
Applied Mathematical Modelling 65 (2019) 464–488 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

Modeling of progressive failures in quasi-brittle me dia base d 

on a temporal stress-redistribution mechanism 

Jin Xing Liu 

a , ∗, Nai Gang Liang 

b , Ai Kah Soh 

c 

a Faculty of Civil Engineering and Mechanics, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, China 
b State key laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 
c School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia 

a r t i c l e i n f o 

Article history: 

Received 9 December 2017 

Revised 22 July 2018 

Accepted 23 August 2018 

Available online 6 September 2018 

Keywords: 

Progressive quasi-brittle failure 

Stress redistribution 

Damage-induced softening 

Viscous force field 

Event-driven algorithm 

Strain rate sensitivity 

a b s t r a c t 

A new attempt is made to simulate progressive failure processes in heterogeneous brit- 

tle materials such as concrete, ceramics, rocks etc., by considering the time-dependence of 

stress redistributions induced by local breakages. Two mechanisms of stress redistribution 

are incorporated into the proposed model in order to account for the influence of each 

local breakage on the remaining specimen: (1) one is the immediate release of internal 

forces in the breaking element, which is assumed to happen within an infinitesimal time 

when compared with the characteristic time of external loadings. The release of such in- 

ternal forces is hence suddenly applied to the remaining specimen, which is considered to 

take time to deform correspondingly due to material viscosity. This deformation delay is 

implemented by introducing a viscous force (VF) field prevailing in the entire specimen. (2) 

The other is the gradual release of previously stored VF fields, whose characteristic time is 

assumed to be material-dependent. Here the release of VF is approximated as stepwise for 

simplicity. The proposed model is found to be capable of overcoming the unreasonably- 

low-ductility problem encountered in many existing lattice models when it comes to the 

uniaxial tensile test. Furthermore, the force–displacement response obviously depends on 

the ratio of the VF releasing time to the characteristic time of external loading, showing 

trends agreeing with experimental observations. Compared with results without viscosity, 

the failure pattern is more scattering, and the force–displacement curve has a higher peak 

load and a more ductile post-peak tail. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

Quasi-brittle materials can be natural or artificial, including but not limited to concrete, cementitious composites, sea-ice,

cohesive and frozen soils, and toughened ceramics. In above media, cracks propagate progressively under external loadings,

which, compared with ideally brittle materials like glass, has some distinctive features such as post-peak softening, and has

attracted intensive research interests (e.g. [1–6] ). Lattice-type models have been widely used to study such phenomena [7–

15] , in which the continuum-like material was considered as a network composed of particular fundamental elements such

as bars, beams or various link elements, usually based on the principle of strain energy equivalence [11,13] , or by installing

relevant springs between each two neighboring rigid bodies [16,17] . 
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Failure happens when the deformation or stress at a particular material point violates the failure criterion. Tang [1] as-

sumed that the maximum tensile strength is dominant in determining rock fracture and modeled progressive failures leading

to collapse in rock and associated seismicity. van Mier et al. [9] detected local breakages by comparing the maximum allow-

able tensile stress with the present normal stress which was the combination of normal force and bending moment in the

beam element. In the rigid-body-spring model, Bolander and Saito [16] adopted the Mohr–Coulomb criterion with a tensile

cut-off, accounting for both normal and shear stresses. In the generalized beam (GB) lattice model proposed by Liu et al.

[13] , a failure rule similar to [16] was adopted to determine the elemental breakage, in conjunction with the consideration

of separation/contact of cracked element surfaces. When a lattice serves as the micromechanics model of a material, the

heterogeneous mesostructure is explicitly considered, naturally incorporating the relevant characteristic length. Thus, the

explicit heterogeneity in the lattice is dominant, and the meshsize plays a secondary role when compared with homoge-

nized macro-continuum models [18] . The crack band model proposed in [19] can be feasible and straightforward to account

for such a size dependency. 

In this study, we focus on the influence of ongoing local breakages to the remaining specimen. For this end, in the de-

velopment of lattice-type models, there have been two main kinds of non-iterative algorithms, i.e. the load–unload method

and the force–release method [17,20] , which are based on two totally different assumptions in terms of characteristic time

scales during progressive failures. 

A post-peak softening response is generally exhibited when laboratory samples of a quasi-brittle material are loaded

in tension or unconfined compression. Even though massive successful applications of lattice models in analyzing failure

phenomena have been achieved, the macroscopic softening-related issue, i.e. that the load–displacement curve obtained

by the lattice model shows a much lower ductility than experimental observations [20] particularly during the post-peak

stage, calls for further investigations. Lilliu and van Mier [21] built a three-dimensional lattice model which was still not

able to fully recur the realistic ductility. The macroscopic softening has been sometimes taken as material softening even

though it is indeed a mixture of material and structural properties, resulting from the micro-cracking, rather than simply a

fundamental response of the studied material [11,22–24] . van Mier [22] postulated that a lattice adopting an elastic-purely

brittle fracture law at the level of the aggregates, interfaces and matrix is suitable for studying fracture mechanisms leading

to global softening. Bai et al. [25] , Krajcinovic and Rinaldi [26] and Li and Ren [27] emphasized that stochastic damage

evolution plays an important role. Many other investigators have also proposed a lot of helpful numerical strategies for

dealing with computational implementations of softening models [28,29] . 

The other topic to be studied is strain-rate dependency of progressive failures in quasi-brittle media, which strongly

couples with the post-peak softening. For concrete, the peak strength increases and the fracture pattern becomes more

scattering with increasing strain rate [30] . By proposing the extended Confinement Shear Lattice (CSL) model, Cusatis [31] 

investigated the effects of both the rate of crack opening and the viscoelastic deformation of the unfractured cement paste

on concrete strength and fracture behavior. Wu et al. [32] made experimental observations and concluded that under inter-

mediate strain rates, the concrete tensile strength depended on the type of tests, which cannot be captured by the Weibull

effective volume method. The strain-rate sensitivity of concrete tensile failure was recurred by adopting the damaged plas-

ticity theory combined with the strain-rate effect to describe the dynamic mechanical behavior of mortar matrix [33] . Xu

and Wen [34] conducted theoretical and experimental studies on the nonlinear mechanical properties of lightweight foamed

concrete under uniaxial compression over a temperature range of 223–343 K and a strain rate range of 0.001–118 per second.

In this study, both softening and strain-rate sensitivity are modeled by accounting for the viscous effect due to local

breakage. It is conducted within the framework of lattice-type modeling, but the methodology can be easily extended to

other computational models. We are taking the influence of ongoing local breakages on the remaining specimen as vis-

coelastic. When some element reaches its strength limit, its capability of bearing load vanishes suddenly and completely or

significantly, leading to an immediate release of internal force in this cracking element. Such an immediate released internal

force can be taken as a force suddenly applied on the remaining specimen. Therefore, the viscous effect can play an im-

portant role, i.e. the corresponding deformation of the remaining specimen somehow delays as compared with the release

of internal forces of cracking elements. Based on such a physical picture, we construct a new algorithm based on a new

concept, i.e. viscous force (VF) field, to deal with the above viscoelastic process. In the theoretical framework, characteristic

times of both VF release and external loading are accounted for, leading to the capability of dealing with multi-time-scale

problems [25] . 

A stepwise force- time constitutive law to be adopted here is different from the force- deformation ones (e.g., [17,28,35,36] ).

In literature, to keep algorithms to be sequentially linear, the original nonlinear force- deformation constitutive law is often

approximated as saw-tooth shaped or piece-wise linear. The latter may be a closer approximation for an originally smooth

curve. In both cases, the caused error can be overcome by adopting finer constitutive discretizations. An improved version

was developed in [35] . In this study, the physical picture aforementioned, where VF evolves with time (instead of deforma-

tion), leads to a temporal constitutive law. This law is discretized stepwisely, inspired by the saw-tooth concept [28] . 

This paper is presented as follows. In Section 2 , the GB lattice model [13,37] is briefly introduced as the mesoscale model,

including a failure criterion called the modified Mohr–Coulomb rule. In Section 3 , we adopt a 1D bar system to illustrate the

storage and release of viscous force fields, the release of internal forces of cracking elements and their coupling mechanisms.

Particularly, two kinds of stress redistributions, i.e. one due to the release of internal forces in breaking elements and the

other due to the release of viscous force fields (or equivalently due to the viscous delay in the deformation of the remaining

specimen), are shown in details. Subsequently, the general procedure of the proposed method, i.e. the event-driven and non-
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Fig. 1. Kinetics and statics of a GB lattice element. 

Fig. 2. Mohr–Coulomb rule with a tension and compression cut-off as the failure criterion. 

 

 

 

 

 

 

 

 

 

iterative algorithm is proposed in Section 4 . In Section 5 , we conduct a series of numerical examples, showing the capability

of presenting the experimentally-observed ductility (softening), more scattering fracture zones and loading rate dependence

etc. 

2. GB lattice model 

The model was initially proposed by Liu et al. [13,37] for simulating the fracture process in the three-phase media like

concrete. Each element can be composed of three beams with independent material properties. The response of beams can

be described by the force–displacement relation of its two ends, i.e. ( Fig. 1 ), ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 
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(2.1) 

where F 12 = 

{
Q 1 N 1 M 1 Q 2 N 2 M 2 

}T 
and u 12 = 

{
u 1 v 1 ϕ 1 u 2 v 2 ϕ 2 

}T 
are, respectively, the general- 

ized force vector and the generalized displacement vector, and nonzeros M ij are assigned values based on the theory of the

Euler–Bernoulli or Timoshenko beam. Here, in the local coordinate system on each element ij , the y -axis points from end

i to end j , and the x -axis is determined by rotating y -axis 90 °clockwise. The material and geometrical properties of lattice

elements are calibrated based on the equivalence of strain energy [10,11,37] . 

Mohr–Coulomb criterion is a mathematical model describing the response of materials such as rock, rubble piles and

concrete to shear stress as well as normal stress. The criterion with tension and compression cut-offs are shown in Fig. 2

and can be expressed by the following three inequations: 

σ < f t , 
| τ | < c − σ tan φ
σ > − f c , 

(2.2) 
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Fig. 3. Ascertainment of the contact/separation of crack surfaces. 

Fig. 4. A one-dimensional tensile test on a parallel-bar system including four bar element E1, E2, E3 and E4. E1’s end, i.e. node N1 is fixed. E2 and E4 are 

installed between two vertical rigid plates which can only displace along the tension direction. A controlled displacement ū is applied onto node N4 with 

a constant increasing rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where, c is the cohesive strength and φ is the friction angle; τ and σ are the shear stress and the normal stress, respectively;

f t and f c are the tensile and compressive strengths, respectively. The normal stress can be written as 

σ = 

N 

A 

+ αb 

max 
(| M i | , 

∣∣M j 

∣∣)
W 

, (2.3)

where, N is the normal force, M i and M j are the bending moments at node i and j , respectively, in the beam studied, W is

the section modulus, the coefficient αb regulates what part of the bending moment is considered. While the shear stress

can be calculated as 

| τ | = 

1 

A 

| M 11 ( u 1 − u 2 ) − M 34 ( ϕ 1 + ϕ 2 ) | (2.4)

with A the area of the cross-section. 

Fracture surfaces produced previously can come into contact with each other under a varying loading , therefore it is

required to take into account fracture surface contacts. For this end, the material domain around every node is assumed to

be circular, as shown in Fig. 3 . Thus contacts can be ascertained by checking the present distance between centers of two

neighboring round disks. 

3. Storage and release of viscous force fields: an illustrative 1D example 

Consider a one-dimensional parallel bar system which is composed of four link elements, i.e. E1, E2, E3 and E4, as shown

in Fig. 4 . All elements have a common length L and Young’s modulus E . The cross-section of E1 and E3 is 2 A , while that

of E2 and E4 is A . The material is assumed to be elastoviscous. The structure is under a gradually increased tension. In the

present work, we assume that the external loading rate is so slow that both the viscosity due to external loading and the

inertia effect can be neglected. E1, E3 and E4 have a common tensile strength, i.e. f t , while that of E2 is equal to ( 1 − ϑ ) f t ,

where 0 < ϑ< 1. 

Among these four elements, E2 is the first to reach its breakage limit. At this critical time, which is noted as t −
0 

, the

controlled displacement is given as 

ū 0 = 

3 ( 1 − ϑ ) L f t 
, (3.1)
E 
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Fig. 5. Boundary and loading conditions for calculating the trial incremental displacement field � D 1 ( t 0 ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the total displacement field is written as 

D 

(
t −0 

)
= ū 0 

{
0 

1 
3 

2 
3 

1 

}
, (3.2) 

and the internal force of E2 is 

F̄ E2 = 

EA ̄u 0 

3 L 
. (3.3) 

The internal force field, which is composed of internal forces of all elements, can be expressed in the form, 

F 
(
t −0 

)
= F̄ E2 

{
2 1 2 1 

}
, (3.4) 

where the sign of tensile and compressive internal force is taken as positive and negative, respectively. Or equivalently, a

positive and negative internal axial force is like “ ← → ” and “ → ← ”, respectively. 

Immediately after the above critical time, i.e. t + 
0 

, E2’s capacity of bearing load totally vanishes, which leads to the release

of its internal force into the other elements, i.e. E1, E3 and E4. At the moment t −
0 

when E2 becomes critical but keeps intact,

its contribution to the remaining specimen is a force with the magnitude F̄ E2 applied at its two ends, N2 and N3, in opposite

directions, i.e. “ → ← ”, indicating that the force direction at N2 is → and that at N3 is ← . Apparently, if E2 is eliminated

from the system while keeping the F̄ E2 ( → ← ) at its ends, the displacement field of the remaining specimen will be the

same as that at t −
0 

, i.e. D 

(
t −
0 

)
. Thus, to consider the influence of E2’s breakage on the rest, two forces, which are equal to

F̄ E2 , are respectively applied onto the two ends of E2, along the direction like “ ← → ”, intending to contradict the action of

previous intact E2. As shown in Fig. 5 , under the condition that the controlled displacement is set to zero, i.e. ū = 0 , and

F̄ E2 is fully released at E2’s two ends, we can obtain a trial incremental displacement field, 

� D 1 ( t 0 ) = 

ū 0 

12 

{
0 −1 1 0 

}
. (3.5) 

Notably, � D 1 ( t 0 ) is simply trial, and it can become real by multiplying a coefficient λ to it, which will be discussed below.

Thus, no operation of judging new breakage(s) is required in D 

(
t −
0 

)
+ � D 1 ( t 0 ) . So far, the operation of stress redistribution

is the same as that discussed in [20] . 

The above releasing of E2’s internal forces is assumed to happen during an infinitesimal time, i.e. from t −
0 

to t + 
0 

, when

compared with the characteristic time scale of external loading. Therefore, simultaneously, the remaining structure com-

posed of E1, E3 and E4 is deemed to experience a suddenly-applied loading, and thus viscosity cannot be neglected. In

other words, deformations in E1, E3 and E4 need to take some time to become fully consistent with the updated loading

conditions (the internal forces to be released is taken as external loading). Note that for the calculation of the trial displace-

ment field � D 1 ( t 0 ), the specimen is temporarily assumed to be purely elastic with no viscosity. While the viscous effect will

be recurred by the imposition of a viscous force field, which will be demonstrated below. 

During the period from t −
0 

to t + 
0 

, E2’s internal force to be released increases from zero to F̄ E2 ; but the simultaneous

change of length in E1, E3 and E4 will be smaller than the counterpart when no viscous effect is considered. To describe

the extend the material can deform immediately corresponding to the releasing of internal force of the breaking element, a

parameter α(0 ≤α ≤ 1), which is deemed to be material-dependent, is introduced to represent the relative share of immedi-

ate elasticity. Then, when λF̄ E2 (0 ≤λ< 1) has been released since the moment t −
0 

and E4 has not reached its strength limit,

the immediate change of length in E1 and E3 is −αλū 0 / 12 , and that in E4 is αλū 0 / 6 . 

To implement the above-mentioned deformation-delaying phenomenon, we propose a new method whereby a proper

kind of viscous force fields is firstly constructed and then gradually released. In preparation for the derivation in

Sections 3.1 and 3.2 , we compute the trial force field, � V 1 ( t 0 ) , arising in the trial incremental displacement field −� D 1 ( t 0 ) ,

which can be expressed as, 

� V 1 ( t 0 ) = 

1 

2 

F̄ E2 

{
1 0 1 −1 

}
, (3.6) 

where the sign of internal force is assigned in the same way as in Eq. (3.4) . 
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Fig. 6. In case 1, the curves of the reaction force at N1, R N1 , and the displacement of N2 versus time. 

Fig. 7. Boundary and loading conditions for calculating the incremental displacement field bridging O and O 1 , αλ� D 1 ( t 0 ). 

 

 

 

 

 

 

In this study, we assume that the viscosity is purely due to the occurrence of breakages, hence, there is no viscous force

at the time t −
0 

, i.e., 

V 

(
t −0 

)
= 

{
0 0 0 0 

}
. (3.7)

There are two possible cases for consideration: Case 1 where element E4 is induced to break due to the release of E2’s

internal force under the fixed controlled displacement, ū 0 , and Case 2 where E4 keeps intact when E2’s internal force has

been fully released under ū 0 . 

3.1. Case 1: when E4 is induced to break by releasing E2’s internal forces 

As shown in Fig. 6 , due to the release of E2’s internal force, both the reaction force at node N1, R , and the displacement

at node N2, u N2 , decrease under the fixed external controlled displacement ū 0 . Assume that when R drops to point O 1 , E4

reaches a critical state. 
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Fig. 8. Calculation of the reaction force at N1, R N1 at the time of λ = λ1 , which corresponds to the point O 1 in Fig. 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1. O → O 1 

The incremental displacement field is calculated for the specimen with E2 eliminated under the following boundary and

loading conditions ( Fig. 7 ): nodes N1 and N4 are fixed, part of E2’s internal force, i.e. λF̄ E2 , is released at nodes N2 and N3,

and a viscous force field, ( 1 − α) λ� V 1 ( t 0 ) , is imposed on the specimen. We assume that when λ = λ̄1 , E4 becomes critical.

When the reaction force R drops from point O to O 1 , λ increases from 0 to λ̄1 . Thus, the incremental displacement field

obtained is αλ� D 1 ( t 0 ), which can also be calculated under the equivalent conditions: N1 and N4 are fixed, and part of E2’s

internal force, αλF̄ E2 , which is corresponding to immediate elasticity, is released at nodes N2 and N3. When λ = λ̄1 , E4’s

strain is given by 

f t 

E 
= ( 1 − ϑ ) 

f t 

E 
+ αλ̄1 

( 1 − ϑ ) f t 
2 E 

, (3.8) 

where λ̄1 = 2 ϑ / α( 1 − ϑ ) . Appar ently, λ̄1 > 1 indicates that E4 will not be induced to break by the release of E2’s internal

force, which will be discussed in Section 3.2 . Practically, the critical value cannot be bigger than 1, i.e., 

λ1 = min 

(
1 , ̄λ1 

)
, (3.9) 

and the corresponding internal force in E4 is given by F̄ E4 = 

EA 
L ū 0 

(
1 
3 + 

αλ1 
6 

)
. 

In the calculation carried out in Fig. 7 , since the viscosity is represented by the VF field, ( 1 − α) λ� V 1 ( t 0 ) , the mate-

rial is still set to be immediately elastic. In this sense, the VF concept helps to avoid the needs of developing non-elastic

constitutive models. 

In summary, at point O 1 , i.e., at the time when λ = λ1 , there are 

• The displacement field: 

D 1 ( t 0 ) = D 

(
t −0 

)
+ αλ1 � D 1 ( t 0 ) = ū 0 

{ 

0 

1 

3 

− αλ1 

12 

2 

3 

+ 

αλ1 

12 

1 

} 

. (3.10) 

• The VF field stored during the period whereby λ changes from 0 to λ1 : 

V 1 ( t 0 ) = V 

(
t −0 

)
+ � V 1 ( t 0 ) = 

1 − α

2 

λ1 ̄F E2 

{
1 0 1 0 

}
. (3.11) 

• The internal force field which is calculated based on D 1 ( t 0 ): 

F 1 ( t 0 ) = 

2 EA ̄u 0 

3 L 

(
1 − αλ1 

4 

){
1 0 1 0 

}
. (3.12) 

• E2’s internal force to be released at nodes N2 and N3: ( 1 − λ1 ) ̄F E2 . 

• E4’s internal force to be released at nodes N2 and N3: F̄ E4 = 

EA 
L ū 0 

(
1 
3 + 

αλ1 
6 

)
. 

• The VF having been stored in E4 during O → O 1 , needs to be released at N2 and N3 after O 1 : 

1 − α

2 

λ1 ̄F E2 ( ←→ ) . (3.13) 

Since E4 will be eliminated, so the VF stored in it so far, i.e. 1 −α
2 λ1 ̄F E2 , as shown in Eq. (3.11) , would be released in the

same manner as the cracking element’s internal force. 

• Reaction force at node N1 ( Fig. 8 ): R N1 = F E1 − V E1 = 

EA ̄u 0 
6 L ( 4 − λ1 ) . 

It is notable that the introduction of the above VF field satisfies the equilibrium condition. For example, let us con-

sider node N2, as shown in Fig. 9 . At the time of λ = λ1 , internal force of E1 is F E1 = 

2 EA ̄u 0 
3 L 

(
1 − αλ1 

4 

)
, the VFs in E1 and

E4 are V E1 = 

λ1 EA ̄u 0 
6 L ( 1 − α) and V E4 = − λ1 EA ̄u 0 

6 L ( 1 − α) respectively; internal forces of E2 and E4 waiting to be released are,

respectively, ( 1 − λ1 ) ̄F E2 and F̄ E4 . All above forces at N2 satisfy the equilibrium condition, i.e. 

¯ ¯
F E4 + V E1 + V E4 + ( 1 − λ1 ) F E2 − F E1 = 0 . (3.14) 
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Fig. 9. Equilibrium condition at N2, at the time of λ = λ1 , which is corresponding to the point O 1 in Fig. 6 . 

Fig. 10. In case 1, boundary and loading conditions for calculating the trial incremental displacement field, � D 2 ( t 0 ), which bridges O 1 and A in Fig. 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2. O 1 → A process 

Since no further elemental breakage can possibly happen at the present level of controlled displacement, i.e. ū 0 , the

period from the time of E4 becoming critical to point A, as shown in Fig. 6 , i.e. the time when all internal forces in cracking

elements, E2 and E4, have been released, can be taken as one single linearly elastic process. Again, we firstly construct the

trial incremental displacement field � D 2 ( t 0 ), which arises under the boundary and loading conditions, as shown in Fig. 10 :

in the specimen where E2 and E4 are eliminated, nodes N1 and N4 are fixed, we simultaneously release the remaining

internal force of E2, ( 1 − λ1 ) ̄F E2 , the internal force of E4, F̄ E4 , and the viscous force stored in E4, which needs to be released

due to E4’s breakage, i.e. 1 −α
2 λ1 ̄F E2 . The produced displacement field is 

� D 2 ( t 0 ) = 

( 4 − λ1 ) ̄u 0 

12 

{
0 −1 1 0 

}
. (3.15)

Because there is no further induced breakage, the scaling factor for � D 2 ( t 0 ) is λ2 = 1 , the real incremental displace-

ment is equal to α� D 2 ( t 0 ). Correspondingly, the incremental VF field should be calculated in the displacement field

−( 1 − α) � D 2 ( t 0 ) , i.e., 

� V 2 ( t 0 ) = 

EA ̄u 0 

6 L 
( 4 − λ1 ) ( 1 − α) 

{
1 0 1 0 

}
. (3.16)

At the time t + 
0 

, which is corresponding to point A in Fig. 6 , there are, 

• The displacement field: 

D 

(
t + 

0 

)
= D 

(
t −

0 

)
+ αλ1 � D 1 ( t 0 ) + α� D 2 ( t 0 ) 

= ū 0 

{
0 

1 −α
3 

2+ α
3 

1 

}
. 

(3.17)

• The internal force field: 

F 
(
t + 0 

)
= 

2 EA ̄u 0 ( 1 − α) 

3 L 

{
1 0 1 0 

}
, (3.18)

which is calculated based on the displacement field D 

(
t + 
0 

)
given in Eq. (3.17) . 

• The VF field stored so far: 

V 

(
t + 

0 

)
= V 1 ( t 0 ) + � V 2 ( t 0 ) 

= 

2 EA ̄u 0 ( 1 −α) 
3 L 

{
1 0 1 0 

}
, 

(3.19)

where, V 1 ( t 0 ) is given in Eq. (3.11) . 
• E2’s internal force to be released at nodes N2 and N3: 0. 
• E4’s internal force to be released at nodes N2 and N3: 0. 
• Reaction force at node N1: 

R N1 = F E1 − V E1 = 0 . (3.20)

It is a well-recognized fact that no matter how viscosity plays its role, the reaction force should become zero after the
specimen is completely broken into two. 
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Fig. 11. The viscoelastic response caused by local rupture, and its stepwise approximation. Here the total of VF steps is taken as N = 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3. A → B → C → D → E : stepwise release of the VF field 

From O to A , the release of the internal forces in critical elements causes two consequences: one is the immediate elastic

response, i.e. D 

(
t + 
0 

)
− D 

(
t −
0 

)
, the other is the storage of the VF field, V 

(
t + 
0 

)
, which is corresponding to a delay in deformation

due to viscosity. 

Immediately after time t + 
0 

, the VF field would gradually decay to zero, corresponding to the gradual vanishing of the

deformation delay, which is numerically implemented in a stepwise manner, as shown in Fig. 11 . The VF field stored in the

remaining specimen would be released to zero by taking N equal or unequal steps. We denote the i th decreasing VF step as

the i th VF step. The proportion of the released VF field in each VF step is calculated according to the viscous properties of the

material studied. Particularly, during the stress redistributing process due to the occurrence of new breakages, the specimen

will simultaneously and partially adjust the deformation behavior, which is called immediate elasticity. For consistency, such

an immediate stress adjustment is taken as the 0th VF step. 

Notably, Fig. 11 also indicates a temporal energy dissipation associated with local rupture. In previous non-iterative se-

quentially linear algorithms like the F–R method (e.g., [17,20] ), the material is assumed to be purely immediately elastic

(without any viscosity), so the local rupture-induced energy dissipation rate is infinite. Nevertheless, in Fig. 11 , the whole

energy to be dissipated includes an immediately-elastic and viscous part; the former dissipates infinitely fast during the 0th

step, and the latter does in a finite rate under the drive of the gradual VF release during the 1–N th steps. 

Before proceeding with future works, we need to adopt a more informative notation for the VF field V 

(
t + 
0 

)
, i.e., 

V 

(
t + 0 

)
= V 

(
t 0 , n v , φt , φv , R 

)
, (3.21) 

where, in the parameter list on the right side of the equation, t 0 means the time at which the VF field is stored; n v ∈
{ 1 , 2 , . . . , N } is the number of the present VF step; φt is used to note how much time has elapsed among the whole step

time span � t n v , thus the present time is t = t 0 + 

∑ n v −1 
i =1 

� t i + φt � t n v ; φv means that in the present VF step, an incremental

VF field φv � V n v has been released, where � V n v is the total VF that should be released during the present VF step; R is a

set that includes all ruptures arisen from t + 
0 

to the present time, and therefore it is a null set, i.e. ∅ , at the time t + 
0 

. 

In the 1D example studied, for the sake of simplicity and without loss of generality, we assume that the VF field stored

from t −
0 

to t + 
0 

takes N = 2 equal VF steps to decrease to zero, and the common time duration of each VF step is written as

� t v ( = � t 1 = � t 2 ) , and ( 1 − α) V 

(
t + 
0 

)
/ n v is released into the remaining specimen in each VF step. 

A → B process: 

The increment in the controlled displacement at node N4 is � t v 
t 0 

ū 0 . At point B , i.e. the time ( t 0 + � t v ) 
−
, there are, 
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• The displacement field: 

D 

(
( t 0 + � t v ) 

−) = ū 0 

{
0 

1 −α
3 

2+ α
3 

+ 

� t v 
t 0 

1 + 

� t v 
t 0 

}
. (3.22)

• The VF field is kept unchanged: 

V 

(
t 0 , 1 , 1 , 0 , ∅ 

)
= V 

(
t + 0 

)
= 

2 EA ̄u 0 ( 1 − α) 

3 L 

{
1 0 1 0 

}
. (3.23)

• The internal force field is kept unchanged: 

F 
(
( t 0 + � t v ) 

−) = F 
(
t + 0 

)
= 

2 EA ̄u 0 ( 1 − α) 

3 L 

{
1 0 1 0 

}
. (3.24)

B → C process: 

The real incremental displacement field is calculated under the following condition: In the specimen with E2 and E4

eliminated, the controlled displacement at node N4 is zero, and a force field equal to − 1 
2 V 

(
t 0 , 1 , 1 , 0 , ∅ 

)
is applied.

At point C , i.e. the time ( t 0 + � t v ) 
+ 
, there are, 

• The displacement field: 

D 

(
( t 0 + � t v ) 

+ ) = ū 0 

{ 

0 

1 − α

6 

5 + α

6 

+ 

� t v 

t 0 
1 + 

� t v 

t 0 

} 

. (3.25)

• The VF field: 

V 

(
t 0 , 2 , 0 , 0 , ∅ 

)
= 

EA ̄u 0 ( 1 − α) 

3 L 

{
1 0 1 0 

}
. (3.26)

• The internal force field: 

F 
(
( t 0 + � t v ) 

+ ) = 

EA ̄u 0 ( 1 − α) 

3 L 

{
1 0 1 0 

}
. (3.27)

C → D process: 

The increment in the controlled displacement at node N4 is � t v 
t 0 

ū 0 . At point D , i.e. the time ( t 0 + 2 � t v ) 
−
, there are, 

• The displacement field: 

D 

(
( t 0 + 2 � t v ) 

−) = ū 0 

{ 

0 

1 − α

6 

5 + α

6 

+ 2 

� t v 

t 0 
1 + 2 

� t v 

t 0 

} 

. (3.28)

• The VF field: 

V 

(
t 0 , 2 , 1 , 0 , ∅ 

)
= 

EA ̄u 0 ( 1 − α) 

3 L 

{
1 0 1 0 

}
. (3.29)

• The internal force field: 

F 
(
( t 0 + 2 � t v ) 

+ ) = 

EA ̄u 0 ( 1 − α) 

3 L 

{
1 0 1 0 

}
. (3.30)

D → E process: 

The real incremental displacement field is calculated under the following condition: In the specimen with E2 and

E4 eliminated, the controlled displacement at node N4 is zero, and a force field equal to −V 

(
t 0 , 2 , 1 , 0 , ∅ 

)
=

− 1 
2 V 

(
t 0 , 1 , 1 , 0 , ∅ 

)
is applied. At point E , i.e. the time ( t 0 + 2 � t v ) 

+ 
, there are, 

• The displacement field: 

D 

(
( t 0 + 2 � t v ) 

+ ) = ū 0 

{ 

0 0 1 + 2 

� t v 

t 0 
1 + 2 

� t v 

t 0 

} 

. (3.31)

• The VF field: 

V 

(
t 0 , 2 , 1 , 1 , ∅ 

)
= 

{
0 0 0 0 

}
. (3.32)

• The internal force field: ( + ) { }

F ( t 0 + 2 � t v ) = 0 0 0 0 . (3.33) 
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3.2. Case 2: when E4 is induced to break by the VF release 

As for the example given in Section 3.1 , it is actually a pure VF releasing process after the time t + 
0 

(point A in Fig. 6 ),

which is suitable to show the proposed algorithm to store up and release VF fields in a separate manner. 

Nevertheless, in real failures, relaxations of VF fields and appearances of new breakages are often coupled with and

influenced by each other. To illustrate such a coupling mechanism, the following case is presented: in the specimen, E2

breaks at t 0 , and E4 breaks at t 0 + � t v . The corresponding curves are shown in Fig. 12 The key states during the whole

failure process are tracked one by one in the following. 

Point O : 

• The displacement field: 

D 

(
t −0 

)
= ū 0 

{ 

0 

1 

3 

2 

3 

1 

} 

, (3.34) 

where, ū 0 = 

3 L f t ( 1 −θ ) 
E . 

• There is no VF field so far. 
• The internal force field: 

F 
(
t −0 

)
= 

2 EA ̄u 0 

3 L 

{ 

1 0 1 

1 

2 

} 

. (3.35) 

• E2’s internal force to be released at nodes N2 and N3: F̄ E2 = 

EA ̄u 0 
3 L . 

• Reaction force at N1: R 
(
t −
0 

)
= 

2 EA ̄u 0 
3 L . 

O → A process: 

The trial incremental displacement field is calculated under the following conditions (which are the same as those for

calculating � D 1 ( t 0 ) in Section 3.1.2 , as shown in Fig. 5 ): in the specimen with E2 eliminated, the controlled displacement at

node N4 is zero, and E2’s internal force, i.e. F̄ E2 , is released at nodes N2 and N3, which is accompanied by the storage of

corresponding incremental VF field. At point A , i.e. the time t + 
0 

, there are, 

• The displacement field: 

D 

(
t + 0 

)
= ū 0 

{ 

0 

1 

3 

− α

12 

2 

3 

+ 

α

12 

1 

} 

. (3.36) 

• The viscous force field: 

V 

(
t 0 , 1 , 0 , 0 , ∅ 

)
= 

( 1 − α) EA ̄u 0 

6 L 

{
1 0 1 −1 

}
. (3.37) 

We note 

V̄ ( t 0 ) = V 

(
t 0 , 1 , 0 , 0 , ∅ 

)
, (3.38) 

and therefore, VF stored in element i is written as V̄ Ei ( t 0 ) . For example, V̄ E4 ( t 0 ) = − ( 1 −α) EA ̄u 0 
6 L . 

• The internal force field: 

F 
(
t + 0 

)
= 

2 EA ̄u 0 

3 L 

{(
1 − α

4 

)
0 

(
1 − α

4 

)
1 
2 

(
1 + 

α
2 

)}
. (3.39) 

• There is no internal force left to be released. 
• Reaction force at N1: R 

(
t + 
0 

)
= 

EA ̄u 0 
3 L . 

A → B process: 

The incremental displacement field is calculated under the following condition: in the specimen with E2 eliminated, the

controlled displacement at node N4 is � t v 
t 0 

ū 0 . At point B , i.e. the time ( t 0 + � t v ) 
−
, there are, 

• The displacement field: 

D 

(
( t 0 + � t v ) 

−) = ū 0 

{ 

0 

1 

3 

− α

12 

+ 

1 

4 

� t v 

t 0 

2 

3 

+ 

α

12 

+ 

3 

4 

� t v 

t 0 
1 + 

� t v 

t 0 

} 

. (3.40) 

• The VF field stored at time t 0 : 

V 

(
t 0 , 1 , 1 , 0 , { E4 } ) = 

( 1 − α) EA ̄u 0 

6 L 

{
1 0 1 0 

}
. (3.41) 

• The internal force field: 

F 
(
( t 0 + � t v ) 

−) = 

EA ̄u 0 

L 

(
2 

3 

− α

6 

+ 

1 

2 

� t v 

t 0 

){
1 0 1 0 

}
. (3.42) 

• E4’s internal force to be released at N2 and N3: F̄ E4 = 

EA ̄u 0 
L 

(
1 
3 + 

α
6 + 

1 
2 

� t v 
t 0 

)
. 
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Fig. 12. In case 2, the curves of the reaction force at N1, R N1 , and the displacement of N2, u N2 , versus time. 

Fig. 13. In case 2, boundary and loading conditions for calculating the incremental deformations, which bridge B and C in Fig. 12 . 

 

 

 

 

 

 

 

• VF in E4 to be released due to its own rupture: V̄ E4 ( t 0 ) = 

( 1 −α) EA ̄u 0 
6 L , which is the value in the VF field V̄ ( t 0 ) =

V 

(
t 0 , 1 , 0 , 0 , ∅ 

)
, as shown in Eqs. (3.37) and ( 3.38 ). 

• E1’s VF to be released from ( t 0 + � t v ) 
− to ( t 0 + � t v ) 

+ 
, according to the assumed stepwise viscous relaxation: 1 

2 V̄ E1 ( t 0 ) =
( 1 −α) EA ̄u 0 

12 L . 

• E3’s VF to be released from ( t 0 + � t v ) 
− to ( t 0 + � t v ) 

+ 
, according to the assumed stepwise viscous relaxation: 1 

2 V̄ E3 ( t 0 ) =
( 1 −α) EA ̄u 0 

12 L . 

• Reaction force at N1: R 
(
( t 0 + � t v ) 

−) = F E1 − V̄ E1 ( t 0 ) = 

EA ̄u 0 
L 

(
1 
6 + 

α
3 + 

1 
2 

� t v 
t 0 

)
. 

B → C process: 

There are two kinds of incremental displacement fields to be calculated, as shown in Fig. 13 . 

The first incremental displacement field is due to the assumed stepwise viscous relaxation, 1 
2 V̄ E1 ( t 0 ) and 

1 
2 V̄ E3 ( t 0 ) in in-

tact elements E1 and E 3 , respectively. It is calculated under the following condition: in the specimen with E2 and E4 elim-

inated, the controlled displacement at node N4 is 0, the forces 1 
2 V̄ E1 ( t 0 ) ( → ) , 1 

2 V̄ E1 ( t 0 ) ( ← ) , 1 
2 V̄ E3 ( t 0 ) ( → ) and 

1 
2 V̄ E3 ( t 0 ) ( ← )

are applied at nodes N1, N2, N3 and N4, respectively. The incremental field is, 

� 

BC 

D 1 = 

1 − α
ū 0 

{
0 −1 1 0 

}
. (3.43)
24 
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The second incremental displacement field is due to the release of internal force and VF in E4. It is calculated under the

following condition: in the specimen with E2 and E4 eliminated, the controlled displacement at node N4 is 0, the forces(
F̄ E4 + V̄ E4 ( t 0 ) 

)
( ← ) and 

(
F̄ E4 + V̄ E4 ( t 0 ) 

)
( → ) are applied at N2 and N3, respectively. The corresponding incremental field is, 

� 

BC 

D 2 = 

1 

4 

(
1 + 

� t v 

t 0 

)
ū 0 

{
0 −1 1 0 

}
. (3.44) 

The real incremental displacement field is, 

� 

BC 

D = � 

BC 

D 1 + α� 

BC 

D 2 = 

(
1 

24 

+ 

5 

24 

α + 

α

4 

� t v 

t 0 

)
ū 0 

{
0 −1 1 0 

}
. (3.45) 

Notably, in Fig. 12 , the A → C process is generally nonlinear, and it is approximately taken as two linear elastic processes,

i.e. A → B and B → C in order to keep the non-iterative feature of the proposed algorithm. 

At point C , i.e. the time ( t 0 + � t v ) 
+ 
, there are, 

• The displacement field: 

D 

(
( t 0 + � t v ) 

+ ) = ū 0 

{ 

0 

7 

24 

− 7 α

24 

+ 

1 − α

4 

� t v 

t 0 

17 

24 

+ 

7 α

24 

+ 

(
3 

4 

+ 

α

4 

)� t v 

t 0 
1 + 

� t v 

t 0 

} 

. (3.46) 

• The VF field stored at t 0 : 

V 

(
t 0 , 2 , 0 , 0 , { E4 } ) = 

EA ̄u 0 ( 1 − α) 

12 L 

{
1 0 1 0 

}
. (3.47) 

• The VF field stored at t 0 + � t v : 

V 

(
t 0 + � t v , 1 , 0 , 0 , ∅ 

)
= 

EA ̄u 0 ( 1 − α) 

2 L 

(
1 + 

� t v 

t 0 

){
1 0 1 0 

}
, (3.48) 

which is obtained in −( 1 − α) � 

BC 

D 2 . For the convenience of the following statement, note 

V̄ ( t 0 + � t v ) = V 

(
t 0 + � t v , 1 , 0 , 0 , ∅ 

)
. (3.49) 

• The internal force field: 

F 
(
( t 0 + � t v ) 

+ ) = 

EA ̄u 0 ( 1 − α) 

L 

(
7 

12 

+ 

1 

2 

� t v 

t 0 

){
1 0 1 0 

}
. (3.50) 

• There is no more internal force to be released. 
• There is no more VF to be released at this time. 
• Reaction force at N1: R 

(
( t 0 + � t v ) 

+ ) = F E1 − 1 
2 V̄ E1 ( t 0 ) − 1 

2 V̄ E1 ( t 0 + � t v ) = 0 . 

C → D process: 

The corresponding incremental displacement field is calculated under the following condition: in the specimen with E2

and E4 eliminated, the controlled displacement at node N4 is � t v 
t 0 

ū 0 . 

At point D , i.e. the time ( t 0 + 2 � t v ) 
−
, there are, 

• The displacement field: 

D 

(
( t 0 + 2 � t v ) 

−) = ū 0 

{ 

0 

7 

24 

− 7 α

24 

+ 

1 − α

4 

� t v 

t 0 

17 

24 

+ 

7 α

24 

+ 

(
7 

4 

+ 

α

4 

)� t v 

t 0 
1 + 2 

� t v 

t 0 

} 

. (3.51) 

• The VF field stored around t 0 : 

V 

(
t 0 , 2 , 1 , 0 , { E 4 } ) = 

( 1 − α) EA ̄u 0 

12 L 

{
1 0 1 0 

}
. (3.52) 

• The VF field stored around t 0 + � t v : 

V 

(
t 0 + � t v , 1 , 1 , 0 , ∅ 

)
= 

EA ̄u 0 ( 1 − α) 

2 L 

(
1 + 

� t v 

t 0 

){
1 0 1 0 

}
. (3.53) 

• The internal force field: 

F 
(
( t 0 + 2 � t v ) 

−) = 

EA ̄u 0 ( 1 − α) 

L 

(
7 

12 

+ 

1 

2 

� t v 

t 0 

){
1 0 1 0 

}
. (3.54) 

• E1’s VF to be released from ( t 0 + 2 � t v ) 
− to ( t 0 + 2 � t v ) 

+ 
, according to the assumed stepwise viscous relaxation:

1 
2 V̄ E1 ( t 0 ) + 

1 
2 V̄ E1 ( t 0 + � t v ) . 

• E3’s VF to be released from ( t 0 + 2 � t v ) 
− to ( t 0 + 2 � t v ) 

+ 
, according to the assumed stepwise viscous relaxation:

1 
2 V̄ E3 ( t 0 ) + 

1 
2 V̄ E3 ( t 0 + � t v ) . 

•
( −) 1 ¯ ¯
Reaction force at N1: R ( t 0 + 2 � t v ) = F E1 − 2 V E1 ( t 0 ) − V E1 ( t 0 + � t v ) = 0 . 
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Fig. 14. In case 2, boundary and loading conditions for calculating the incremental deformation, which bridges D and E as shown in Fig. 12 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D → E process: 

The incremental displacement field is due to the assumed stepwise viscous relaxation, 1 
2 V̄ E1 ( t 0 ) , 

1 
2 V̄ E3 ( t 0 ) , 

1 
2 V̄ E1 ( t 0 + � t v )

and 

1 
2 V̄ E3 ( t 0 + � t v ) . Refer to Fig. 14 , it is calculated under the following condition: in the specimen with E2 and E4 elimi-

nated, the controlled displacement at node N4 is 0, the forces 1 
2 

[
V̄ E1 ( t 0 ) + V̄ E1 ( t 0 + � t v ) 

]
( → ) , 1 

2 

[
V̄ E1 ( t 0 ) + V̄ E1 ( t 0 + � t v ) 

]
( ← ) ,

1 
2 

[
V̄ E3 ( t 0 ) + V̄ E3 ( t 0 + � t v ) 

]
( → ) and 

1 
2 

[
V̄ E3 ( t 0 ) + V̄ E3 ( t 0 + � t v ) 

]
( ← ) are applied at N1, N2, N3 and N4, respectively. The incre-

mental field is, 

� 

DE 

D = 

(
1 

3 

+ 

1 

4 

� t v 

t 0 

)
1 − α

2 

ū 0 

{
0 −1 1 0 

}
. (3.55)

At point E , i.e. the time ( t 0 + 2 � t v ) 
+ 
, there are, 

• The displacement field: 

D 

(
( t 0 + 2 � t v ) 

+ ) = ū 0 

{ 

0 ( 1 − α) 

(
1 

8 

+ 

1 

8 

� t v 

t 0 

)
7 

8 

+ 

α

8 

+ 

(
15 

8 

+ 

α

8 

)� t v 

t 0 
1 + 2 

� t v 

t 0 

} 

. (3.56)

• The VF field stored around t 0 : 

V 

(
t 0 , 2 , 1 , 1 , { E4 } ) = 

{
0 0 0 0 

}
, (3.57)

which has been fully released. It vanishes from ( t 0 + 2 � t v ) 
+ on. 

• The VF field stored around t 0 + � t v : 

V 

(
t 0 + � t v , 2 , 0 , 0 , ∅ 

)
= 

EA ̄u 0 ( 1 − α) 

4 L 

(
1 + 

� t v 

t 0 

){
1 0 1 0 

}
. (3.58)

• The internal force field: 

F 
(
( t 0 + 2 � t v ) 

+ ) = 

EA ̄u 0 ( 1 − α) 

4 L 

(
1 + 

� t v 

t 0 

){
1 0 1 0 

}
. (3.59)

• There is no more internal force to be released. 
• There is no more VF to be release at this time. 
• Reaction force at N1: R 

(
( t 0 + 2 � t v ) 

+ ) = F E1 − 1 
2 V̄ E1 ( t 0 + � t v ) = 0 . 

E → F process: 

The incremental displacement field is calculated under the following condition: in the specimen with E2 and E4 elimi-

nated, the controlled displacement on node N4 is � t v 
t 0 

ū 0 . 

At point F , i.e. the time ( t 0 + 3 � t v ) 
−
, there are, 

• The displacement field: 

D 

(
( t 0 + 3 � t v ) 

−) = ū 0 

{ 

0 ( 1 − α) 

(
1 

8 

+ 

1 

8 

� t v 

t 0 

)
7 

8 

+ 

α

8 

+ 

(
23 

8 

+ 

α

8 

)� t v 

t 0 
1 + 3 

� t v 

t 0 

} 

. (3.60)

• The viscous force field stored around t 0 + � t v : 

V 

(
t 0 + � t v , 2 , 1 , 0 , ∅ 

)
= 

EA ̄u 0 ( 1 − α) 

4 L 

(
1 + 

� t v 

t 0 

){
1 0 1 0 

}
. (3.61)

• The internal force field: 

F 
(
( t 0 + 3 � t v ) 

−) = 

EA ̄u 0 ( 1 − α) 

4 L 

(
1 + 

� t v 

t 0 

){
1 0 1 0 

}
. (3.62)

• E1’s VF to be release from ( t 0 + 3 � t v ) 
− to ( t 0 + 3 � t v ) 

+ 
, according to the assumed stepwise viscous relaxation:

1 V̄ E1 ( t 0 + � t v ) . 
2 
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• E3’s VF to be release from ( t 0 + 3 � t v ) 
− to ( t 0 + 3 � t v ) 

+ 
, according to the assumed stepwise viscous relaxation:

1 
2 V̄ E3 ( t 0 + � t v ) . 

• Reaction force at N1: R 
(
( t 0 + 3 � t v ) 

−) = F E1 − 1 
2 V̄ E1 ( t 0 + � t v ) = 0 . 

F → G process: 

The incremental displacement field is due to the assumed stepwise viscous relaxation, 1 
2 V̄ E1 ( t 0 + � t v ) and 

1 
2 V̄ E3 ( t 0 + � t v ) .

It is calculated under the following condition: in the specimen with E2 and E4 eliminated, the controlled displacement at

node N4 is 0, the forces 1 
2 V̄ E1 ( t 0 + � t v ) ( → ) , 1 

2 V̄ E1 ( t 0 + � t v ) ( ← ) , 1 
2 V̄ E3 ( t 0 + � t v ) ( → ) and 

1 
2 V̄ E3 ( t 0 + � t v ) ( ← ) are applied at 

N1, N2, N3 and N4, respectively. 

At point G , i.e. the time ( t 0 + 3 � t v ) 
+ 
, there are, 

• The displacement field: 

D 

(
( t 0 + 3 � t v ) 

+ ) = 

(
1 + 3 

� t v 

t 0 

)
ū 0 

{
0 0 1 1 

}
. (3.63) 

• The VF field stored around t 0 + � t v : 

V 

(
t 0 + � t v , 2 , 1 , 1 , ∅ 

)
= 

{
0 0 0 0 

}
. (3.64) 

• The internal force field: 

F 
(
( t 0 + 2 � t v ) 

+ ) = 

{
0 0 0 0 

}
. (3.65) 

• There is no more internal force to be released. 
• There is no more VF to be released since then. 
• Reaction force at N1: R 

(
( t 0 + 2 � t v ) 

+ ) = 0 . 

4. Event-driven algorithm associated with elastoviscous stress redistribution 

The progressive failure under external loading is simulated by successive occurrences of “events”, which may be breakage

of intact elements, contact/separation of previously cracked elements, or step-wise releasing of critical viscous force fields.

Thus, during the performance of a numerical simulation it is necessary to detect new event(s) correctly. The event-driven

algorithm (refer to [16,37,38] ), which is also called the event-by-event method, is adopted here. In each step, the value of

increment in load or forces to be released depends on the appearance of new critical element(s). 

4.1. Categories of critical events 

After applying a trial increment, the normal stress σ and the shear stress τ in each beam are compared with the strength

surface, which has been defined by Eq. (2.2) and shown in Fig. 2 . 

Additionally, as shown in Fig. 3 , the separation/contact of cracked elements is detected according to √ 

( � u ) 
2 + ( L + � v ) 2 

L 
> 1 ( contact → separation ) , (4.1) 

L √ 

( � u ) 
2 + ( L + � v ) 2 

> 1 ( separation → contact ) , (4.2) 

where, � u = u j − u i and � v = v j − v i are the relative displacements between ends i and j in an element. As for step-wise

release of VF fields, the present state of the VF field stored at time t 0 is expressed as V 

(
t 0 , n v , φt , φv , R 

)
. We need

to check whether the present time, t , has reached the value of t 0 + 

∑ n v 
i =1 

� t i , and the rule of judging the n v th VF step can

be expressed as, 

t 

t 0 + 

∑ n v 
i =1 � t i 

= 1 . (4.3) 

Only one event is permitted per computational cycle. If several elements and/or VF fields have violated strength rules,

the most critical one undergoes a new event. 

Treatments of the above different events are listed in Table 1 . Notably, for both breakage of intact element and step-wise

release of VF field will lead to stress redistribution (or equivalently relaxation), for which the relevant strategy involved is

illustrated in Section 3 . 
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Table 1 

Summary of event types and the corresponding computational treatments in the present event-driven algorithm. 

Treatment \ Event Breakage of intact element Seperation/contact of cracked element Stepwise release of VF field 

Stiffness adjustment � � –

Stress redistribution � – � 

VF field storage � – –

Induced event check � – � 

Fig. 15. Flow charts of (a) the whole event-driven algorithm, (b) a regular step and (c) a damaging step. 
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4.2. Simulation procedure 

The simulation is implemented by sequentially detecting and treating critical events. The flow chart of such an event-

driven algorithm is shown in Fig. 15 (a). According to whether the external controlled displacement varies, two kinds of

incremental steps are proposed. One is the so-called “regular steps” where there is no more force to be released at the very

beginning of the step and a new critical event can only appear by letting time elapse and/or external controlled loading

vary, and the other kind is the so-called “damaging step” where some viscous and/or internal forces need to be released

immediately, preventing time and external controlled displacement from evolving before their full release. Specifically, when

the critical event detected during a regular step is contact/separation of cracked element with no new breakage, there will

be no forces to be released at the step end, and therefore the next step is still a regular one. 

For a regular step ( Fig. 15 (b)), a trial increment in controlled displacement is applied, which produces the displacement

field 
D . Then, a minimum λ is determined so that just one critical event arises in the field D 0 + λ
D . Notably, in this

study, events occurring under the same λ are merged as one single “critical event”. Then, according to the type of “critical

event”, the specimen state should be updated correspondingly, as shown in Table 1 . The state-updating operation will be

presented in more details at the end of this section. 

A damaging step can be much more complex than a regular one, due to possible occurrences of sequentially induced

failures, as shown in Fig. 15 (c). With reference to Fig. 15 (a), there must be some viscous and/or internal forces to be released.

Based on the assumption already mentioned in Section 3 , the release of both internal forces and stepwise VF fields (refer

to Fig. 11 ) is infinitely faster than the external loading rate. As a result, the damaging step is deemed taking no time to

happen. In Fig. 15 (c), the release of VF field leads to the incremental displacement field 
D 

( i ) 
V F 

, which is assumed to be

completely an immediate elastic process. While the release of internal forces (IF) gives rise to 
D 

( i ) 
IF 

, which is composed

of an immediate part, i.e. α
D 

( i ) 
IF 

, and a viscous part, i.e. ( 1 − α) 
D 

( i ) 
IF 

, that actually does not take place presently and is

substituted with a corresponding VF field (e.g., refer to Fig. 13 for illustration). Here, the superscript “i ”, which is initially

set as 1 at the beginning of the damaging step, stands for the iteration numbering for sequentially checking induced critical

events. Therefore, the trial incremental field at the present iteration can be written as 


D 

( i ) = 
D 

( i ) 
V F 

+ α
D 

( i ) 
IF 

, (4.4) 

where, on the right-hand side, the first term is the contribution of VF release, while the second term is due to the IF release.

Notably, in Section 3 , a simplified notation has been adopted, i.e. λ1 , which is the same as λ(1) here. So are 
D 

( i ) and 
D i .

Then an operation of detecting induced events (refer to Section 4.1 ) is conducted, i.e. finding a minimum λ̄( i ) so that one

critical event happens in the total displacement field, 

D̄ 

( i ) ( t ) = D 

(
t −

)
+ 

i −1 ∑ 

j=1 

λ j 
D 

( j ) + ̄λ( i ) 
D 

( i ) , (4.5) 

where, the “–” in D̄ 

( i ) ( t ) and λ̄( i ) indicates the corresponding variables are “trial” in nature, and they can become real only

when λ̄( i ) � 1 . The above iteration is stopped once λ̄( i ) > 1 . 

It is important to list what need be done in the “update state” operation, which appears in both regular and damaging

steps, as shown in Fig. 15 (b) and (c): 

• The present displacement field, may be generally written as D 

(
t begin 

)
+ 

∑ 

i λ
( i ) 
D 

( i ) . For a regular step, i = 1 , therefore

it becomes D 

(
t begin 

)
+ λ
D, where 
D is produced by applying a trial increment in the controlled displacement. For a

damaging step, due to the possibility of sequential induced failures, it may take more than one iteration to reach the

final equilibrium. Each iteration makes a contribution of λi 
D 

( i ) . Particularly, now t begin becomes t −. 
• Updating of previously stored VF fields. If some step among a VF field previously stored is to be released now, the

remaining part is 
∏ 

i 

(
1 − λ( i ) 

)
times of the whole magnitude of this critical step. It has been fully released after the

latest λ( i ) = 1 , leading to 
∏ 

i 

(
1 − λ( i ) 

)
= 0 . 

• Treatment of VF fields previously stored in elements induced to break presently. All VFs remaining in it should be

summed up and taken as “internal forces” to be released immediately once and for all. 
• Calculation of internal forces in intact elements. It needs to be done in the displacement field D 

(
t begin 

)
+ 

∑ 

i λ
( i ) 
D 

( i ) by

using the present elemental stiffness. 
• Evolution of internal forces to be released immediately. There are two kinds of forces included, i.e. internal forces so far

stored in the newly broken elements, and viscous forces in them, as just mentioned above. 
• Updating of VF field presently being stored. New VF field can arise only in damaging steps. During a damaging step, the

newly arising VF is calculated in the displacement field 

∑ 

i ( 1 − α) λ( i ) 
D 

( i ) 
IF 

. 

5. Numerical examples and analyses 

The proposed damage event-driven model based on the concept of VF field is used to simulate a series of failure phe-

nomena in order to show its effectiveness of capturing main characteristics in quasi-brittle failures. 
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Table 2 

Parameter setting related to elasticity, strength and failure-induced viscosity. Notes: for convenience, � t v 1 is taken as the basic material parameter. 

The controlled loading velocity v̄ is measured by relating it to � t v 1 via v̄ = 

˜ d / � t v 1 . Here the coefficient ˜ d means the displacement under the velocity 

v̄ in time � t v 1 . In Case 1, we let v̄ · � t v 1 = 

˜ d = 5 . 0 × 10 −7 m , a uniform controlled displacement along the horizontal direction is applied to produce a 

macro-level uniaxial tension. From a pure computational viewpoint, the value of ˜ d influences the result, while v̄ and � t v 1 are easily determined once 

either is known. For example, when we set � t v 1 = 0 . 01 s , v̄ becomes 5 . 0 × 10 −5 m / s . The average strain rate along the tensile direction is ˙ ε̄ = 

˜ d / l� t v 1 , 

where l is the sidelength of the rectangular specimen along the tested direction. In (a), D = 0 . 9 means that the contact stiffness of cracked element 

is ( 1 − D ) times of the intact normal stiffness. In (b), proportions of VF released in VF step no. 0–4 is 1: 1: 1: 1: 1, thus the parameter α defined in 

Section 3 is equal to 0.2 by keeping in mind that step no. 0 corresponds to the immediate elasticity. 

(a) Meso elastic and strength properties of the material. 

Phases \ Properties E (MPa) f t (MPa) f c (MPa) c (MPa) φ( °) D 

Aggregate 70,0 0 0 10.0 120.0 15.0 45 0.9 

Interface 25,0 0 0 2.7 15.0 1.875 45 0.9 

Matrix 25,0 0 0 5 60.0 7.5 45 0.9 

(b) The settings related to viscosity induced by elemental breakage adopted for modeling. 

Failure induced 

viscosity 

Viscous force field caused by each 

elemental breakage takes 5 steps to 

release, with step no. 0 immediately 

elastic and 1–4 viscus. 


t v 1 : 
t v 2 : 
t v 3 : 
t v 4 = 1 : 2 : 4 : 8 

VF released in step no. 0–4 : 1:1:1:1:1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The tensile tests are performed on a GB lattice with a rectangular geometry of 9.75 by 9.52 cm. The employed lattice is

triangular and has a total of 10,0 6 6 GB elements and 3433 nodes. All elements have a common length, i.e. 
√ 

3 / 10 cm. The

load is applied to the lattice by setting a uniform controlled displacement at the right edge and fixing the left edge. 

A total of 9 cases are simulated in order to explore failure characteristics from various viewpoints. 

The first case, i.e. Case 1, has the following settings: 

• The parameters associated with meso-scale elastic, strength and failure-induced viscosity are listed in Table 2 . 
• The loading (right) and constrained (left) edges have matrix-phase elastic properties, while its strength is 100 times of

that of the matrix material. All horizontal translational degrees of freedom are fixed on the left edge, and with a velocity

given by v̄ · � t v 1 = 

˜ d = 5 . 0 × 10 −7 m on the right edge, where � t v 1 is considered as material-dependent and it is set as

0.01 s without loss of generality. 
• On the upper and bottom edges, no constraint is added. 
• A particle overlay including 150 aggregates of different sizes is employed. Aggregates are randomly projected onto the

matrix-phase lattice, which results in a random three-phased mesostructure composing of aggregate, matrix and inter-

faces between them. 

Case 2 is the same as Case 1 except that the viscous effect is excluded. Namely, it is simulated by the previous quasi-

static lattice model [13,37,39] . Now we have v̄ · � t v 1 → 0 . Since we have fixed � t v 1 = 0 . 01 s , there is v̄ → 0 , which indicates

a quasi-static loading condition. 

Case 3 is the same as Case 1 except that the loading rate v̄ is 0.01 times of that in Case 1, i.e. v̄ = 5 . 0 × 10 −7 m / s . 

Case 4 is the same as Case 1 except that the loading rate v̄ is 0.1 times of that in Case 1, i.e. v̄ = 5 . 0 × 10 −6 m / s . 

Case 5 is the same as Case 1 except that the loading rate v̄ is 10 times of that in Case 1, i.e. v̄ = 5 . 0 × 10 −4 m / s . 

Case 6 is the same as Case 1 except that v̄ is equal to that in Case 1 before the controlled displacement reaches 7 μm ,

and it is 0.01 times of that in Case 1 when the controlled displacement is increased from 7 μm to 9 μm . Then, v̄ is equal to

that in Case 1 again. 

Case 7 is the same as Case 1 except that each VF field is released in 5 VF steps with the ratio of 6: 1: 1: 1: 1. Considering

that the 0th stepwise release is the force field immediately released upon the occurrence of elemental breakage, the bigger

its proportion is, the more profound the immediate elasticity is among the stress-redistribution deformation. 

Case 8 is the same as Case 3 except that � t v 2 , � t v 3 and � t v 4 are set as 10 8 � t v 1 , indicating that the last 60% of the viscous

force field will not be released within the interested time range which is far smaller than 10 8 � t v 1 . As a result, it leads to a

permanent deformation. 

Case 9 is the same as Case 1 except that the controlled displacement is applied in a cyclic manner. The absolute value

of loading rate is kept constant, but the loading direction is reversed cyclicly. 

5.1. Analyses of a typical result compared with the previous lattice model 

To show the characteristics of progressive failures associated with the time-dependent stress redistribution, the results

of the present model, i.e. Case 1, are compared with those produced via the previous model without any temporal effect,

i.e. Case 2, which are shown in Fig. 16 . 
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Fig. 16. Results of a typical example, i.e. Case 1, which are compared with Case 2. (a) Diagrams of reaction force and accumulated broken element numbers 

versus the controlled displacement. Crack patterns corresponding to the controlled displacement (b) 8 . 20 μm , (c) 20 . 0 μm in Case 1, and (d) 6 . 10 μm in 

Case 2. 

 

 

 

 

 

 

 

 

 

 

 

In this study we simply consider the viscous effect immediately after the occurrence of local failures. Thus naturally the

first elemental breakage happens in the same element and at the same loading level, i.e. when the controlled displacement

ū = 5 . 43 μm . 

There is a nonlinear stage between the first elemental failure and the peak force. The peak force for Case 1 is 156 N,

which is much larger than that for Case 2, 140 N. Meanwhile its nonlinear stage is more lasting than that in Case 2: from

Fig. 16 (a), the controlled displacement span during the nonlinear stage in Case 1 is equal to 1 . 57 μm , which is obviously

larger than that in Case 2, i.e. 0 . 64 μm . 

The viscosity associated with local ruptures also influences the post-peak softening behaviors. In Case 2 where there

is no viscosity, the post-peak ductility is very weak. Actually, this has been a fundamental issue in lattice modeling for a

few decades [11,20,21,24] . If the time-dependence in stress redistribution is not considered, the post-peak ductility remains

unrealistically low whether the force–release or load–unload algorithm is adopted [11,13,20,21] . Nevertheless, when viscosity

is considered, i.e. in Case 1, the load–displacement curve is much more realistic and is closer to experimental observations

presented by Prado et al. [40] . This is explained as follows. The local failure influences the remaining specimen in two
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ways: (i) decreasing the total stiffness due to the vanishing stiffness of the broken element, and (ii) induced relaxation

of the remaining specimen for the forces previously stored in the broken element need to be released. The longer the

stress redistribution process takes, the less possible other intact elements will be induced to break. In Case 2, the stress

redistribution takes no time to complete immediately after the onset of local breakage, which leads to the over-brittle issue

[11,21] . 

Furthermore, viscosity plays a considerable role in the progressive crack patterns, which is analyzed during the pre- and

post-peak stage in the following: 

• The pre-peak behaviors are similar in both cases. Elemental breakages keep accumulating with increasing external load-

ing, and no severe macro cracks appear. Refer to Fig. 15 (a), during the pre-peak period, the total number of broken

elements is 60 in Case 1, but only 7 in Case 2. 
• The post-peak crack patterns are strongly influenced by viscosity. In Case 2 with no viscosity, immediately after the peak,

the deformation in the entire specimen is highly localized at the macro-level. In other words, a macrocrack appears,

which is corresponding to both the steep drop in reaction force and the sudden increase in broken element number,

as shown in Fig. 16 (a). While in Case 1 where viscosity is accounted for, immediately after the peak, more scattering

elemental breakages arise throughout the specimen without severe localization. In other words, macro-cracks dot not

happen immediately following the peak, but a while later. Macro-cracks in Case 1 nucleate and extend gradually, but

those in Case 2 form suddenly once the peak load has been reached. 

In summary, the newly proposed model can reproduce more key features of tensile failures in quasi-brittle media like

concrete [40] , and can significantly overcome the over-brittle issue that the lattice models with viscosity neglected are

subjected to. 

5.2. Strain-rate sensitivity 

By analyzing Cases 1–5, the dependence of failure behavior on loading rate is discussed. In this study, we take � t vi

as a material-dependent parameter to measure viscosity. In Cases 1–5, the material is kept the same by fixing � t vi , thus

the loading rate sensitivity can be represented by the variation of v̄ · � t v 1 . The results obtained are shown in Fig. 17 . The

following trends can be observed: 

• The linear elastic stage is independent of the loading rate and it ends when the controlled displacement reaches 5 . 43 μm .
• The higher the loading rate v̄ , the longer the pre-peak nonlinear stage is , and the higher the peak load is. 
• The crack pattern also strongly depends on the loading rate. In Figs. 16 (a) and 17 (a), at the same level of controlled

displacement, the accumulated number of broken elements increases with increasing loading rate. This can be explained

as follows. In the case of a higher loading rate, the controlled displacement increases faster such that a bigger increment

of displacement would occur when each VF field has finished releasing. From Figs. 16 (b)–(d) and 17 (b)–(d), the difference

in loading rate leads to very different final crack patterns. For example, a single macro-crack mainly appears in Cases 2

and 3, while two or more macro-cracks happen in other cases. 
• The post-peak parts of the force–displacement curves become more and more ductile with increasing loading rate, indi-

cated by curves of failed element number versus displacement in Fig. 17 (a). 

We have also simulated the loading rate switching problem, i.e. Case 6. As shown in Fig. 18 , due to the loading-rate

shifting, the force–displacement curve, the evolution of broken element number and the final crack pattern deviate from

both Cases 1 and 3. Before the rate has been switched from v̄ = 5 . 0 × 10 −5 m / s to v̄ = 5 . 0 × 10 −7 m / s , each stored VF field

takes an increment in controlled displacement, 7 . 5 × 10 −6 m , to release. However, when the rate is v̄ = 5 . 0 × 10 −7 m / s , it

only takes 7 . 5 × 10 −8 m . This explains why the force–displacement curve becomes less ductile under a lower loading rate. 

5.3. Post-peak softening caused by viscosity 

To study the dependence of failure property on viscosity, there is a need to adjust the viscosity-related parameter � t vi

under a fixed loading rate v̄ . 
Before everything, it is worth noting a property of the present method. In Cases 1–5, we have fixed � t v 1 = 0 . 01 s , so a

larger ˜ d corresponds to a larger loading rate v̄ according to v̄ · � t v 1 = 

˜ d . However, if we fix the value of v̄ , the change in d̃

will be purely due to the change in � t v 1 . Since the failure behavior of the present model is governed by the value of ˜ d , we

decide to consider the following equivalent relations: 

Case 1: v̄ = 5 . 0 × 10 −5 m / s , � t v 1 = 0 . 01 s ⇔ v̄ = 5 . 0 × 10 −5 m / s , � t v 1 = 0 . 01 s . 

Case 2: v̄ = 5 . 0 × 10 −15 m / s , � t v 1 = 0 . 01 s ⇔ v̄ = 5 . 0 × 10 −5 m / s , � t v 1 = 1 . 0 × 10 −12 s . 

Case 3: v̄ = 5 . 0 × 10 −7 m / s , � t v 1 = 0 . 01 s ⇔ v̄ = 5 . 0 × 10 −5 m / s , � t v 1 = 1 . 0 × 10 −4 s . 

Case 4: v̄ = 5 . 0 × 10 −6 m / s , � t v 1 = 0 . 01 s ⇔ v̄ = 5 . 0 × 10 −5 m / s , � t v 1 = 1 . 0 × 10 −3 s . 

Case 5: v̄ = 5 . 0 × 10 −4 m / s , � t v 1 = 0 . 01 s ⇔ v̄ = 5 . 0 × 10 −5 m / s , � t v 1 = 0 . 1 s . 

Thus, the obtained results for Cases 1–5, i.e. Fig. 17 , can also be used for parameter study related to viscosity, which is

represented by � t . A larger � t means that the VF field takes a longer time to release, which generally leads to a more
v 1 v 1 
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Fig. 17. Loading rate sensitivity illustrated by Cases 1–5. (a) Diagram of reaction force and accumulated broken element number versus the controlled 

displacement and crack patterns of (b) Case 3, (c) Case 4 and (d) Case 5. 

 

 

 

 

 

 

 

 

profound ductility. Particularly, the post-peak ductility is usually described as softening. Therefore, we conclude that the

present model helps to explain how the material softening is produced based on the VF-releasing mechanism. 

Again, the overbrittle post-peak issue remains an open question in the lattice modeling of quasi-brittle materials

[11,12,20,21] . It is interesting to note from Fig. 17 that that the post-peak ductility can be recurred largely via consider-

ing the viscous effect associated with the release of VF fields induced by elemental breakages, and that most of previous

lattice models can be taken as one extremity of the present model, which is the particular case where viscosity is neglected.

5.4. Immediate elasticity versus viscosity 

When a material is subjected to a sudden load, partial deformation happens simultaneously, which is called immediate

elasticity. While the remaining deformation takes some time to arise. If we take the internal force to be released in a

breaking element as a sudden load to the specimen, a part of it causes immediate deformation, and the other produces
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Fig. 18. Study of loading rate switching problem by comparing Case 6 with Cases 1 and 3. (a) Diagram of reaction force and accumulated broken element 

number versus controlled displacement, and (b) the final crack pattern of Case 6. 

Fig. 19. Influence of immediate elasticity, analyzed by comparing Case 7 with � ̄V 1 / ̄V = 0 . 6 and Case 1 with � ̄V 1 / ̄V = 0 . 2 . (a) Diagram of reaction force and 

accumulated broken element number versus the controlled displacement, and (b) the final crack pattern of Case 7. 

 

 

 

 

 

viscous deformation. The relative proportion of immediate release is noted by � ̄V 1 / ̄V , where the symbols of � ̄V 1 and V̄ 1
have been defined in Section 3 and will not be reiterated here. Case 7 with � ̄V 1 / ̄V = 0 . 6 is compared with Case 1 with

� ̄V 1 / ̄V = 0 . 2 , as shown in Fig. 19 . A more significant role played by the immediate elasticity would lead to a lower peak,

a steeper fall right after the peak and a much weaker ductility. In the extreme case where � ̄V 1 / ̄V = 1 , namely when the

whole deformation is purely immediately elastic, the present model is reduced to the previous lattice models which have

the weakness of unrealistic brittleness. 
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Fig. 20. Influence of permanent deformation, analyzed by comparing Cases 8 and 1. (a) Diagram of reaction force and accumulated broken element number 

versus the controlled displacement, and (b) the final crack pattern of Case 8. 

Fig. 21. Failure behavior under cyclic loading, analyzed by comparing Cases 9 and 1. (a) Diagram of reaction force (thin line) and accumulated broken 

element number (thick line) versus the controlled displacement, and (b) the final crack pattern of Case 9. 

 

 

 

 

 

 

5.5. Role of permanent deformation 

In the proposed model, we assume that the VF fields take a series of time increments � t vi to release. If a particular time

increment � t vi is set to be far larger than the testing time scale, the VF field corresponding to that time increment, i.e.

� ̄V i will not be released during the interested time range, resulting that the corresponding part of deformation would not

recover. 

In Case 8, � t vi ( i = 2 , 3 , 4 ) is set as 10 8 � t v 1 , which indicates that the last 60% of the viscous force field will not be re-

leased within the interested time range which is far smaller than 10 8 � t v 1 , leading to permanent deformation. Fig. 20 shows

the corresponding results. When compared with Case 3 where there is no permanent deformation, a higher peak load is
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achieved. Although there is also a steep fall in the displacement–force curve after the peak, the post-peak response becomes

somehow more ductile. Furthermore, the failure becomes more scattering, i.e. more elemental breakages happen. For exam-

ple, when the controlled displacement is equal to 25 μ m, the total number of elemental failures in Case 8 is 406, which is

much larger than that in Case 3, i.e. 289. As mentioned above, the influence of each elemental breakage to the whole system

is attributed to two aspects: one is the degradation of stiffness, and the other is the induction of further failure by releasing

its internal force and VF fields. In Case 8, the latter kind of influence becomes much weaker because the VF fields are only

partially released within the interested time. As a result, induced failures are harder to occur, which delays the occurrence

of macroscopic localized cracks. 

5.6. Cyclic response 

In Case 9, the specimen fails under cyclic loading, as shown in Fig. 21 . In the previous lattice models where viscous

effects are neglected, the response during the unloading stage is purely linear elastic without occurrence of new failures as

long as the controlled displacement has not changed the sign, and the unloading stiffness is equal to the secant stiffness.

However, in Case 9, the unloading processes are nonlinear and the elemental breakages continue to arise, due to the fact

that the VF fields continue to release with the elapse of time whether it is loading or unloading stage. Furthermore, the

unloading stiffness significantly deviates from the secant stiffness. Apparently, the above phenomenon illustrated in Case

9 coincides with some existing experimental observations [12,41] . We have examined that in Case 2, if the cyclic loading

setting used here is adopted, both the force–displacement curve and the final crack pattern would remain the same as their

monotonic loading counterparts presented in Fig. 16 (a) and (d). However, the final crack pattern obtained in Case 9 becomes

very different from that presented in Fig. 16 (d). 

6. Conclusions 

We have developed a procedure to simulate progressive failure processes in quasi-brittle media such as concrete and

rock. As a main modification to previous lattice models [21,37,42] , temporal damage evolution has been considered by in-

corporating the characteristic time for the release of viscous force fields. Firstly, the storage of VF fields is implemented

by releasing the internal forces of the critical element. Subsequently, a stepwise algorithm is proposed to deal with the

time-dependent stress redistribution induced by the release of VF field release, which has succeeded in excluding any non-

linear iterations. The present model, like the non-iterative sequentially linear algorithm [35] , is capable of simulating failure

processes in non-proportional loading problems. 

By simulating uniaxial tensile tests, the present method has successfully illustrated its following abilities: 

• It exhibits the post-peak softening behaviors reasonably well, and helps to achieve a better understanding about the

unreasonably overbrittle problem, which exists in many previous lattice models that have no temporal effects. In the

proposed model, the post-peak softening and the temporal stress-redistribution mechanism are coupled naturally. 
• It reproduces the rate-sensitivity of quasi-brittle failures. Notably, this capability is achieved without the expense of

introducing any nonlinear iteration calculations. Instead, the progressive failure is tracked by solving pure linear equation

systems based on the principle of superposition. 
• The effect of permanent deformation can be easily implemented by simply delaying the release of partial or whole VF

fields. 
• Besides, the concept of VF field release can be helpful in understanding highly complex catastrophic failures. For ex-

ample, after a principal earthquake, some aftershocks may follow in the next few minutes, hours or days. This may be

explained as follows: the main shock causes cracks, hence, the internal forces previously kept on the potential crack sur-

faces are released into the surrounding media, with a VF field stored simultaneously. Subsequently, such a VF field which

is essentially due to the main shock will be released gradually, and can possibly induce further cracks, i.e. aftershocks. 

Notably, “viscous force”, which is the core concept introduced in the present study, is different from inertia. On one

hand, viscosity is associated with the temporal adjustment of material structure, while inertia arises from acceleration of

material points. On the other hand, numerical strategies to deal with them are quite different. Viscous force is considered

as static, e.g. in calculating the incremental displacement field caused by VF relaxation as shown in Fig. 13 . However, such a

storage-relaxation algorithm for VF does not work in the case of inertia. The VF here should not be considered as the inertia

force. 

Corresponding to the VF-field concept, the key parameter newly introduced is α, which is material-dependent and mea-

sures the proportions of immediate elastic and viscous deformations induced by a local breakage. When compared the

present method with that in [17] , even though both of them have the capability of dealing with non-proportional load-

ing problems, some differences exist. (1) In the latter, the counterpart of α is ω, which has a broad range to choose value

and can be even changed after every rupture occurring during the relaxation process. (2) The constitutive law in [17] is

force-deformation, and here it is force-time ( Fig. 11 ). 

Besides, the stepwise constitutive approximation adopted in this study may be replaced by the piece-wise linear one.

This means that, for example, in Figs. 6 and 12 , the saw-tooth A → B → C can be replaced by a smooth linear process. 
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