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Abstract 

Non-Darcy flows associated with high Reynolds numbers often occur in the near-wellbore regions of gas reservoirs or 

hydraulic fractures and thus should not be ignored. However, investigating non-Darcy flow in these porous rocks 

through laboratory experiments is always expensive and time-consuming. As such, this article sought an alternative 

method, and a lattice Boltzmann study of non-Darcy flow in various porous models was performed. The applicability of 

two non-Darcy correlations in porous media and the effect of pore structure on non-Darcy flow were examined. In 

addition, the reasons for the deviation from the linear Darcy flow and different flow patterns related to inertial effects of 

the fluid were also studied. The results showed that the characterization of non-Darcy flow in porous media with the 

cubic law can only be valid in a narrow range of Reynolds number beyond the Darcy regime, outside of which the 

strong inertia-dominated flow yields to the quadratic correction. On the whole, representing the non-Darcy flows using 

the quadratic correction is acceptable, especially for porous media with a higher complexity. The features of non-Darcy 

flow greatly depend on the pore structure of a porous medium, and more heterogeneous pore models always have a 

faster cessation for Darcy flow and a higher β factor. Furthermore, for simple porous media a small amount of 

parameters may be adequate for the prediction of the β factor; while the correlations involving more parameters would 
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be needed to determine the β factor for more intricate porous models, although such correlations may not be widely 

used in various industries. Besides, the non-Darcy flow that occurs in porous media is collectively controlled by 

different mechanisms. At elevated velocities, the inertial core effect in a large channel will lead the flow to be more 

homogeneous and less tortuous, while in porous models with complicated pore space, the steady eddy and reversal flow 

resulting from drag force will make the flow paths more tortuous. As such, it is the hope of this study to provide some 

new insights into the non-Darcy flow in porous media. 

 

Keywords: Porous media; Pore structure; Darcy flow; Non-Darcy flow; Lattice Boltzmann method 

 

1. Introduction  

As the most important discipline in the description of fluid transport in porous media, Darcy’s law has been widely 

adopted in petroleum industries. Darcy flow is also known as the creeping flow, an event which takes place in porous 

materials at a very low Reynolds number (Re <<1). For the increase in flow rates, such as the fluid flow in the 

near-wellbore regions of high-capacity gas and condense reservoirs (Thauvin and Mohanty, 1998) or in proppant-filled 

hydraulic fractures, Darcy’s law no longer holds due to the effect of fluid inertia (Andrade Jr et al., 1999), here the fluid 

governing equation can be corrected with a quadratic or cubic term, and the commonly used correlation is the quadratic 

correlation (Forchgeimer equation) (Forchheimer, 1901):  

 2

f

p U U
K

µ βρ−∇ = +   (1) 

Where ∇p is the pressure gradient in the specific direction, Pa/m; µ is the dynamic viscosity of the fluid, Pa·s; ρ is the 

density of the fluid, kg/m3. In addition, U is the mean velocity through the porous medium, m/s. Kf is the Forchheimer 

permeability which is very close but not equal to Darcy permeability (Balhoff and Wheeler, 2009; Muljadi et al., 2016; 

Newman and Yin, 2013), mD; β is termed as the inertial coefficient or beta factor, m-1. Note that both the Darcy flow 

and non-Darcy flow belong to stationary flows; as Reynolds number increase further, the flow will enter the unsteady 
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turbulent regime, which is out of scope of this article. Also, turbulent flow rarely occurs in subsurface problems 

(Balhoff and Wheeler, 2009).   

Investigating the inertial non-Darcy flow through porous media is essential for gas reservoirs modeling and the 

productivity evaluations of fractured gas wells (Friedel and Voigt, 2006; Miskimins et al., 2005; Ramirez et al., 2007). 

Generally, the β factor and the onset of non-Darcy can be measured through careful multi-rate pressure tests performed 

on relatively large rock samples (Chukwudozie and Tyagi, 2013; Macini et al., 2011), Zeng and Grigg (Zeng and Grigg, 

2006) recommended a revised Forchheimer number to identify the beginning of the non-Darcy flow, and discussed the 

applicability of that through conducting gas flow experiments on several consolidated rocks. Macini et al. (Macini et al., 

2011) reported a series of experiments performed on natural and artificial unconsolidated porous media, showing the 

significant impact of pore structure (grain size distribution and porosity) on fluid flow through porous media. But it is 

evident that the experimental methods are always rather time-consuming and expensive. It is thus of great interest to 

numerically explore the non-Darcy flow in porous models at pore scale through solving the discretized Navier-Stokes 

(NS) equation. Indeed, the macroscopic flow properties can be obtained by averaging the entire simulation domain. 

Previous studies (Fourar et al., 2004; Hill et al., 2001; Koch and Ladd, 1997; Narváez et al., 2013; Yazdchi and Luding, 

2012; Yazdchi et al., 2010) have examined non-Darcy flows in simplified porous geometries, which are often 

constituted by rectangles, circles, cylinders, eclipses or spheres. Furthermore, conceptual pore network modeling was 

also used for the investigation of non-Darcy flow. For instance, Wang et al. (Wang et al., 1999) proposed a tensorial 

Forchheimer equation that was verified by a novel pore network simulation. Then, they evaluated the contribution of 

non-Darcy components with three anisotropic models. Considering that the pore structure of these kind of models are 

quite different from that of natural rock materials, recently investigators have studied the fluid flow within pore spaces 

in either stochastically reconstructed samples or computed tomography (CT) samples that have been directly obtained. 

Chukwudoize and co-workers (Chukwudozie and Tyagi, 2013; Chukwudozie et al., 2012) used the lattice Boltzmann 

method (LBM), combined with the non-Darcy flow theory, to estimate the permeability, tortuosity, and the β factor of a 
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periodic body centered by cubic arrays of smooth and rough sphere packs, along with 3D CT images of realistic porous 

rocks. By comparing these computed properties to experimental data, they found a good agreement. Furthermore, they 

also briefly demonstrated the effects of roughness on inertial flow in porous media. In addition, a recently direct 

pore-scale study done by Muljadi et al. (Muljadi et al., 2016) emphasized the effects of structural heterogeneity on the 

onset of non-Darcy flows and β factor with three kinds of porous media. Newman and Yin (Newman and Yin, 2013) 

adopted the LBM for performing a detailed study of non-Darcy flows in synthetic 2D media, with a porosity range of 

8-35 %, and they demonstrated that the contrast between pore and throat size prompted the transition to inertial flows. 

Through performing a number of LB flow simulations in various porous media, Arabjamaloei and Ruth (Arabjamaloei 

and Ruth, 2017) showed that the apparent permeability reduction was due to inertial effects and they also provided a 

new empirical correlation to predict the scaled permeability change of a porous medium. Nissan and Berkowitz (Nissan 

and Berkowitz, 2018) employed an FEM for the simulation depicting fluid flow through 2D pore-scale matrices with 

various pore structures to investigate the inertial effect on flow and transport, and they found that the inertial flow 

behavior was controlled by the medium structure and more heterogeneous models would magnify the inertial effect.     

Thus far, extensive research has revealed that macroscopic flow behaviors are associated with the pore structure. 

However, a quantitative study to shed light on the effects of several microstructural parameters on macroscopic 

permeability and β factor is still lacking. Moreover, although media with simple geometries may bear little resemblance 

to natural porous materials, it is amendable, and such models can be used to implement sensitivity analysis for structure 

complexity due to the well-adjustability of its structural parameters (Yazdchi and Luding, 2012; Yazdchi et al., 2011; 

Yazdchi et al., 2012). The results of this can then also be favorable to the development of the empirical equation to 

predict the transport properties of fluid. On the other hand, similar to apparent permeability, the tortuosity of a porous 

medium is also varied with entering the non-Darcy flow regime, which can be responsible for the variation in the flow 

patterns of fluids in pore space. However, its actual dependence on complex geometries and topologies is not well 

understood. For instance, in the study of Muljadi et al. (Muljadi et al., 2016), a typically inertial structure, steady eddies 
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was not formed within the beadpack and Benthimer sandstone, but occurred in Estaillades carbonate. A similar 

phenomenon was also found in Ref (Andrade Jr et al., 1999). Furthermore, the change of tortuosity can reflect the 

variety of flow paths in porous media. However, most of the works reported an increase of tortuosity at elevated flow 

rates. To our knowledge, only Yazdchi and Luding (Yazdchi and Luding, 2012) presented an opposite trend for the 

variation of tortuosity, but they did not elaborate on that further. As such, the nature of the varying tortuosity remains 

unclear. Collectively, these studies clearly outline a critical role for the effects of pore structure on the characteristics of 

non-Darcy flows. However, a systematic understanding of how structural properties influence the non-Darcy flow in 

diverse porous media, including both simple geometry models and complicated porous media, is still needed.  

The objectives of this research were thus to explore the non-Darcy flows in porous media with various pore 

complexities through the use of LBM. By conducting the flow simulations, the applicability of the Forchheimer 

equation was confirmed, and the effects of some relevant structural parameters on the onset of non-Darcy and β factor 

was quantitatively examined. Additionally, the mechanisms of varied tortuosity in non-Darcy flow were also clarified. 

The remaining part of the present study will proceed as follow: The lattice Boltzmann model was briefly introduced in 

Section 2. Along with this, Section 2 will also show the algorithm used for generating different porous media and the 

more detailed non-Darcy flow theory were presented. In Section 3, the β factor and the onset of non-Darcy flow were 

calculated, and the influence of the pore structure’s effect, the change of tortuosity, and associated flow patterns were 

discussed in detail. Finally, some conclusions are drawn in Section 4. 

 

2. Theory and numerical methods  

2.1 Lattice Boltzmann method  

The original Boltzmann equation cannot be directly solved due to its high-order nonlinear nature. Rather, a commonly 

used method is the use of an approximate model for the Boltzmann equation, namely the BGK approximation 

(Bhatnagar et al., 1954), which is also known as the single relaxation time (SRT) model. An alternative solution is the 
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multiple relaxation time (MRT) method, which incorporates multiple collision operators to increase the stability and 

accuracy of the simulation. Although compared with the SRT model, the MRT method shows a 30% increase in 

computational time (Newman and Yin, 2013), it has been widely used to study single phase flow and multiphase flow in 

porous materials due to its high accuracy and the well-adjustability of the relaxation time (Chen et al., 2014; Zhao et al., 

2017; Zhao et al., 2018a; Zhao et al., 2018b; Zhao et al., 2018c). In this study, the MRT-LBM was employed to simulate 

the Darcy flow and inertial flow in porous media. The standard LB equation with the MRT collision operators is 

expressed as  

 1( , )= ( , ) ( )( ( , ) ( , ))eqc t t t t t t−+ ∆ + ∆ − −f x e f x M SM f x f x   (2) 

Where ( , )tf x  is the fluid density distribution function at lattice site x and time t; c is the lattice speed which equals 

/x t∆ ∆  with t∆  being the lattice time step, as both of them are generally set as a unity. For the D2Q9 model, the 

lattice discrete velocities e of a given point was given by (Qian et al., 1992)  

 
0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

− − − 
=  − − − 

e   (3) 

The equilibrium distribution function ( , t)eq
if x  is written as (Qian et al., 1992) 

 2 2
2 4 2

3 9 3
1+ ( ) ( )

2 2
eq

i i i if
c c c

ρω  = ⋅ + ⋅ − 
 

e u e u u   (4) 

In the above equation, iω is the weight factor associated with different lattice velocities and can be given by0= 4 9ω , 

1-4= 4 9ω and 5-8=1 36ω . In addition, the fluid velocity and density are calculated through the Equation (4). It is to be 

noted that, in this work, the Mach number (the ratio of fluid velocity to the sound speed) was kept below 0.1 to 

minimize the compressibility effect of flow (Feng et al., 2007; Newman and Yin, 2013).  

 i
i

fρ =∑    (5a) 

 i i
i

fρ =∑u e   (5b) 

In addition, M is the velocity vector transformation matrix to momentum constructed by (Guo et al., 2002b; Yu and Fan, 

2010)  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

0 2 0 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

 
 − − − − − 
 − − − −
 

− − − 
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M   (6) 

S is a diagonal relaxation matrix in moment space M:  

 1 2 3 4 5 6 7 8 9diag[ ,  ,  ,  ,  ,  ,  ,  ,  ]s s s s s s s s s=S   (7) 

The selection of the parameters in Equation (7) follows the Ref (Huang et al., 2014), i.e.,1 4 6 1.0s s s= = = , 2 1.64s = , 

3 1.54s = , 5 7 1.2s s= =  and 8 9 1s s τ= = ; in which, the relaxation time τ  is, safely set as unity. The kinetic 

viscosity is also related to the relaxation time, and the sound speed sc (= 3c ), defined by:   

 2 1
( )

2sv c tτ= − ∆   (8) 

Furthermore, boundary conditions in this paper contain the standard bounce-back scheme and non-equilibrium 

extrapolation boundary condition (Guo et al., 2002a); herein, the former was used to treat the fluid-solid boundary, 

while the latter was applied in the inlet and outlet boundaries of the model to assign the specified pressure difference.   

Finally, the conversion of the LBM dimensions to physical units can be simply determined by three characteristic 

factors, i.e., length (L0), time (T0) and mass (M0). Since the values of the domain size, fluid density, and kinetic viscosity 

for both the LBM and physical systems are known, these characteristic factors can be calculated using the following 

relationships,  

 0 pL x x= ∆ ∆   (9a) 

 2
0 0 pT Lν ν=   (9b) 

 3
0 0 pM L ρ ρ=   (9c) 

Note that the subscript “p” represents the physical dimension, while the variable without a subscript would mean the 

lattice space, unless otherwise stated. Once L0, T0 and M0 are determined, other physical parameters can be easily 

obtained, e.g. pressure, velocity, permeability, etc.  
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2.2 2D porous media generation  

The characterization of fluid flow in porous media is challenging. Aside from the fact that it commonly involves 

multiple mechanisms, an important factor is that its flow or transport properties are usually dependent on the pore 

structure of the porous medium. In this study, two groups of geometry models were adopted for the simulation of the 

fluid flow.   

One is the porous models constituted by a certain amount of round particles with an equal diameter. This kind of 

geometry models is normally regarded as the benchmark for the non-Darcy flow in porous media because of its 

simplicity (Hill et al., 2001; Koch and Ladd, 1997; Yazdchi and Luding, 2012). Eight geometry models were created by 

randomly placing particles into the computational domain that was 500×300 lattices in size, until the expected porosity 

was achieved. Additionally, the minimum distance of any two particles is set as 2.2R to inhibit the overlap of grains, in 

which R is the particle radius. The detailed geometry parameters used in this paper are listed in Table 1. It is worth 

noting that the size of the grain model differs from the system size in Table 1, and the main reason for this will be 

discussed later in section 3.1.  

Table 1  

Properties of the generated porous media: structural information, porosity, specific surface area.  

Geometry model No. R (µm) System size Poro SSA (um-1) 

C1 144 12 1000×600 0.577 0.107  

C2 89 15 1000×600 0.579 0.086  

C3 63 18 1000×600 0.576 0.073  

C4 51 20 1000×600 0.573 0.067  

C5 383 6 1000×600 0.712 0.115  

C6 259 8 1000×600 0.66 0.115  

C7 187 10 1000×600 0.605 0.115  
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C8 150 12 1000×600 0.559 0.115  

R1 - - 1500×900 0.393 0.088  

R2 - - 1500×900 0.736 0.059  

R3 - - 1500×900 0.577 0.079  

R4 - - 1500×900 0.799 0.075  

No. : the number of particles; R: radius of the particle; Poro: porosity of the geometry; SSA: specific surface area.  

The examples of the geometry models, C4 and C8, are displayed in Figure 1a and 1b, where no overlap grains exist and 

the white zone represents the pore phase, whereas black represents the solid obstacle.  

  

  

Fig.1. Examples of pore media studied in this paper. (a), (b), (c) and (d) represent the configuration of C4, C8, R2 and 

R4 respectively. The remaining models are presented in our supplementary materials Figure S1.  

The generation of the other four geometries were accomplished using the Quartet Structure Generation Set (QSGS) 

algorithm developed by Wang et al. (Wang et al., 2007). The QSGS is a stochastic method which mainly incorporates 

four parameters: core distribution probability, directional growth probability, phase interaction growth probability and 
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volume fraction of each phase. For more details about this algorithm, one may refer to Ref (Wang et al., 2007). Through 

the adjustment of these variables, different types of porous media can be obtained. Furthermore, for the system with 

only one growth and one non-growth phase, the phase interaction growth probability can be neglected.  

Here, based on a blank domain with the size of 500×300 lattice nodes, we set different directional growth probabilities 

and fractions of growth phase for each model to generate four distinctive geometries, with the graphs of model R2 and 

R4 as examples, which are also plotted in Figure 1. It is observed that for R2, the solid phase favored growing in a 

longitudinal direction while the solid in R4 was prone to development in horizontal direction. Note that after these 

porous media were reconstructed, the median filter and the connected phase labeling algorithm (Chen et al., 2015) were 

applied to identify the effective flow paths, as the isolated pores have little contribution to fluid flow in pore space. It is 

also to be noted that both the grain structure models and the reconstructed porous media have an identical physical size 

of 500×300 µm2.  

2.3 Non-Darcy flow theory 

Based on the simulation results from LBM, the primary characteristics of the non-Darcy flow can be readily determined. 

Darcy law is used to acquire the intrinsic permeability of a porous medium. At elevated velocities, the flow in porous 

media is dominated by the fluid inertia, and as such, the linear relationship between the pressure gradient and the 

superficial velocity is broken down. Several attempts have been made to quantify the additional pressure drop caused by 

the inertial resistance. Besides the popular correlation (Forchheimer equation), another alternative is the cubic law 

(Firdaouss et al., 1997; Marusic-Paloka and Mikelic, 2000; Mei and Auriault, 1991), which is defined as  

 3

d

p U aU
K

µ−∇ = +   (10) 

Where a is a constant; and Kd is the Darcy permeability, mD. Certain scholars (Newman and Yin, 2013) have 

demonstrated that Equation (10) is only valid in a weak inertial flow with a narrow range of velocities. Beyond this 

regime, the fluid flow yields the Equation (1).  

In addition, the Re is typically used to characterize the transition from Darcy flow to non-Darcy flow, which reflects the 
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ratio of inertial force and viscous effects, and a common definition is  

 Re
Udρ
µ

=   (11) 

In this definition, d is the average diameter of the grains, m; but for a highly disordered medium, d is difficult to 

determine and is inadequate for the representation of the pore structure characteristic. Hence, another formulation 

(Muljadi et al., 2016; Newman and Yin, 2013) was adopted in this study, as described by Equation (12) 

 Re dU Kρ
µ

=   (12) 

Through combining Equation (1), (10) and (12), a generalized non-dimensional form of non-Darcy flow equation can 

be derived, which is similar to the formulation introduced by Yazdchi and Luding (Yazdchi and Luding, 2012) (see 

Equation (13)) 

 ' 1 Ref λγ= +   (13) 

Where the friction factor is 'f =Kd/Kapp, and the apparent permeability is Kapp =-∇p/ (µU), mD. For quadratic term 

equation, dKγ β=  and λ=1. Likewise, λ equals two for the cubic correction.  

Furthermore, β is often calculated by setting a cut-off in the plot and fitting the inertia-dominated flow to obtain the 

slope (Chukwudozie and Tyagi, 2013; Chukwudozie et al., 2012; Muljadi et al., 2016; Newman and Yin, 2013). We 

suggest this method could lead to some errors, especially when there is less simulation data. Here, β is directly 

determined by fitting all data with Equation (13).  

The effect of tortuosity (namely τ) on β factor has been highlighted by some researchers (Chukwudozie et al., 2012; 

Cooper et al., 1999; Kakouei et al., 2017), and is defined by (Duda et al., 2011; Koponen et al., 1996)  

 =
x

U

U
τ   (14) 

Where xU  is the spatial average of the fluid velocity along the macroscopic flow direction, whereas U is termed 

as well as the previous definition.  
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3. Results and discussion  

In this section, a series of LBM simulations was performed in order to investigate fluid flow in grain structures and 

stochastically generated porous media. In the following simulations, the bounce-back (no-slip) boundary condition is 

applied both at the top and bottom of the system, as well as the surface of the obstacles, and the pressure is set on the 

left and right. The features of Darcy and non-Darcy flow in pore space were captured by gradually varying the pressure 

difference between the inlet and the outlet. Note that our numerical models have been validated in our supplementary 

materials, which include Darcy flow and non-Darcy flow simulations.   

3.1 Grid refinement analysis 

A sufficiently fine grid is exceptionally crucial for mimicking fluid flow within samples with complex pore space or 

relatively high Reynolds number. More pore space would be likely to be created for fluid flow with the grid domain 

being refined (Chukwudozie et al., 2012; Muljadi et al., 2016). Therefore, in order to acquire a credible understanding 

of non-Darcy flows in porous media, one must make sure that the grid resolution is adequate.    

Given that two sets of samples with diverse pore structures were used, we selected C8 and R1 to check the grid 

coverage in the LBM simulations, owing to their low permeabilities and high SSA. Through subdividing a pixel into 

four and nine smaller pixels, the original model can be enlarged to a finer geometry with either 1000×600 or 1500×

900 elements. Several simulations were re-run at different grid resolutions, and the results are shown in Figure 2. One 

can see that the mesh resolution has a significant effect on the fluid flow in porous media; the original grid density is 

insufficient for revealing the feature of the non-Darcy flow, or even the Darcy flow, because the effective flow channels 

cannot be resolved. This includes, for instance, at lower Reynolds number, where the Darcy permeability is evidently 

lower than that at higher mesh resolutions. The trends of the apparent permeability varying with an increase in the 

Reynolds number under two refined grids are perfectly matched for C8, indicating that a grid resolution of 1000×600 

pixels is sufficient for the description of non-Darcy flow in porous media. Although there is a difference in simulation 

results under the two refined ones for R1, the minor deviation is acceptable. The mesh density of 1500×900 pixels was 
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used safely in conducting the following simulations, with respect to the second group of porous models, as can be seen 

in Table 1.  

  

Fig.2. The variation of apparent permeability as a function of Reynolds number for (a) C8 and (b) R1 at different grid 

resolution.  

3.2 Characterization of non-Darcy flow in porous media 

On the basis of the theory given in section 2.3, some relevant parameters can be determined for the identification of 

non-Darcy flows. For very low velocities, i.e., the creeping flows, the Darcy permeabilities of all the models have been 

summarized in Table 2. The permeabilities for C1~C8 has a narrow range from 2436 to 8893 mD, while only four 

permeabilities for R1~R4 exhibit a large fluctuation between 1645 to 40137 mD, which could be due to the substantial 

variation in pore structures. Plus, the tortuosities of various geometries can be calculated from the entire velocity filed 

distribution, which is also seen in Table 2. The tortuosity is able to reflect the heterogeneity of a porous medium to some 

degree; the values of most of these models are approximately 1.2. It is also found that R1 has the lowest permeability 

but has the highest value of tortuosity. In contrast, R4 has the highest permeability but minimal tortuosity. However, it 

would seem that there is no monotonous connection that exists between the permeability and the tortuosity. In addition, 

it should be noted that the permeability and tortuosity would change as the Re increases up to an inertial flow; as such, 

their listed values would correspond to the Darcy regime.  

Table 2 
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The acquired results fitted by quadratic and cubic non-Darcy correlations. Note that the equations shown in Table 2 correspond to the quadratic fitting 

because of the higher R Square.  

Geometry model 

R2 

Fitting equations β (×103 m-1) τ Perm (md) 

λ=1 λ=2 

C1 0.990  0.949  y=1+0.3045x 166.88  1.236  3329.4 

C2 0.991  0.947  y=1+0.2622x 116.63  1.203  5053.3 

C3 0.990  0.959  y=1+0.2855x 112.35  1.201  6459 

C4 0.992  0.931  y=1+0.2402x 80.39  1.176  8893.3 

C5 0.983  0.962  y=1+0.1202x 56.90  1.147  4464.6 

C6 0.988  0.953  y=1+0.1652x 78.49  1.213  4427.4 

C7 0.991  0.944  y=1+0.1889x 101.11  1.244  3491.6 

C8 0.984  0.962  y=1+0.2798x 179.25  1.231  2436.3 

R1 0.997  0.917  y=1+1.7193x 1340.54  1.545  1645 

R2 0.997  0.907  y=1+0.6234x 205.30  1.227  9219.9 

R3 0.992  0.945  y=1+0.4350x 128.25  1.216  11505 

R4 0.995  0.903  y=1+0.0757x 11.95  1.072  40137 

R2: the coefficient of determination; Perm: permeability of the porous medium.  

With the increase of velocity in pore space, the flow regime progressively transforms from a Darcy flow to non-Darcy 

flow, and the flow equation can be modified through a quadratic correlation. However, to further investigate the 

application of Equation (1) and (10) in characterizing the non-Darcy flow, the graph of the friction factor versus 

Reynolds number of each model were all fitted by those two relations. As can be seen from Table 2, in terms of all the 

models, the quadratic term (λ=1) has a better accuracy than the cubic one (λ=2) due to the higher R2. Furthermore, it 

appears that the Forchheimer equation might have a better applicability in the constructed models with the QSGS 
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method, where all the R2 values are >0.99.  

  

Fig.3. The plots of the friction factor versus Re and fitted lines for (a) C7 and (b) R1, using quadratic and cubic 

correlations. 

Taking the cases of C7 and R1 as an example, the simulation results and the fitting lines are shown in Figure 3. It is 

revealed that the cubic law can indeed be used to represent the weak inertial flow, i.e., the early stage of non-Darcy 

flows, whereas the quadratic correction is more appropriate for the strong inertial regime. This finding is in accordance 

with the conclusions of previous authors (Fourar et al., 2004; Koch and Ladd, 1997; Newman and Yin, 2013). 

Nevertheless, the cubic law only applies to a narrow range of Reynolds number (see the inserted circular in Figure 3). In 

its entirely, the whole flow regime, as represented by the Forchheimer equation, is acceptable. On the other hand, when 

the fitting equations are known, the β factor can be easily derived (see Table 2). It would appear that no obvious 

regularity was able to be observed between the β factor and other parameters due to the scattered nature, implying that 

the β factor is controlled by multiple factors that will be discussed in what follows.  

3.3 The impacts of pore structure on non-Darcy flow  

The pore structure of a porous medium greatly affects the flow in pore space and results in a challenge for the 

determination of the primary properties of non-Darcy flows, both macroscopically and microscopically. An advantage 

of generating grain models is that we can shift one specific geometrical parameter, while simultaneously, being able to 

fix the other relevant ones freely. For simplicity, this section illustrates the effects of specific surface area and porosity 
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(structural parameters can be seen in Table 1) on non-Darcy flow.  

  

Fig.4. The effect of specific surface area on non-Darcy flow. (a) The plot of apparent permeability versus Reynolds 

number at various SSA; (b) Variation of the β factor and tortuosity as a function of SSA.  

As shown in Figure 4, the variation tendency of apparent permeabilities for these models experiences a smooth phase, 

i.e. the Darcy regime, until the point of deviation, which is called the onset of the non-Darcy flow. Then, at elevated 

velocity circumstances, the fluid flow is dominated by the inertial effect, which results in a decline in the apparent 

permeability. Different criteria have been proposed by several authors (Comiti, 2000; Ma and Ruth, 1993; Zeng and 

Grigg, 2006) in identifying the cession of the Darcy flow, and a commonly used limit is the definition suggested by 

Comiti (Comiti, 2000), who identified this cessation at the point when the pressure drop due to the linear term becomes 

less than 99% of the total. In other words, once the friction factor 'f is more than 1.01, the Forchheimer regime is 

assumed. The onset of the non-Darcy flow is marked by a cross symbol, as depicted in Figure 4a, and indicates that a 

decreasing trend in the porous medium with a low permeability is more rapid compared to one with a higher 

permeability, a statement that is in a good agreement with the previous numerical results (Chukwudozie and Tyagi, 

2013; Kakouei et al., 2017; Muljadi et al., 2016). Furthermore, it can be found from Figure 4b that for the same porosity, 

a porous medium with a larger SSA leads to a lower permeability and larger β factor and tortuosity. This is as for the 

porous media with similar structural characteristics; a larger SSA generally leads to a more complex and tortuous pore 

structure.   
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Fig.5. The effect of porosity on non-Darcy flow. (a) The plot of apparent permeability versus Reynolds number at 

different porosities; (b) Variation of the β factor and tortuosity as a function of porosity.  

Similarly, as expected, in the same SSA, the porous model with a low permeability would mean the a less effective pore 

space available for fluid flow. Thus, a smaller value of the onset of non-Darcy flow is observed for such a model, as 

shown in Figure 5a. We also notice that if based on the observation of the cases C7 and C8, a large contrast in the 

permeability for them results in the significant differences in their β factor and onset value of inertial flow. However, 

while models C5 and C6 have rather similar permeability, the differences in the β factor and the onset value for inertial 

flow of both are relatively large, revealing that permeability are not purely controlled by the effective porosity. 

Additionally, there is a clear trend of a decrease in the β factor with increasing the porosity of the geometry, while no 

obvious correlation was found between the tortuosity and porosity (see Figure 5b).  

  

Fig.6. Non-Darcy flow in stochastically constructed porous media. (a) The plot of apparent permeability versus 
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Reynolds number; (b) The relationship between the β factor and the defined non-Darcy factor Nf for various models. 

As for the naturally porous media, including the stochastically generated models, it would be impossible to perform a 

sensitivity analysis of the effect of pore structure on non-Darcy flow due to the extremely irregular structural nature. 

However, from the above results, a positive or negative correlation was found between the β factor, the SSA, and 

porosity. Here, we propose a new correlation, which contains the terms of SSA, porosity, and permeability, to describe 

the β factor. Furthermore, it meets the criterion of dimensional analysis, and is expressed as  

 
1

3( )( )
d

S
af

K
β φ=   (15) 

Where a equals 2.7×108; S denotes the SSA, um-1; and ( )f φ is a function of porosity, following the conclusions by 

scholars (Ergun, 1952; Yazdchi and Luding, 2012), which can be defined as a monotonically decreasing function, 

3( )= (1 )f φ φ φ− . Recently, Newman and Yin (Newman and Yin, 2013) provided a correlation, see Equation (16), from 

which it can be seen that the β factor has a positive relation with the( )f φ but has a negative relation with SSA. However, 

this is contrary to what was observed and to the conclusions of previous studies (Ergun, 1952; Yazdchi and Luding, 

2012), and might need to be corrected.  

 ( ) 1 220.00993 ( )d dK f K Sβ φ
−

=   (16) 

In which, ( )= 1f φ φ φ−  is a monotonically increasing function when ϕ is between 0 and 1.  

Similar to the results from Figure 4 and 5, the models with more heterogeneous structure exhibit an earlier non-Darcy 

regime and lower permeability. Additionally, the results presented in Figure 6b show a good fit when using Equation 

(15) from geometry C1~C8, but a remarkable deviation from the fitting line was viewed for R1~R4. This implies that 

for the simple geometries, C1~C8 for example, the β factor being characterized using SSA, Darcy permeability, and 

SSA might be sufficient, while for the model with a complicated heterogeneity, described only by these parameters may 

be found wanting and might need to have more parameters incorporated.  

It should be noted that there are still some limitations within in our work, and the developed correlation may not be 

directly used to predict non-Darcy flow characteristic. One of the reasons for that is the correlation is based on 2D 
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simulations, which is inconsistent with realistic porous media. Hence, the possibility of application in the 3D medium 

remains open. As such, the models used in this study for the investigation of the effects of pore structure on non-Darcy 

flow are far from sufficient if one intends to propose a general equation to β factor. Furthermore, characterization of 

pore structures only through the use of SSA, porosity, and permeability are also insufficient; some key factors, such as 

pore-throat size distribution, coordination number, the relative position of pore clusters, and two/three even higher-point 

correlation function might be needed to account for the complex structure (Rabbani et al., 2016; Sharqawy, 2016; 

Tahmasebi and Sahimi, 2013). However, the question remains that these parameters are hard to determine 

experimentally but procurement through the digital rock physics method is possible. In other words, an accurate 

correlation which involves multifold impacts to elucidate the inertial effect would not be able to be widely used in 

relevant industries. The main objective of this study is thus to highlight the effect of pore structure on inertial flow in 

porous media, and the development of a strong correlation is of huge practical value, and as such, will be conducted in 

our future investigations.  

3.4 Analysis of inertial flow modes 

As mentioned before, non-Darcy flows in porous media are highly dependent of the medium structure, where higher 

complexity magnifies fluid inertial effects (Nissan and Berkowitz, 2018). Furthermore, this effect triggers various flow 

patterns in pore space and the apparent permeability and tortuosity changes accordingly, as the Reynolds number 

increases. 
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Fig.7. Two types of trends of variation in tortuosity with an increase in the Reynolds number. (a) a gradual decline in 

tortuosity; (b) a gradual increment in tortuosity. 

The variation of apparent permeability has been discussed before, when the flow regime transitions from linear to 

nonlinear, and the feature of tortuosity was presented in this section. Figure 7 displays the variation trends of tortuosity 

versus the Reynolds number. Surprisingly, the variation trend of tortuosity for these models can be classified into two 

types; when the non-Darcy flows appear, the Type I curve shows a monotonically increasing tendency while Type II 

shows a decreasing one. Indeed, Type II has been demonstrated by some researchers (Chukwudozie and Tyagi, 2013; 

Chukwudozie et al., 2012; Kakouei et al., 2017; Muljadi et al., 2016), and the main cause for that will be elaborated in 

detail furthermore in the paper. However, as pointed out in the introduction, the Type I curve is only discovered in the 

work of Yazdchi and Luding (Yazdchi and Luding, 2012), but they did not provide a reasonable explanation for that. 

Here, this rather contradictory result will be clarified by a visualization analysis of flow modes in the model R4, C4 and 

R1. First, from the point view of mathematics, see Equation (14), the intrinsic velocity vector u would consist of the 

components along the X and Y direction. Hence, the decrease in tortuosity means the contribution of fluid velocity of X 

component becomes more significant. On the contrary, the increase in tortuosity indicates the larger portion of the Y 

component with respect to the velocity vector.  

 

Fig.8. Plots of velocity distribution within R4 at specific points, with the legend being denoted by U/Uave, where Uave is 

the average velocity through the entire porous medium; (a) the Darcy regime (Re=5.7×10-3) and (b) the non-Darcy 

regime (Re=6.68). 
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Figure 8 depicts the fluid velocity fields for R4 at two different Reynolds number, and it is observed that at the Darcy 

regime, the fluid spreads evenly through the pore space in the area where a local high-velocity zone exists, within the 

flow domain (marked by a large rectangle). However, with increasing the Reynolds number, the high-speed region 

within Figure 8a is shifted to a straight pore throat (see the red rectangle in Figure 8b), and an apparent concentration of 

fast flow appears and the sweeping efficiency of fluid is also reduced. This finding is qualitatively in line with the 

findings of previous studies (Muljadi et al., 2016; Newman and Yin, 2013). Additionally, another high-rate zone takes 

place in the lower left of the model. These phenomena can be explained by the “inertial cores” mechanism (Dybbs and 

Edwards, 1984). Furthermore, some small steady eddies emerge within pore spaces, even at Darcy flow conditions, due 

to the confined pores which is only swept by flow recirculation (marked by the purple circles), at higher Reynolds 

number more intensive eddies occurs. The generated vortex is detrimental to the fluid flow and makes the flow path 

more tortuous. Overall, the variation of tortuosity for a porous medium is derived as an outcome of multiple 

mechanisms acting together. The decreased tortuosity for Type I reveals that the total flow flux mainly comes from the 

contribution of these enhanced flow paths, and the effect of inertial core outweighs the effect of steady eddies.  

 

Fig.9. Plots of velocity distribution of within R1 at specific points; (a) the Darcy regime (Re=1.1×10-4) and (b) the 

non-Darcy regime (Re=1.37). 

The velocity fields for R1 at different regimes are presented in Figure 9. Similar to the case of R4, some eddies were 

also observed in the Darcy regime because of the intricate pore structure then grows as the Reynolds number increases 

(see the purple circle). These eddies usually emerge where obstacles touch and the flow cannot transverse effectively, as 
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pointed out by Fourar et al.(Fourar et al., 2004). In addition, another observation made, in relation to Figure 13, is that a 

reversal flow occurs (denoted by a red rectangle), i.e., at higher Reynolds number, the flow direction is shifted to the 

opposite direction and the values of the local velocities become negative, which leads to the increase in tortuosity. 

Furthermore, we also illustrated the velocity distribution of C4, and from Figure 10 we can conclude that the gradual 

deviation from Darcy’s law is due to the dynamic growth of flow eddies and some new preferential flow paths. Despite 

the distribution of streamlines along the direction orthogonal toward the direction of applied pressure becoming more 

homogeneous, the existence of fluid vortex may result in the increase of tortuosity for C4.  

  

Fig.10. Plots of velocity distribution of within C4 at specific points; (a) the Darcy regime (Re=9.4×10-4) and (b) the 

non-Darcy regime (Re=6.1). 

The LBM simulations at the pore scale indicate that the non-Darcy flow in porous media is collectively controlled by 

several mechanisms, as one alone cannot be responsible for the macroscopic behavior of fluid flow. We suggest that the 

inertial core effect in a large channel will lead to a more homogeneous flow and decrease the tortuosity, while for 

relatively intricate porous models, the steady eddy and reversal flow results from the drag force will make the flow 

paths more tortuous. Indeed, the features of inertial flow are closely related to the pore structure of the model; one must 

have a clear recognition of the porous model before carrying out the investigation of non-Darcy flow in porous media. 

In addition, we also speculate that these effects would also appear in 3D porous models, which might have a faster 

transformation from Darcy regimes to non-Darcy regimes, as 3D flow paths are more complicated. Besides, to form a 

percolated pore space, 3D geometry may need a lower porosity compared to the 2D models. Clearly, a study of 
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non-Darcy flows in various 3D models is worth being conducted in the future.   

 

4. Conclusion  

In this study, we performed a series of non-Darcy flow simulations in various porous models through the use of the 

lattice Boltzmann method, and the capability of two non-Darcy correlations in porous media, the effect of pore structure 

on non-Darcy flow, and the types of non-Darcy flow patterns were revealed based on the simulation results. The main 

conclusions of this study are as follows.  

(1) The cubic law is only valid in representing the early stages of non-Darcy flows in porous media; beyond this regime, 

the inertia-dominated flow yields to the quadratic correction, which has a better accuracy than the cubic term. On the 

whole, the characterization of non-Darcy flows using the quadratic correction is acceptable, especially for the porous 

media with higher complexity.   

(2) The features of non-Darcy flow are greatly affected by the pore structure of a porous medium. Generally, more 

heterogeneous pore models always have a faster cessation and a larger β factor. To be specific, when fixing other 

structural parameters, the porous media with lower porosity and higher specific surface area would have a more 

tortuous pore space, thus increasing the effect of fluid inertia.  

(3) We also attempted to predict the β factor using some relevant structural properties; the results indicated that for 

simple porous media, several parameters may be adequate while more parameters would be needed to determine the β 

factor for the heterogeneous porous models. 

(4) The non-Darcy flow that occurred in porous media was collectively controlled by several mechanisms. Through 

increasing the flow rate, the inertial core effect in a large channel will lead to a more homogeneous and less tortuous 

flow, while in porous models with a complicated pore space, the steady eddy and reversal flow resulting from the drag 

force will make the flow paths more tortuous. The gradual increase, or decrease, of tortuosity for a porous medium in 

non-Darcy flow regime thus reflects the combined actions of such mechanisms.  
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Appendix A. Supplementary material  

All the geometry models used in the present work and validation of our numerical models can be found in supporting 

information.  
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Highlights:  

Non-Darcy flows in porous media are simulated using the lattice Boltzmann method.  

The effects of pore structure on non-Darcy flow are studied.  

The flow patterns of the fluid in the non-Darcy regime are elaborated.  

 


