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Abstract 

In order to investigate the influence on mechanical properties of grain size in the near-

micrometer regime, samples of Fe with nearly full density were prepared using the spark plasma 

sintering (SPS) technique with average grain sizes of 1.0 μm, 2.6 μm and 4.0 μm. In each of 

these samples the resulting sintered material was in a nearly fully-recrystallized condition with a 

random texture. The mechanical properties of the samples were examined via tensile testing. A 

strong dependence of the tensile flow characteristics on the average grain size was observed in 

this size regime, with the 1.0 m grain-size sample showing a very high strength, but no uniform 

elongation and a large yield drop developed in the 2.6 m grain-size sample. Analysis of the 

grain size dependence of yield strength suggests a positive Hall-Petch deviation from the 

expected grain boundary strengthening in the SPS Fe samples, assuming a typical range of 

values for the grain boundary strength (Hall-Petch coefficient). Pre-compression of the 2.6 m 
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grain-size prior to tensile testing sample results in a removal of the yield drop and a 

corresponding large decrease in the yield stress by as much as 145 MPa. The observations 

suggest that the positive Hall-Petch deviation seen previously in the near-micrometer regime for 

fully recrystallized Al and Cu may also be present in Fe, and highlight the likely importance of 

dislocation source hardening in this grain size regime. 

Keywords: electron microscopy; stress/strain measurements; EBSD; iron alloys; spark plasma 

sintering. 

1. Introduction 

Some unique mechanical properties of metals with a microstructural scale in the near-micrometer 

regime have been reported in a number of studies, including the presence of a yield drop [1-5], 

hardening by annealing [6], and a positive deviation from the Hall-Petch relationship for 

boundary strengthening [7]. These observations have mainly been explored in metals prepared 

by severe plastic deformation, followed by annealing. The unusual mechanical properties in such 

metals are very clear. There are, however, some complications in relating the microstructural 

origin of these phenomena, as such as such near-micrometer grain size metals generally contain a 

significant population of low angle dislocation boundaries, and may be better thought of as 

recovered deformation microstructures than as recrystallized grain structures [8-11].  

To avoid these complications the spark plasma sintering (SPS) process [12], also referred to by 

some authors as the field assisted sintering technique (FAST), which has been used in recent 

years for the synthesis of a wide range of metals and alloys [13-15], has been proposed as an 

alternative method for preparation of samples with grain sizes in the near-micrometer regime 

[16-20]. It has been shown that both for Al and Cu this process allows the preparation of samples 
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in a nearly fully recrystallized condition, and that the resulting materials exhibit yield strengths 

larger than predicted based on the conventional Hall-Petch parameters for these metals [19,20]. 

Similar results, have been obtained in cases where it has proven possible to obtain a sufficiently 

fine recrystallized grain size by deformation followed by annealing [21-23] 

The presence of a yield-point is of course well established and a much studied phenomenon in 

both Fe and steel, where this is most commonly attributed to a lack of mobile dislocations due to 

pinning by interstitial solutes [24-26]. It is of interest therefore to investigate both whether it is 

possible to achieve fully-recrystallized near-micrometer grain sizes in pure Fe, and whether such 

samples show the enhanced yield strength (positive Hall-Petch deviation) seen in Cu and Al 

samples. Study of spark plasma sintered Fe may also overcome some complications in analysis 

of the origin of the enhanced yield strength in near-micrometer grain size samples. In particular 

in Al samples prepared by SPS a highly dense network of 20 – 50 nm diameter oxides is present 

at the grain boundaries (at a 3 – 4% volume fraction for the finest grain size samples) [19], 

resulting from the transformation during the SPS process of the native alumina layer on the 

initial powders. In addition to restricting grain growth, these nanoscale oxide particles may also 

provide some additional hardening via an Orowan mechanism. Previously reported 

investigations on the sintering of nanoscale Fe powders and Fe powders processed by high 

energy ball milling have shown that such a dense network of grain boundary nanometer-size 

oxide particles is not found in SPS-sintered Fe samples [27-29]. This is supported by the 

observation in the present study that the grain size increases with sintering temperature (in the Al 

samples the nanoscale oxide particles prevent any grain growth up to temperatures near the 

melting point). Similarly, in Cu SPS samples a large fraction of twin boundaries are developed, 

which may or may not be regarded as having similar mechanical properties to general boundaries 
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(the choice of which results in a significant difference in the determined “grain” size) [20], 

whereas in Fe a high density of annealing twins is not expected. 

In Al a range of fine grain sizes can be obtained by SPS of powders with different average 

particle size (as the grain size is largely determined by the powder size as a result of the surface 

oxides) [19]. In Cu, such an effect does not exist and the SPS temperature has been used to 

control grain size [20]. For the Fe samples of the current study it has been found that use of both 

different powders and sintering conditions has been necessary to achieve suitable range of near-

micrometer grain sizes.   

2. Experimental Methods 

Atomized pure Fe powders (Beijing Dk Nano Technology Co., Ltd) were used to prepare the 

SPS samples. To obtain the desired range of grain sizes three different powder sizes were used, 

in each case with a purity of 99.9%. Example scanning electron microscope (SEM) images of the 

three powders are shown in Fig. 1a-c. All the powders exhibited a unimodal distribution of 

powder size, with particle diameters in the range 0.5 - 1 μm (powder P1) , 1 - 3 μm (powder P2),  

and 8 - 10 μm (powder P3). All powders used in this research were kept in a drying closet prior 

to sintering. The powder composition, as supplied by the manufacturer, is given in Table 1. In 

addition, as a control sample of coarse grain size Fe prepared by a non-SPS route, rolled 

electrolytic pure Fe (Beijing Trillion Metals Co., Ltd.), annealed at 650 °C for 190 min to 

achieve a fully recrystallized condition was also examined. 

Sintering of the samples was carried out using a SPS-1050 instrument (Sumitomo Coal Mining 

Co., Ltd). In each case 10 g of powder was packed in a 20 mm diameter graphite die. To prevent 

diffusion of carbon into the samples a layer of tantalum foil was used at the inner surface of the 
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die. The die was then placed into the sintering chamber and stabilized under an initial pressure of 

20 MPa during which time the chamber was evacuated. After a suitable vacuum was reached, the 

sintering cycle was commenced using a heating rate of 100 °C/min up to a temperature 50 °C 

below the target sintering temperature (Ts). The final 50 °C temperature increase to reach Ts was 

achieved using a heating rate of 50 °C/min. Once at the sintering temperature the load was 

increased to 60 MPa, and held for 1 min, after which the load and the vacuum were released and 

the sample allowed to air-cool to room temperature. The temperature during sintering was 

controlled by a thermocouple inserted into a hole in the die, and in contact with the sample.  

For each sample the average density was determined by Archimedes’ method, using absolute 

ethyl alcohol after grinding all surfaces up to 1500-grit SiC. Results are given here as the average 

of measurements on three samples. The microstructure and texture of the samples were 

investigated in a scanning electron microscope (SEM; Tescan 5136XM or Zeiss Supra 35), 

equipped with an Oxford Instruments electron backscatter diffraction (EBSD) system. All 

investigations were made on electro-polished samples of size 1 mm thickness, 5 mm in width 

and 5 mm in length prepared using 10% HClO4+90% C2H5OH solution at a voltage of 25V. 

Post-processing and analysis of the EBSD data was carried out using the Oxford Instruments 

Channel 5 software package, as well as using in-house software [30]. The grain size of each 

sample was determined from the EBSD data using boundary misorientation angle definitions of 

15° and 2°. For analysis of the microstructure-property relationship grain sizes using the 2° 

definition were used. This choice was based on previous studies showing that dislocation 

boundaries with angles as low this value can act as grain boundaries, with boundaries of lower 

misorientation angle providing strengthening instead through a Taylor (square root of dislocation 

density) relationship [7,31]. For all EBSD maps a minimal amount of data cleaning was used, 
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consisting of wild-spike correction followed by three rounds of zero-solution correction using a 

setting of 5 out of 8 neighbors.  

The mechanical properties of the samples were evaluated using tensile testing carried out at room 

temperature. Due to the small size of the sintered disks a reduced-size dog-bone shaped 

specimen, with a gauge length, width, and thickness of 8 mm, 2 mm, and 1 mm, respectively was 

used, based on a scaled-down version of the dimensions recommended in ASTM E8/E8M-09. 

Tensile blanks were cut using spark erosion, and the surfaces ground to SiC 3000 grit before 

testing. Samples were tested to failure in an Instron-5966 testing machine under displacement 

control at an initial strain rate of 8 × 10
-4

 s
-1

 with three samples tested for each grain size. The 

strain was measured during tensile testing using a strain gauge of length 5 mm. The morphology 

of each fracture surface was observed in a SEM. It can be additionally noted that all 

microstructural observations were made on interior surfaces, and the way the tensile blanks were 

cut ensured that the gauge volume was located at least 2 mm from the surface of the sintered 

disks. It can be noted that based on a time of 5 mins at 730°C (for ferrite) and 1000°C (for 

austentite) the approximate diffusion distance is only a few micrometers for Ta based on a 

simple √(Dt) calculation using values for the diffusion coefficient taken from Shaikh [32]). 

3. Results 

3.1 Sample synthesis parameters 

In this study the main goal is the investigation of the mechanical properties of near-micrometer 

grain size Fe. As such we present here only a summary of the synthesis parameters used to obtain 

suitable samples for this purpose. A more detailed investigation of the dependence of 

microstructure on SPS parameters will be given in a forthcoming paper. For powder P1 (the 



7/32 

finest powder size used) samples were sintered at temperatures of between 650 °C and 950 °C in 

100 °C increments. The measured density and selected grain size values are given in Table 2. At 

750 °C and above a stable density of ≈ 97.5% is achieved, with a large increase in grain size 

between 750 °C and 850 °C (confirming that highly dense boundary oxide networks do not form 

in SPS Fe samples). For powder P1 the chosen sintering condition was taken therefore as 750 °C 

for 1 min, to give a  sample with grain size based on a 2° misorientation angle definition of d2° = 

1.0 m . For powder P2 an initial sintering test under the same conditions (750 °C for  1 min) 

yielded a sample with a density of ≈ 97.9% and a suitable grain size of d2° = 2.6 m.  

For powder P3, with a more irregular particle shape and larger particle size, sintering was carried 

out at temperatures between 750 °C and 1000 °C in increments of 50°C. The sample selected for 

investigation in this study was that sintered at 1000 °C, with a grain size of d2° = 4.0m and a 

density of ≈ 96.4% (see Table 2) 

3.2 Microstructural characterization 

Example EBSD images showing the microstructure of the SPS samples selected for investigation 

in this study are shown in Fig. 2(a-c), while figure 2(d) shows the microstructure of the coarse 

grain Fe sample prepared by annealing of rolled electrolytic Fe sheet. In these maps black lines 

represent misorientations greater than 15°, with misorientations in the range 2° to 15° shown in 

silver. The color in the EBSD maps represents the crystal direction parallel to the loading axis 

during sintering, in inverse pole figure coloring, and is superimposed on a EBSD band contrast 

map. The images show that in each case the microstructure is dominated by grains surrounded by 

high angle boundaries, with little evidence of internal deformation. In the SPS samples the grain 

shapes are slightly irregular in the samples with the larger grain sizes of 2.6 m and 4.0 m, with 
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a more equiaxed morphology in the sample with a grain size of 1.0 m. The rolled and annealed 

electrolytic Fe sample also had slightly irregular grain morphology, with the grain size 

determined as  d2° = 33 m. 

The nearly random texture suggested by the coloring in the EBSD maps for the SPS samples is 

confirmed by inspection of plots of the misorientation angle distribution (Fig. 3a-d), plotted here 

using a lower angle cut-off of 2°, where the shape closely matches that of the Mackenzie 

distribution [33] expected for a fully random distribution of grains in the case of cubic crystal 

symmetry. Further evidence for the nearly random texture is provided by inspection of {111} 

pole figures (see Supplementary Material), where a maximum intensity of only 1.74 is found. 

Note that the step-sizes and mapping areas for the EBSD maps were chosen such that data for 

each sample covers more than 1500 grains. The measurements can be assumed therefore to be 

sufficiently representative of the bulk texture according to previous studies where it has been 

shown that the texture in EBSD data can be adequately described by a minimum of 1000 grains 

[34].   

The fractions of misorientations less than 15° for the four samples are 8% (1.0 m), 5% (2.6 m), 

11% (4.0 m), and 9% (33 m). The peak in the misorientation distribution for the rolled and 

annealed electrolytic Fe sample is due to the presence of a number of twin boundaries in the 

microstructure for this deformed plus annealed sample (shown in red in Fig. 2).   

As a more thorough check on the extent to which the samples can be regarded as fully 

recrystallized, maps were also constructed showing separately the misorientation axis, in the 

sample reference frame (
s
rpix,av = 

s
[uvw]pix,av), and the misorientation angle of each pixel to the 

average grain orientation (pix,av). It has been demonstrated elsewhere [30,35,36] that such maps 
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provide a very sensitive method to visualize small orientation differences arising even from very 

low amounts of plastic strain. These maps were calculated using in-house software (available on 

request from the corresponding author).  

The resulting maps for the investigated samples are shown in Fig. 4(a-h). In Fig. 4(a-d) the 

misorientation angle of each pixel to the grain average (pix,av) is shown on a color scale from 

pure yellow at pix,av = 0° to pure blue at pix,av = 2°, with green indicating pixels with pix,av > 2°. 

The misorientation angle maps show that almost all the grains in the 1m grain-size sample, and 

a large majority of the grains in the other samples, show a very small extent of in-grain 

orientation variation, with the largest extent of in-grain orientation variation seen in the 4m 

grain-size sample. This is confirmed by inspection of the 
s
rpix,av maps (Fig. 4e-h). In these maps, 

regions of finely varying mixed color correspond to areas where the misorientation axis varies 

randomly, indicating no systematic in-grain rotation, whereas a region of similar color indicates 

a part of a grain that is rotated with respect to the grain average. Based on the microstructural 

observations it is concluded that the samples satisfy the requirements outlined earlier, of having 

grain sizes in near-micrometer regime, with a close to random texture and in a predominantly 

fully recrystallized condition. 

3.3 Tension testing  

Example stress-strain curves from tensile tests of the selected samples are shown in Fig. 5. The 

curves show a similar pattern to samples of Al [19] and Cu [20] with near-micrometer grain size. 

The finest grain-size sample (d2° = 1.0 m) shows a very high yield strength of 695 ± 29 MPa  

but no uniform elongation in all three samples tested (note that values for mechanical data given 

in this section are given as average and standard deviation based on measurements on three 
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samples). The SPS sample with a grain size of d2° = 2.6 m shows a large yield drop (upper yield 

point of 601 ± 60 MPa), followed by an extended region of flow instability typically associated 

with Lüders band deformation, and then by rapid work-hardening, resulting in an overall uniform 

ductility of 12.1 ± 0.6 %. The 4.0 m grain size sample shows a much smaller yield drop (upper 

yield point of 495 ± 21 MPa) followed by a flow plateau (more typical of that seen in samples of 

annealed Fe), and then a similar work-hardening and uniform elongation (12.4 ± 0.5 %) to the 

2.6 m grain size sample. The rolled and annealed electrolytic Fe sample, with a grain size of d2° 

= 33 m shows a very mild yield drop (upper yield point of 196 ± 12 MPa), followed by much 

lower work hardening than seen in the near-micrometer grain size SPS samples with a uniform 

elongation of 19.3 ± 0.9 %. 

Fracture surfaces of the samples as seen from SEM observations are shown in Fig. 6. Some 

evidence of the original powder is seen in the 2.6 m grain size sample, but in general a large 

area showing dimples is observed in each case, with no evidence of cleavage cracks, indicating 

therefore failure predominantly by a ductile mode in all samples.  

4. Discussion 

4.1 Grain size control in Fe prepared by SPS 

For all three powders the grain sizes in the high-density sintered condition are comparable, 

though a little smaller, to the powder particle sizes. Direct comparison is however complicated 

for powder P1 by extensive particle agglomeration, and by the non-uniform shapes in powder P3.  

The observations confirm nevertheless that control of grain size in the near-micrometer regime 

can be achieved at least in part by appropriate powder particle selection. Sintering of powder P1 
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at 850 °C results in a large increase in grain size (see Table 2), suggesting that highly dense 

networks of nanoscale oxides, as seen in previously studied Al SPS samples, are not present in 

samples sintered from Fe powders, Additionally the as-sintered SPS samples contain only a 

small fraction of twin boundaries (approximately 3% of the total boundary length, based on a 2° 

boundary angle definition), so that the grain sizes determined from the EBSD data are unaffected, 

within the experimental error of the data, by the choice of whether to count twin boundaries as 

grain boundaries or not.  

Microstructural investigations also show that the grains in the fully dense samples are largely in 

a fully recrystallized condition, as evidenced both by the texture and misorientation distribution, 

and by the low levels of internal misorientation variation within each grain, as seen from the 

deviation to average axis and angle maps (Fig. 4). The high sensitivity of these maps is 

illustrated by the fact that these maps also pick up residual deformation in the rolled and 

annealed sample (Fig. 4d,h) arising from sample preparation, even though this is not visible in 

band contrast maps or in misorientation angle maps, due to the very small levels of plastic 

deformation involved. 

The slightly higher levels of in-grain orientation variation in the 4.6 m sample are likely to be 

associated with the significantly higher sintering temperature for this sample (1000 °C). In 

addition to the increased relative softness of the material under the applied sintering of 60 MPa, 

the observed in-grain orientation variations may also result from the transformation from the  to 

 phase on cooling from a temperature significantly higher than the Ac3 temperature (this 

transformation may also account for the more irregular grain shapes in this sample). 
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4.2 Mechanical properties in the near-micrometer grain size regime 

The mechanical properties under tensile testing of the Fe-SPS samples are similar to those 

observed previously for both SPS-Al and SPS-Cu with near-micrometer grain sizes. In each case 

a transition from high strength with almost no ductility to a flow curve exhibiting an extensive 

yield-drop takes place as the grain size is increased in the near-micrometer regime. The 

mechanical properties are analyzed further in the Hall-Petch plot of Fig. 7 where the yield stress 

is plotted as a function of inverse square root of the grain size. In this plot the value of yield 

stress is taken as the UTS for 1.0 m grain size sample (close to a 0.2% offset stress value), and 

as the upper yield point for the other samples. Also shown in Fig. 7 is a solid line corresponding 

to an extrapolation to the fine grain size regime of the Hall-Petch slope for Fe (kHP = 330 

MPam
0.5

) taken from a recent review paper [37], where it can be seen that the data for the fine-

grained SPS samples all show strengths well above predicted values.  

A complication, however, in assessing the mechanical properties of the Fe SPS samples is the 

large range of Hall-Petch parameters that have been reported in individual studies, where it is 

found that both the chemical composition, extent of grain boundary segregation and processing 

treatment may all affect the measured values [38-40]. Values of the grain boundary strength (i.e. 

kHP) have been reported ranging from as low as kHP =  120 MPam
0.5

 [1] or 150 MPam
0.5

 [41] 

in IF-steel, and kHP =  206 MPam
0.5

 in decarburized ARMCO iron [42], to up to kHP =  740 

MPam
0.5

 for mild steel [43]. Morrison [44], in contrast reported an almost fixed value of kHP = 

600 MPam
0.5

 for mild steels with C content ranging from 0.005 – 2%.  

Moreover, it has also been suggested that for a given alloy the extent of grain boundary 

segregation of interstitial elements (in particular for C) can have a large effect of the measured 
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value of the boundary strength. Mintz et al. [45], for example, reported that the measured grain 

boundary strengths in a low carbon steel were kHP = 315 MPam
0.5

 and kHP =  725 MPam
0.5

 for 

ice-quenched and furnace-cooled samples, respectively, and the that increase in boundary 

strength was accompanied by an increase in grain boundary carbon segregation, based on 3-

dimensional atom probe (3DAP) investigations. Alternatively it has been proposed that the both 

Cottrell atmosphere strength and grain boundary segregation may be influenced cooling rate, and 

that the former is more important in controlling the measured Hall-Petch parameters, via its 

influence on the extent of discontinuous yielding [46].  

Given the wide variation in reported the dependence of yield stress on grain size, dashed lines in 

Fig. 7 show extrapolations to the fine grain size regime for a number of Hall-Petch parameters. 

Only for kHP = 740 MPam
0.5

 (close to the value for mild steel) do the values for the current Fe 

SPS samples lie close to, or below, the predicted values: in all other cases some additional 

hardening (i.e. a positive deviation from a Hall-Petch relationship) is inferred from the SPS Fe 

data falling consistently above the predicted values. The results suggest therefore that the 

additional strengthening seen in samples of Al and Cu for near-micrometer grain sizes may also 

be present for Fe, though it is not possible without a detailed investigation of chemical 

composition and boundary segregation to determine the extent of the positive Hall-Petch 

deviation. It can be noted additionally that except for the case of gas-filled pores or finely 

dispersed nanosize voids [47], any porosity in the sample can only reasonably be expected to 

lead to an underestimate of the yield strength, as measured in tension so that the analysis above is 

not affected by the small amount of porosity indicated from the density measurements. 
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In the previously studied Al and Cu samples it has been postulated [6,7,19,20] that origin of the 

positive Hall-Petch deviation is a lack of a sufficient density of dislocation sources in fine fully-

recrystallized grains to provide macroscopic yielding, i.e. in such grains there is a low 

probability of sources that can operate, and/or of dislocation interactions leading to the 

generation of new sources. In samples where recovery annealing has been used to lower the 

dislocation density this phenomenon has been referred to as hardening by annealing [6]. In Fe a 

similar effect is well established (and implemented industrially as temper rolling), where 

removal of the yield point results in a transition to continuous flow accompanied by a reduction 

in the flow stress [48-50]. In this case the effect of the additional deformation is generally 

regarded is being related to the introduction of a sufficient density of mobile dislocations (i.e. 

unpinned by Cottrell atmospheres) [24].    

The influence of such pre-deformation is tested in the present case by providing pre-compression 

of a few percent deformation to tensile samples of the 2.6 m grain-size Fe SPS material, with 

the pre-compression either perpendicular to tensile axis (loading applied to the flat-face of the 

dog-bone sample) or along the tensile axis. The effect is strongly dependent on the pre-loading 

(Fig. 8), but in both cases the additional deformation results in a removal of the yield drop and a 

large reduction in the yield stress. In the case of the pre-deformation along the tensile axis, the 

work hardening of the sample follows closely that of the as-sintered sample, whereas for the 

sample pre-loaded perpendicular to the tensile axis shows a modified work-hardening pattern. 

The magnitude of the reduction in yield stress (145 MPa; representing 22% of the yield strength 

in the as-SPS condition) larger than that typically seen in studies of the deformation of Fe and 

mild steel [48-50]. It should be recalled however that few data exist in the literature regarding the 

behavior of Fe with very fine recrystallized grain size, for the reasons discussed at the start of 



15/32 

this paper. As such, although not conclusive the size of the decrease in yield stress with pre-

compression is consistent with an explanation relating a positive deviation from the expected 

Hall-Petch strength of the as-sintered SPS Fe samples to the recrystallized nature (and hence low 

dislocation density) of the grains in these samples. Although a positive deviation from the Hall-

Petch relationship has also been reported in samples with a ultra-fine grain size prepared by 

annealing of severe plastic deformation methods [7], in these samples the amount of additional 

hardening is limited as in many cases they are essentially recovered deformation microstructures 

rather than grain structures resulting from recrystallization with a low associated dislocation 

density.  

Another interesting observation is the much higher work hardening rate (and strain hardenability) 

for the 2.0 m and 4.6 m grain size samples compared to the coarse grain material. The origins 

of this behavior remain to be explored in detail and are the subject of ongoing studies. It is 

tentatively suggested however that for samples with a grain size distribution in the near-

micrometer regime the presence of fine (less than 1 m) grains can act as locally hard volumes, 

leading to enhanced mechanical incompatibility, as seen for example in materials with 

heterogeneous and gradient microstructures [51-53].  

5. Summary and conclusions 

Samples of Fe in a fully recrystallized condition and with grain sizes in near-micrometer range 

have been successfully prepared by the use of spark plasma sintering. The mechanical properties 

of these samples have been examined and a strong dependence on the tensile flow characteristics 

is observed as the average grain size is reduced from 4.6 m to 1 m, matching that seen 

previously for samples of FCC metals in Al and Cu. The finest grain size (1.0 m) sample shows 
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very high strength but almost no ductility. Increase of grain size to 2.6 m results in 

development of a very large yield drop followed by a Lüders-like flow instability. A similar 

behavior is seen for samples with 4.0 m grain size, albeit with a much smaller yield drop. Both 

samples show high post-Luders work-hardening rate. Analysis of the grain size dependence of 

the flow stress is complicated by the wide range of Hall-Petch parameters reported for Fe 

(dependent on composition, boundary chemistry and processing treatment). The data for the 

near-micrometer grain size Fe only fall close to, or below, the predicted values taking Hall-Petch 

parameters comparable to those for mild steel (kHP of 740 MPam
0.5

). Given the initial power 

purity and SPS processing conditions, it is therefore concluded that a positive deviation from a 

Hall-Petch relationship may exist for Fe in the near-micrometer regime, but that it is difficult to 

quantify the magnitude of this deviation as a result of the sensitivity of the grain boundary 

strength to the exact composition and grain boundary chemistry. For the 2.6 m grain size 

sample a small compressive pre-deformation to the tensile sample results in a complete removal 

of the yield-drop and a large decrease in the yield strength of up to 145 MPa. The magnitude of 

this decrease is consistent with an explanation that a positive deviation from the expected Hall-

Petch strength for samples with grain size in the near-micrometer regime is related to the fully 

recrystallized nature of the grains. Further work, including detailed studies of boundary 

chemistry using the 3DAP technique and efforts to achieve samples with sub-micrometer grain 

sizes in a fully recrystallized condition should shed further light on these topics, and with the 

mechanical behavior of near-micrometer grain size samples providing another prism into the 

yielding and plastic deformation of Fe.  
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Table 1: Initial powder composition (values given as wt%). 

Cu Si Ni Cr Mg Al Ti 

≤0.005 ≤0.002 ≤0.002 ≤0.005 ≤0.004 ≤0.001 ≤0.005 

      

Mo Pb Mn Ca Sn Fe 

≤0.004 ≤0.004 ≤0.003 ≤0.004 ≤0.008 ≥99.9 
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Table 2: Density and samples prepared from powders P1, P2 and P3 with grain size for selected 

samples. Entries in bold indicate the samples used for mechanical and microstructural 

investigations in this study. 

Powder Sintering 

Temperature (°C) 

Relative 

density (%) 

Grain size (μm) 

 > 2°  > 15° 

P1 650 94.60 ± 0.01 - - 

P1 750 97.38 ± 1.19 1.0 1.1 

P1 850 97.45 ± 0.03 13 13 

P1 950 97.48 ± 0.08 14 14 

P2 750 97.88 ± 0.63 2.6 2.7 

P3 750 91.79 ± 0.18 - - 

P3 800 92.36 ± 0.20 - - 

P3 850 93.18 ± 0.07 - - 

P3 900 95.38 ± 0.17 2.8 2.9 

P3 950 96.22 ± 0.65 2.8 3.2 

P3 1000 96.35 ± 0.22 4.0 4.6 

 

  



26/32 

 

Fig. 1: Scanning electron microscope images of the iron powders used in this investigation: (a) 

powder P1, (b) powder P2, and (c) powder P3. 

Fig. 2: EBSD maps showing example microstructures for the samples used for mechanical 

testing with grain sizes (d2°) of: (a) 1 m (EBSD step size 0.12 m; SPS of powder P1 at 750 °C); 

(b) 2.6 m (EBSD step size 0.12 m; SPS of powder P2 at 750 °C); (c) 4.0 m (EBSD step size 

0.5 m; SPS of powder P3 at 1000 °C); and (d) 33 m (EBSD step size 1. 2 m; rolled and 

annealed electrolytic iron). Silver and black lines indicate misorientations of >2° and >15°, 

respectively. Red lines indicate misorientations corresponding to a 3 relationship;  inverse pole 

figure coloring superposed on a band contrast map.  

Fig. 3: Misorientation distributions (2° bin size; 2° lower cut-off) for the investigated samples 

with grain sizes of: (a) 1 m; (b) 2.6 m; (c) 4.0 m; and (d) 33 m. 

Fig. 4:  Maps calculated from the EBSD data showing the misorientation angle (a-d) and 

misorientation axis in the sample reference frame (e-h) of each pixel to the grain average 

orientation for samples with grain size of: (a) 1 m; (b) 2.6 m; (c) 4.0 m; and (d) 33 m. The 

misorientation angle maps are scaled from 0° (yellow) to 2° (blue), with all misorientations 

angles >2° colored in green. For the misorientation axis ma the X axis is parallel to the sintering 

loading direction, and the Y axis is chosen at random in the sintering plane. 

Fig. 5: Tensile flow curves for samples with grain sizes as indicated in the figure. Samples with 

grain sizes (d2°) of 1.0 m, 2.6 m, and 4.0 m prepared from iron powders using SPS. The 2.6 
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m, and 4.0 m samples both show a yield drop and Lüders instability, followed by a similar 

high work-hardening rate. 

Fig. 6: Scanning electron micrographs of the fracture surface of samples deformed in tension to 

failure for samples with grain size of: (a) 1 m; (b) 2.6 m; (c) 4.0 m; and (d) 33 m. 

Fig. 7: Hall-Petch plot (inverse square root of the grain size, d2°
-0.5

, against flow stress) for SPS 

samples with grain sizes of 1.0 m, 2.6 m, and 4.0 m (solid squares)  and rolled/annealed 

electrolytic iron with grain size 33 m (hollow square). The solid line shows an extrapolation of 

the Hall-Petch parameters reported for Fe in a recent review paper [36]. The dashed lines show 

Hall-Petch plots taken from early studies on mild steel [43] (0 = 70 MPa; kHP = 740 MPam
0.5

) 

and on low carbon steels [44] (0 = 100 MPa; kHP = 600 MPam
0.5

).  

Fig. 8: Tensile flow curves showing the effect of pre-compression deformation on the flow 

characteristics for the 2.6 m grain size SPS material. The solid line shows the flow curve for the 

as-sintered material (reproduced from Fig. 5); the dotted and dashed lines show the flow curves 

for samples pre-compressed 5% perpendicular to and parallel to the tensile axis (TA), 

respectively. In both cases the yield point is removed with a corresponding large reduction in the 

flow stress.  
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