4) present the a–P curves. How-
ever, the quantity measured by a depth-sensing indentation
instrument is the indentation depth (h) rather than the con-
tact radius (a) [13,19,31–36]. The following relation holds
for the contact depth (hc) and radius (a) for a spherical inden-
ter [37,38]

hc =
{

a2
R (Hertz,DMT),

a2
R −

√
2πRγ
E∗ (JKR).

(5)

As shown in Fig. 1, hc and h are usually different [14,33]. In
the sink-in scenario shown in Fig. 1, hc < h, the true contact
depth (hc) is thus overestimated if the measured quantity h
is used as the contact depth, while in the pile-up scenario, as
shown in Ref. [39], hc > h and the true contact depth is thus
underestimated. Sink-in is due to the elastic deformation, and
pile-up can only be formed by plastic deformation [36,39]. In
general, a hard film on a soft substrate tends to sink in when
indented, whereas a soft film on a hard substrate tends to
pile up [14]. For simplicity, in this study, h = hc is assumed,

which causes an error. This errorwill be discussed later, along
with other sources of error.

The contact stiffness (K ) is obtained by taking the deriva-
tive of dP/dhc, as follows:

K = dP

dhc
= dP/da

dhc/da

=
{
2E∗a = 2E∗√Rhc (Hertz,DMT),
4E∗a2/R−3

√
2πaγ

2a/R−√
πγ /(2E∗a)

(JKR).
(6)

Clearly, when γ = 0, dP/dhc of the JKR model recovers
that of the Hertz and DMT models. Equation (6) is derived
from the elastic contact models, and thus the plastic effect is
not considered. Because of the large indentation force, plas-
tic deformation often occurs in the loading stage [14,33,34].
Although the h–P curve and K are extracted from the data
of the unloading stage [14,33,34], which is (assumed to
be) elastic, the influence of plastic deformation cannot be
fully excluded. In addition to plasticity, other irreversible
processes such as microcracking and macroscopic fracture
can cause the indentation data to deviate significantly from
data predicated on the elastic contact mechanics, and the
interpretation of indentation data can therefore be extremely
difficult [17]. The modified version of Eq. (6) is as fol-
lows [36]:

K = C
2√
π
E∗√S, (7)

whereC is a dimensionless correction factor and S is the pro-
jected contact area. C is (mainly) dependent on the indenter
geometry. For example, C = 1 is used for a spherical inden-
ter, C = 1.012 is used for a square indenter (punch) and
C = 1.034 is used for a triangular indenter [34]. The pro-
jected contact area is S = πa2, and the hc−a relation is given
inEq. (5).However, due to the sink-in or pile-up effect, hc can
be difficult to obtain from themeasured data of h, making the
proper estimation of S difficult [40]. Clearly, when C = 1,
Eq. (7) recovers Eq. (6) of the Hertz and DMT models.

In the indentation tests, P , h, R and γ are the measured
quantities. The contact radius a is calculated from Eq. (5).
The contact stiffness K = K (a) or K = K (h), which varies
with contact radius/depth, is calculated from the h–P curve.
Mathematically, in the contact models (Eqs. (1), (3) and (4))
or the contact stiffness equations (Eqs. (6) and (7)), E∗ is
the only unknown, which can be easily determined by one of
those equations. In a real application, the measured pull-off
forces, which determine the work of adhesion (γ ), fluctu-
ate significantly among different tests [7]. This fluctuation
directly impacts the explanation of the a–P curves provided
by the DMT and JKR models, which can result in signifi-
cant errors when the indentation is shallow. In contrast, the
pull-off force measurement has much less influence on the
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contact stiffness. In fact, it has no influence on the Hertz or
DMT model, as seen in Eq. (6). For a shallow indentation,
using the contact stiffness model of Eqs. (6) or (7) to extract
E∗ is recommended [7]. Once E∗ is found, E ′ is determined
from Eq. (2) as follows:

E ′ = E∗E ′
i

E ′
i − E∗ . (8)

Here, the indenter reducedmodulus of E ′
i is a knownquantity,

while E ′ = E ′(E ′
f , E

′
s, t, a) or E ′ = E ′(E ′

f , E
′
s, t, h) is

a function of the reduced moduli of the film and substrate
(E ′

f and E ′
s), the film thickness (t) and the contact radius or

depth (a or h). There are several function forms for E ′ =
E ′(E ′

f , E
′
s, t, a). However, a systematic study by Menčik et

al. [19] shows that only two function forms can properly fit
the experimental data. One is the exponential function form
given as

E ′ = E ′
s + (E ′

f − E ′
s)e

−Λa/t , (9)

whereΛ is a positive fitting parameter, which can be obtained
from the experimental data by the least squares method [19].
The other form is as follows form [41]:

E ′ = E ′
s + (E ′

f − E ′
s)φg(x), (10)

where x = a/t and φg(x) is referred to as Gao’s function by
Menčik et al. [19], which was originally developed for the
shear modulus [41] and is given as

φg(x) = 2

π
arctan

1

x

+ 1

2π(1 − ν)

[
(1 − 2ν)

ln(1 + x2)

x
− x

1 + x2

]
.

(11)

Here, ν is the effective Poisson ratio, which is a function
of the contact radius and film thickness, i.e., ν = ν(a/t).
As the contact radius/depth (a or h) increases, the ν value
changes from the film’s Poisson ratio (ν f ) to that of the sub-
strate (νs) [41]. However, E ′ as given in Eq. (10) is very
insensitive to the choice of ν [41], andMenčik et al. [19] sug-
gested simply using ν f for ν. Because φg(x) is analytically
derived [41], one outstanding characteristic of this function
is that it lacks a fitting parameter. Both e−Λx and φg(x)
monotonically decrease from 1 to 0 as x increases from 0
to ∞, which indicates that the substrate effect is enhanced
with increasing contact radius/depth. As a result, the E ′ value
changes from E ′

f to E ′
s . There are three implicit assumptions

here.One is that the substrate is relatively thick in comparison
to the indentation depth and the film thickness, and it there-
fore behaves as an elastic half-space. The second assumption

is that the film and substrate are perfectly bound to ensure
continuity at the interface for both the displacements and
the stress components which are perpendicular to the inter-
face [42]. Finally, it is assumed that t is fixed as the film
thickness without indentation. However, as indentation pro-
gresses, the (effective) film thickness may vary. For example,
Li and Vlassak [16] argued that t decreases during the inden-
tation process because of the highly hydrostatic stress state
under an indenter, which causes the indented materials to
become more dense, thus leading to local thinning. Accord-
ing to Menčik et al. [19], the reason for the decrease in t
was that the indenter occupies the film volume, while Lim
et al. [15] argued that t can either increase due to pile-up or
decrease due to sink-in. Because local thinning of the film is
not uniform, precisely defining the effective film thickness
can be problematic [16].

In Eqs. (9) and (10), the reduced modulus of the sub-
strate E ′

s is a known quantity, and E ′ is measured. If the film
thickness t is also a known quantity, the reduced modulus
of the film E ′

f is the only unknown, which can be simply

determined as E ′
f = (E ′ − E ′

s)e
Λa/t + E ′

s from Eq. (9) or
E ′

f = (E ′ −E ′
s)/φ(x)+E ′

s from Eq. (10). However, there is
no simple and accurate method for the determination of the
true film thickness [19], especially when the film thickness
is very small. In 2D materials, the interlayer distance, which
is several angstrom, varies due to the intercalation of water
between the layers and the presence of a buffer layer [7]. In
such a scenario, measuring or computing the (effective) layer
thickness in continuum mechanics is extremely difficult, if
not impossible. Similarly, for sub-micron-scale biological
tissue or soft samples on a substrate, the measurement of
thickness poses a technical challenge [20]. Now an inverse
problem arises: how to determine E ′

f without knowing t in
the film/substrate indentation test. Mathematically, E ′

f and t
are now two unknowns. Unlike the previous scenario with a
single unknown where E ′

f is uniquely determined as a func-
tion, for given E ′, E ′

s and a, there are infinite combinations of
E ′

f and t that can satisfy Eq. (9) or (10). Before formulating
and solving the inverse problem, the following quantities are
introduced for the nondimensionalization scheme:

A = a

ac
, F = P

Pc
,

α1 = E∗

E ′
is

, α2 = E ′
f

E ′
is

, α3 = E ′
s

E ′
is

, β1 = E ′
i

E ′
is

,

T = t

ac
, x = a

t
= A

T
. (12)

Here, E ′
is = E ′

i E
′
s/(E

′
i + E ′

s) (i.e., 1/E
′
is = 1/E ′

i + 1/E ′
s)

is the reduced modulus if the indenter is in contact with the
substrate; ac = [9πγ R/(8E ′

is)]1/3 is the JKR pull-off radius
if the indenter is in contact with the substrate and with the
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workof adhesionofγ ; Pc = 3πRγ /2 and−Pc is the (tensile)
JKR pull-off force [29]. Physically, α1 is the dimensionless
reduced modulus of the specimen/indenter system, and here
the specimen is the film/substrate structure; α2 and α3 are
the dimensionless reducedmodulus of the film and substrate,
respectively. β1 is the dimensionless reduced modulus of the
indenter, T is the dimensionless film thickness, and x is the
ratio of the contact radius to the film thickness. TheHertz and
DMTmodels of Eqs. (1) and (3) are nownondimensionalized
as follows:

Hertz : F = α1A3,

DMT : F = α1A3 − 4
3 .

(13)

The JKR model is now nondimensionalized as follows:

F = α1A
3 − 2A3/2√α1. (14)

In an indentation test, F and A are the known quantities, and
α1 can thus be extracted fromEq. (13) for theHertz andDMT
models as follows:

α1 =
{ F

A3 (Hertz),
F+4/3
A3 (DMT).

(15)

Keep in mind that α1 is a function of the reduced Young’s
moduli of the indenter, film and substrate, work of adhesion,
film thickness and the contact radius or contact depth, i.e.,
α1 = α1(E ′

i , E
′
f , E

′
s, γ, t, a) or α1 = α1(E ′

i , E
′
f , E

′
s, γ,

t, h). For the JKR model, α1 is derived from Eq. (14) as
follows:

α1 =
{

F+2+2
√
F+1

A3 (A > A∗
c),

F+2−2
√
F+1

A3 (A ≤ A∗
c).

(16)

Here, A∗
c is the dimensionless pull-off radius as the indenter

is in contactwith the film/substrate.As the aboveac is defined
as the pull-off contact radius as if the indenter is in contact
with the substrate, A∗

c = 1 only when α1 = 1 (i.e., the
substrate-only case). A∗

c varies as the film properties change.
Equation (8) is now nondimensionalized as

E ′

E ′
is

= α1β1

β1 − α1
. (17)

Equations (9) and (10) can be nondimensionalized together
as follows:

E ′

E ′
is

= f = α3 + (α2 − α3)φ(x), (18)

where φ(x) = e−Λx corresponds to the exponential func-
tion and φ(x) = φg(x) is Gao’s function. Here, x = A/T .

By equating Eqs. (17) and (18), the following equation is
derived:

F(β1, α1, α3, A, α2, T ) = α1β1

β1 − α1
− α3

−(α2 − α3)φ(x) = 0. (19)

3 Results and discussion

In this study, the indenter and substrate are both silicon with
a Young’s modulus of 169 GPa and a Poisson ratio of 0.27;
the indenter radius is Ri = 114nm and the film/substrate are
flat, which leads to R = 114nm [7]. Because water interca-
lation due to the relative humidity can significantly impact
the work of adhesion (γ ) [7], the value of γ calculated from
the measured pull-off forces using the DMT model varies
over a large range, from γ = 0.03N/m to γ = 1N/m. Here,
γ = 0.1N/m is taken as a typical value, and the pull-off
radius is calculated as ac = 3.69 nm. The film thickness is
fixed as t = 1.5ac. In summary, the reduced Young’s mod-
uli of the indenter and substrate are fixed, which leads to
β1 = α3 = 2; the fixed film thickness leads to T = 1.5.
The A–F of the force-contact radius curves as given by the
Hertz, DMT and JKR models of Eqs. (13) and (14) are plot-
ted in Fig. 2. The film is germanium with E f = 138 GPa
and v f = 0.26, which gives α2 = 1.6239. In Fig. 2, both
Hertz and DMT models predict stable contact until separa-
tion (i.e., A = 0). In contrast, the JKR model predicts an
unstable snap-through behavior of pull-off at Ac [29]. Since
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Stable  

0 0.5 1 1.5 2 2.5 3
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15
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z

DMT

JKR

Ac

Fig. 2 A–F curves of theGe/Si heterostructurewithα2 = 1.62 as given
by three different contact models. For the JKR model, the indenter will
experiences a snap-through behavior of pull-off at Ac, and thus A < Ac
is an unstable path, which ismarkedwith a dashed line, while bothDMT
and Hertz remain stable
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Fig. 3 H–F curves of the Ge/Si heterostructure with α2 = 1.62 as
given by three different contact models

this scenario involves a soft film on a hard substrate, Ac is
found to be Ac = 1.02.

By assuming h = hc, Eq. (5) is now nondimensionalized
as the following:

H = h

ac
=

{
d1A2 (Hertz,DMT),

d1A2 − √
d2A (JKR).

(20)

Here, d1 and d2 are two dimensionless parameters. d1 =
ac/R has afixedvalue;d2 = 2πγ /(E∗ac) = 2πγ /(α1E ′

isac)
is a variable quantity, as α1 varies with the indentation depth
(or contact radius). In conjunction with Eqs. (13), (14) and
(20), the H–F curves of the three contact models are plot-
ted in Fig. 3. Again, there is an unstable branch for the JKR
model. As shown in Eq. (6), the contact stiffness is extracted
from the dP/dh (dF/dH ) curve. The three H–F curves of
the different contact models, as shown in Fig. 3, are (almost)
parallel when H > 0.15, which means they share nearly the
same contact stiffness. Therefore, if the contact stiffness of
Eq. (6) is used to extract E∗, the difference caused by the
different contact models is only obvious when the contact
load (or contact depth/radius) is very small. For this reason,
the Hertz model is found to be very accurate in the inden-
tation test of 2D materials [7]. It is clear from Figs. 2 and
3 that different contact models result in the H–F curves. In
the practical application of an indentation test, the adhesion
and Young’s modulus of the film are measured. Therefore,
the Tabor number is unknown, and the contact model must
be chosen. The use of an improper contact model will result
in an error, which is discussed later in detail.

Figure 4 examines the influence of different films on the
H–F curves of the DMT model. In Fig. 4, there are three
different films: E f = 400 GPa and v f = 0.14 for SiC [7],
E f = 169GPa and v f = 0.27 for silicon (Si), and E f = 138

0 0.05 0.1 0.15 0.2 0.25 0.3
-5

0

5

10

15

20

25

30

H

F

α 2=2 , Si/Si   
α 2=1.6239, Ge/Si

α 2=4.4764, SiC/Si

Fig. 4 H–F curves of the DMT models with different α2. Here α2 =
4.4764 is for the SiC/Si, α2 = 1.6239 for Ge/Si and α2 = 2 for the Si
substrate only

GPa and v f = 0.26 for germanium (Ge), which form the
SiC/Si, Si/Si and Ge/Si types of film/substrate structures.
According to the definition of Eq. (12), α2 = 4.4764 for
SiC/Si, α2 = 2 for Si/Si, and α2 = 1.6239 for Ge/Si. The
Si/Si casewithα2 = 2 is the de facto substrate-only case. The
F − H curve with α2 = 4.4764 of SiC/Si is the upper one,
and that with α2 = 1.6239 of Ge/Si is the lower one. Because
α2 = 4.4764 is the hard film case, a larger indentation force is
required for a given contact depth, and because α2 = 1.6239
is the soft film case, a smaller indentation force is required.
The effective reduced Young’s modulus of the film/substrate
structure varies with the contact depth, which is embodied in
Eq. (18). Figure 5 plots the change in the effective modulus
as H changes. In Fig. 5, f = E ′/E ′

is = α3 + (α2 −α3)φ(x)
and φ(x) = φg(x) is used. Because φg(x) is very insen-
sitive to the effective Young’s modulus ν [41], ν = 0.3 is
taken. α2 = 2 remains a straight line. Both the α2 = 4.4764
and α2 = 1.6239 curves approach that of α2 = 2 as H
increases. As the indentation depth increases, the substrate
plays an increasingly important role and eventually becomes
dominant, which is the physical mechanism responsible for
the approaching behavior. In addition, both the α2 = 4.4764
and α2 = 1.6239 curves experience rapid change when H
is small, which physically means that even a small inden-
tation depth can cause a significant change in the effective
reduced Young’s modulus of the film/substrate structure. As
mentioned above, the rule of thumb for measuring the “film-
only” properties is to limit the indentation depth to less than
10% of the film thickness [14]. At H = 0.15, which is 10%
of the film thickness (T = 1.5), f = E ′/E ′

is = 1.8676 is
the 15.01% increase for the f = 1.6239 of Ge/Si at H = 0.
Similarly, at H = 0.15, f = 2.8716 is the 35.85% decrease
for the f = 4.4764 of Ge/Si at H = 0. Furthermore, the
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Fig. 5 H–F curve. Here f = E ′/E ′
is = α3 + (α2 − α3)φ(x) is the

(dimensionless) effective Young’s modulus of the film/substrate het-
erostructure. The α2 = 4.4764 is the hard film scenario and α2 =
1.6239 is the soft film scenario. In both cases, as the indentation depth
(H ) increases, the film effect decreases and the substrate effect becomes
more important, which is themechanismbywhich both curves approach
α2 = 2. Physically, α2 = 2 corresponds to the substrate-only scenario

formation of intermolecular bonds between the nanoscale
film and substrate layers [7,13,23] can enhance the substrate
effect. Clearly, this rule of thumb cannot be accurate, espe-
cially when the difference between theYoung’smoduli of the
film and substrate is large. The above conclusions also hold
for φ(x) = e−Λx . Actually, the fitting parameter Λ = 0.8
can be obtained by the least squares method of fitting φg(x)
in the range of 10−4 � x � 1.4, and the difference between
e−Λx and φg(x) is less than 5% [19].

Figures 2, 3 and 4 present the direct problem of the
film/substrate indentation. The A–F and H–F curves are
given by Eqs. (13), (14) and (20). In the A–F and H–F
curves, α1 needs to be updated as the contact depth/radius
changes, which is given by Eq. (18) as α1 = β1 f /(β1 + f ).
In real applications of the film/substrate indentation tests,
the inverse problem is encountered: Given the A–F curve,
how can the reduced Young’s modulus (α2) and thickness
(T ) of the film be extracted? Equation (19) provides the
mathematical foundation for our formulation of the inverse
problem. The physical mechanism that the inverse problem
can solve is reflected in Figs. 4 and 5: the H–F and H–
F (substrate effect) curves depend on the Young’s moduli
of film and substrate, indentation depth and film thickness.
These parameters have different effects on the curves, and
monotonic relations are formed. Here the two unknowns are
the reducedmodulus (α2) and thickness (T ) of the film,while
the reducedmoduli of the indenter (β1) and substrate (α3) are
knownandfixedquantities. The reducedmodulus of the spec-
imen/indenter system (α1) and contact radius (A) are known
and variable quantities. In an indentation test, α1 and A are

extracted from the experimental data in conjunction with the
contact models or stiffness models as discussed above. The-
oretically, an indentation test can provide infinite sets of α1

and A. However, there are only two unknowns, and thus only
two different sets of α1 and A are needed to solve the inverse
problem. Again, because the indenter and substrate here are
made of the same material, β1 = α3 = 2 are fixed. Now,
for the Ge/Si with α2 = 1.6239 and T = 1.5, suppose that
the two sets of the exact (α1, A) values are extracted from
the A–F curve as (α1, A) = (0.9235, 0.5) and (0.9732, 3.0),
which are then substituted into Eq. (19) as follows:

F(β1, α1, α3, A, α2, T ) = F(2, 0.9235, 2, 0.5, α2, T )

= −0.284 − (α2 − 2)φ

(
0.5

T

)
= 0,

F(β1, α1, α3, A, α2, T ) = F(2, 0.9732, 2, 3.0, α2, T )

= −0.1044 − (α2 − 2)φ

(
3.0

T

)
= 0.

(21)

Equation (21) provides two nonlinear equations for solving
the two unknowns of α2 and T . The two unknowns are solved
by the Newton–Raphsonmethod [43], which yields the exact
solutions of (α2, T ) = (1.6239, 1.5). Here, φ(x) = φg(x) is
used. Again, the A–F curve obtained from one indentation
test can provide infinite sets of (α1, A). If two different sets
of (α1, A) = (0.9416, 1.0) and (0.9559, 1.5) are (arbitrarily)
taken, the following equation set is obtained:

F(β1, α1, α3, A, α2, T ) = F(2, 0.9416, 2, 1.0, α2, T )

= −0.2207 − (α2 − 2)φ

(
1.0

T

)
= 0,

F(β1, α1, α3, A, α2, T ) = F(2, 0.9559, 2, 1.5, α2, T )

= −0.1689 − (α2 − 2)φ

(
1.5

T

)
= 0.

(22)

Again, the exact solutions of (α2, T ) = (1.6239, 1.5) are
obtained. As long as two arbitrarily and different sets of
(α1, A) are provided, the inverse problem as formulated in
Eq. (21) or (22) always yields the exact solution for the
Young’s modulus and thickness of the film. Furthermore,
because the initial guess for (α2, T ) in the Newton–Raphson
method is required [43], formulation of the inverse problem
as Eq. (21) is advantageous because it is insensitive to the
initial guesses. Initial guesses of (α2, T ) = (1.99, 2.1) and
(3.99, 1.1) are used, both of which lead to the exact solution
of (α2, T ) = (1.6239, 1.5).

With the exact values of α1 and A supplied by an inden-
tation test, the exact solution of (α2, T ) is obtained for the
inverse problem as formulated by Eqs. (21) and (22). How-
ever, the presence of errors is unavoidable in real tests. There
are five major sources of errors in the A–F curves. First,
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it is difficult to determine the initial contact point, espe-
cially when a sample is soft [20] or very thin [7]. This
directly impacts the measurement of H and thus A. Sec-
ond, the indenter stiffness and shape calibration directly
affects the measurement/interpretation of F [7,33]. Because
the stiffness calibration involves a displacement measure-
ment [7], displacement measurement error is a primary cause
of calibration error. Third, there is a difference between the
measured indenter displacement (h) and the contact depth
(hc) due to sink-in andpile-up [14,36,39], as discussed above.
The fourth major error is caused by different contact models.
As shown in Figs. 2 and 3, different contact models result in
different A–F curves. For a given data set of (A, F), differ-
ent contact models extract different α1, as seen in Eqs. (15)
and (16). Furthermore, the contact radius (A) is actually
an ill-defined concept in different contact models [44]. For
example, at the contact boundary, the contact stress of both
the Hertz and DMT models is zero, while that of the JKR
model is an infinite tensile stress [28,30]. The fifth source
of error is the substrate effect model of Eqs. (9) and (11),
wherein the effective film thickness cannot be accurately
determined [16]. An effective means of addressing the first
two sources of error is by improving the displacement resolu-
tion. Nowadays, indentation instruments such as the atomic
forcemicroscope have achieved a resolution of 0.1Å [7]. The
third source of error is addressedby addingfittingparameters,
as embodied in Eq. (7), to account for the effects of sink-in
and pile-up. Errors caused by the different models can be
mitigated by making deeper indentations or through the use
of the contact stiffness model. As seen in Fig. 3, the slopes
(dF/dH ) of the three contact models are (almost) the same
when the indentation depth is relatively large. Therefore, if
Eq. (6) or (7) is used to extract E∗(α1), there will be little to
no difference among the different contact models. As men-
tioned above, the pull-off force and thus thework of adhesion
are subject to relatively large measurement fluctuations. The
contact stiffness is much less prone to such fluctuations, and
the contact stiffness model of Eq. (6) or (7) is recommended
for the shallow indentation scenario. The fifth source of error
can be lessened by shallow indentationwith low compressive
stress to reduce effects such as densification [16], indenter
volume occupation [19] and plastic deformation [15].

The robustness of the above inverse problem-solving
method is studied by inputting the (arbitrarily) erroneous
data. One erroneous data set is input as (α1, A) = (0.8855,
0.56) and compared with the exact values of (α1, A) =
(0.9235, 0.50) as given above, with α1 and A having the
errors of −4% and 12%. The other erroneous data set is
input as (α1, A) = (0.9134, 1.08) and compared with the
above exact values of (α1, A) = (0.9416, 1.00), with α1 and
A having the errors of −3% and 8%. From the erroneous
inputs, the following equations are obtained:

F(β1, α1, α3, A, α2, T ) = F(2, 0.8855, 2, 0.56, α2, T )

= −0.4109 − (α2 − 2)φ

(
0.56

T

)

= 0,

F(β1, α1, α3, A, α2, T ) = F(2, 0.9134, 2, 1.08, α2, T )

= −0.3188 − (α2 − 2)φ

(
1.08

T

)

= 0. (23)

With the initial guess of (α2, T ) = (2.1, 1.8), Eq. (23) pro-
vides the solution of (α2, T ) = (1.4601, 1.6732). Compared
with the exact solution of (α2, T ) = (1.6239, 1.50), the error
of α2 is−10.08% and the error of T is 11.55%. Further study
shows that the error of T is much more sensitive to the input
errors than that of α2. For example, the following two sets of
(α1, A) = (0.8773, 0.56) and (0.9055, 1.08) are input, and
the following equations are then obtained:

F(β1, α1, α3, A, α2, T ) = F(2, 0.8773, 2, 0.56, α2, T )

= −0.4372 − (α2 − 2)φ

(
0.56

T

)

= 0,

F(β1, α1, α3, A, α2, T ) = F(2, 0.9055, 2, 1.08, α2, T )

= −0.3454 − (α2 − 2)φ

(
1.08

T

)

= 0. (24)

Compared with the previous erroneous input data of (α1, A)

= (0.8855, 0.56) and (0.9134, 1.08), the errors of α1 change
from −4% to −5% and from −3% to −4%, respectively.
The errors of T are unchanged at 12% and 8%, respec-
tively. Equation (24) provides the solution of (α2, T ) =
(1.44, 1.8895). Now the corresponding error of α2 and T
is −11.32% and 25.97%. As the input errors of (α1, A)
increase, the error in both α2 and T increases, and the
error associated with T increases more dramatically. Here,
the errors of T (12%, 8%) and α1 (−5%, −4%) are actu-
ally relatively large. The current state-of-the-art indentation
instrument is capable of sub-angstrom displacement resolu-
tion, and the errors can be controlled within 5%, even when
the indentation depth is only several ångströms [7].

In this study, the effective reduced Young’s modulus and
thickness of the film are the only two unknowns to be deter-
mined by the inverse problem. To solve the inverse problem,
only two different sets of (α1, A) extracted from the A–F
curve need to be supplied, and this scenario is preferred
by experimentalists [17]. There are infinite sets of (α1, A)
that can be extracted from the A–F curve by one continu-
ous indentation test. With the inverse problem formulation
framework of Eq. (21), more unknowns such as the reduced
Young’smodulus of the substrate (α3) can be included,which
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implies a more general and wider application of this inverse
problem-solving method [45]. For soft sample indentations,
the effects offinite strain, viscoelasticity andplastic dilatation
etc. [25] can significantly complicate the accurate interpre-
tation of the A–F curve. Linear elasticity is assumed in the
model, and therefore extreme caution should be exercised
when applying the above inverse problem-solving method to
a soft sample indentation test.

4 Summary

In this work, the inverse problem of determining the reduced
Young’s modulus and thickness of the film in a film/substrate
indentation test is formulated and solved. The effective
reduced Young’s modulus of the film/substrate heterostruc-
ture depends on the reduced Young’s moduli of the film and
substrate, alongwith the indentation depth. The change in the
effective Young’s modulus of the film/substrate is reflected
in both the a–P (A–F) curve of the indentation test and
the substrate effect models with analytical function forms.
By equating the effective reduced Young’s moduli extracted
from the experimental a–P curve at two different contact
radii with those predicated on the substrate effect model at
the same contact radii, the inverse problem is formulated
and solved by theNewton–Raphsonmethod. The indentation
instrument, physical phenomena such as sink-in and pile-up,
and the use of different contact and substrate effect models
can all impact themeasurement and interpretation of the a–P
curves, which leads to errors. The robustness of the inverse
problem-solving method is demonstrated upon inputting the
erroneous data.
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